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Color Face Recognition for Degraded Face Images
Jae Young Choi, Yong Man Ro, Senior Member, IEEE, and Konstantinos N. (Kostas) Plataniotis, Senior Member, IEEE

Abstract—In many current face-recognition (FR) applications,
such as video surveillance security and content annotation in a
web environment, low-resolution faces are commonly encountered
and negatively impact on reliable recognition performance. In
particular, the recognition accuracy of current intensity-based FR
systems can significantly drop off if the resolution of facial images
is smaller than a certain level (e.g., less than 20 × 20 pixels).
To cope with low-resolution faces, we demonstrate that facial color
cue can significantly improve recognition performance compared
with intensity-based features. The contribution of this paper is
twofold. First, a new metric called “variation ratio gain” (VRG) is
proposed to prove theoretically the significance of color effect on
low-resolution faces within well-known subspace FR frameworks;
VRG quantitatively characterizes how color features affect the
recognition performance with respect to changes in face resolu-
tion. Second, we conduct extensive performance evaluation studies
to show the effectiveness of color on low-resolution faces. In partic-
ular, more than 3000 color facial images of 341 subjects, which are
collected from three standard face databases, are used to perform
the comparative studies of color effect on face resolutions to be
possibly confronted in real-world FR systems. The effectiveness of
color on low-resolution faces has successfully been tested on three
representative subspace FR methods, including the eigenfaces, the
fisherfaces, and the Bayesian. Experimental results show that color
features decrease the recognition error rate by at least an order
of magnitude over intensity-driven features when low-resolution
faces (25 × 25 pixels or less) are applied to three FR methods.

Index Terms—Color face recognition (FR), face resolution, iden-
tification, variation ratio gain (VRG), verification (VER), video
surveillance, web-based FR.

I. INTRODUCTION

FACE recognition (FR) is becoming popular in research and

is being revisited to satisfy increasing demands for video

surveillance security [1]–[3], annotation of faces on multimedia

contents [4]–[7] (e.g., personal photos and video clips) in web

environments, and biometric-based authentication [58]. Despite

the recent growth, precise FR is still a challenging task due to

ill-conditioned face capturing conditions, such as illumination,
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pose, aging, and resolution variations between facial images

being of the same subject [8]–[10]. In particular, many current

FR-based applications (e.g., video-based FR) are commonly

confronted with much-lower-resolution faces (20 × 20 pixels

or less) and suffer largely from them [2], [11], [12]. Fig. 1

shows practical cases in which the faces to be identified or

annotated have very small resolutions due to limited acquisition

conditions, e.g., faces captured from long distance closed-

circuit television (CCTV) cameras or camera phones. As can

be seen in Fig. 1(a) and (b), the faces enclosed in red boxes

have much lower resolution and additional blurring, which

often lead to unacceptable performance in the current grayscale

(or intensity)-based FR frameworks [13]–[18].

In the practical FR applications, which frequently encounter

low-resolution faces, it is of utmost importance to select face

features that are robust against severe variations in face resolu-

tion and to make efficient use of these features. In contrast to the

intensity-driven features, color-based features are known to be

less susceptible to resolution changes for objection recognition

[20]. In particular, the psychophysical results of the FR test in

human visual systems showed that the contribution of facial

color becomes evident when the shapes of faces are getting

degraded [21]. Recently, considerable research effort has been

devoted to the efficient utilization of facial color information to

improve the recognition performance [22]–[29]. For the color

FR reported so far, questions could be categorized as follows:

1) Was color information helpful in improving the recogni-

tion accuracy compared with using grayscale only [22]–[29];

2) how were three different spectral channels of face images

incorporated to take advantages of face color characteristics

[22], [24], [25], [28], [29]; and 3) which color space was the

best for providing discriminate power needed to perform the

reliable classification tasks [22], [25], [26]? To our knowledge,

however, the color effect on face resolution has not yet been

rigorously investigated in the current color-based FR works,

and no systematic work suggests the effective color FR frame-

work robust against much-lower-resolution faces in terms of

recognition performance.

In this paper, we carry out extensive and systematic studies

to explore the facial color effect on the recognition performance

as the face resolution is significantly changed. In particular, we

demonstrate the significant impact of color on low-resolution

faces by comparing the performance between grayscale and

color features. The novelty of this paper comes from the

following.

1) The derivation of a new metric, which is the so-called

variation ratio gain (VRG), for providing the theoreti-

cal foundation to prove the significance of color effect

on low-resolution faces. Theoretical analysis was made

within subspace-based FR methods, which is currently

1083-4419/$25.00 © 2009 IEEE
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Fig. 1. Practical illustrations of extremely small-sized faces in FR-based applications. (a) Surveillance video frame from “Washington Dulles International
Airport.” The two face regions occupy approximately 18 × 18 pixels of the video frame shown, having an original resolution of 410 × 258 pixels. (b) Personal
photo from a “Flickr” [19] web site. The face region occupies about 14 × 14 pixels in the picture shown, having an original resolution of 500 × 333 pixels.

one of the most popular FR techniques [30], [31] due to

reliability in performance and simplicity in implementa-

tion. VRG quantitatively characterizes how color features

affect recognition performance with respect to changes in

face resolution.

2) Extensive and comparative recognition performance eval-

uation experiments to show the effectiveness of color on

low-resolution faces. In particular, 3192 frontal facial im-

ages corresponding to 341 subjects collected from three

public data sets of the Carnegie Mellon University Pose,

Illumination, and Expression (CMU PIE) [32], Facial

Recognition Technology (FERET) [33], and the Extended

Multimodal Verification for Teleservices and Security

Applications Database (XM2VTSDB) [34] were used to

demonstrate the contribution of color to improved recog-

nition accuracy over various face resolutions commonly

encountered from still-image- to video-based real-world

FR systems. In addition, the effectiveness of color has

successfully been tested on three representative subspace

FR methods—principal component analysis [35] (PCA or

“eigenfaces”), linear discriminant analysis [8], [36] (LDA

or “fisherfaces”), and Bayesian [37] (or “probabilistic

eigenspace”). According to experimental results, the ef-

fective use of color features drastically reduces the lower

bound of face resolution to be reliably recognizable in

the computer FR beyond what is possible with intensity-

based features.

The rest of this paper is organized as follows. The next sec-

tion provides background about the low-resolution-face prob-

lem in the current FR works. Section III introduces the proposed

color FR framework. In Section IV, we first define variation

ratio and then make a theoretical analysis to explain the effect

of color on variation ratio. In Section V, based on an analysis

made in Section IV, VRG is proposed to provide a theoretical

insight on the relationship between color effect and face resolu-

tions. Section VI presents the results of extensive experiments

performed to demonstrate the effectiveness of color on low-

resolution faces. The conclusion is drawn in Section VI.

II. RELATED WORKS

In the state-of-the-art FR research, a few works dealt with

face-resolution issues. The main concern in these works would

be summarized as follows: 1) what is the minimum face reso-

lution to be potentially encountered with the practical applica-

tions and to be detectable and recognizable in the computer FR

systems [2], [13], [14], [38]–[40] and 2) how do low-resolution

faces affect the detection or recognition performances

[15]–[17], [40]. In the cutting-edge FR survey literature [2],

15 × 15 pixels is considered to be the minimum face resolution

for supporting reliable detection and recognition. The CHIL

project [14] reported that normal face resolution in video-based

FR is from 10 to 20 pixels in the eye distance. Furthermore, they

indicated that the face region is usually 1/16th of commonly

used TV recording video frames of resolutions of 320 ×
240 pixels. Furthermore, the FR vendor test (FRVT) 2000

[12] studied the effect of face resolution on the recognition

performance until the eye distance on the face is as low as 5 ×
5 pixels. In the research fields of face detection, 6 × 6 pixels of

faces has been reported so far to be the lowest resolution that is

feasible for automatic detection [40]. Furthermore, the authors

of [39] proposed the face detection algorithm that supports

acceptable detection accuracy, even until 11 × 11 pixels.

Several previous works also examined how low-resolution

faces impact on recognition performance [15]–[17]. Their

works were carried out through intensity-based FR frameworks.

They reported that much-lower-resolution faces significantly

degrade recognition performance in comparison with higher-

resolution ones. In [15], face registration and recognition

performances were investigated with various face resolutions

ranging from 128 × 128 to 8 × 8 pixels. They revealed that

face resolutions below 32 × 32 pixels show a considerable

decreased recognition performance in PCA and LDA. In [16],

face resolutions of 20 × 20 and 10 × 10 pixels dramatically

deteriorated recognition performance compared with 40 ×
40 pixels in video-based FR systems. Furthermore, the author of

[17] reported that the accuracy for face expression recognition

is dropped off below 36 × 48 pixels in the neural-network-

based recognizer.

Obviously, low-resolution faces impose a significant restric-

tion on current intensity-based FR applications to accomplish

reliability and feasibility. To handle low-resolution-face prob-

lems, resolution-enhancement techniques such as “superresolu-

tion” [18], [41], [42] are traditional solutions. These techniques

usually estimate high-resolution facial images from several

low-resolution ones. One critical disadvantage, however, is that

the applicability of these techniques is limited to restricted FR

domain. This is because they require a sufficient number of
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multiple low-resolution images captured from the same identity

for the reliable estimation of high-resolution faces. In practice,

it is difficult to always support such requirement in practical

applications (e.g., the annotation of low-resolution faces on

personal photos or snapshot Web images). Another drawback

to these approaches is the requirement of a complex framework

for the estimation of an image degradation model. It is also

computationally demanding for the reconstruction of a high-

resolution face image. In this paper, we propose an effective

and simple method of using face color features to overcome the

low-resolution-face problem. The proposed color FR method

improves degraded recognition accuracy, which is caused by

low-resolution faces, by a significant margin compared to con-

ventional intensity-based FR frameworks. In addition, contrary

to previous resolution-enhancement algorithms, our approach is

not only simple in implementation but also guarantees extended

applicability to FR applications where only a single color

image with a low resolution is available during actual testing

operations.

III. COLOR FR FRAMEWORK

In this section, we formulate the baseline color FR frame-

work [20] that can make efficient use of facial color features to

overcome low-resolution faces. Red–green–blue (RGB) color

face images are first converted into another different color

space (e.g., Y CbCr color space). Let I be a color face image

generated in the color space conversion process. Then, let sm

be an mth spectral component vector of I (in the form of a col-

umn vector by lexicographic ordering of the pixel elements of

2-D spectral images), where sm ∈ R
Nm and R

Nm denotes an

Nm-dimensional real space. Then, the face vector is defined

as the augmentation (or combination) of each spectral compo-

nent sm such that x = [ sT
1 sT

2 · · · sT
K ]T, where x ∈ R

N ,

N =
∑K

m=1 Nm, and T represents the transpose operator of

the matrix. Note that each sm should be normalized to zero

mean and unit variance prior to their augmentation. Face vector

x can be generalized in that, for K = 1, the face vector could be

defined by grayscale only, while for K = 3, it could be defined

by a spectral component configuration like Y CbCr or Y QCr

by column order from Y CbCr and Y IQ color spaces.

Most subspace FR methods are separately divided into the

training and testing stages. Given a set {Ii}
M
i=1 of M color

face images, Ii should be first rescaled into the prototype

template size to be used for the creation of a corresponding face

vector xi. With a formed training set {xi}
M
i=1 of M face vector

samples, the feature subspace is trained and constructed. The

rationale behind the feature subspace construction is to find a

projection matrix Φ = [ e1 e2 · · · eF ] by optimizing crite-

ria to get a lower dimensional feature representation f = ΦTx,

where each column vector ei is a basis vector spanning the

feature subspace Φ ∈ R
N×F , and f ∈ R

F . It should be noted

that F ≪ N . For the testing phase, let {gi}
G
i=1 be a gallery

(or target) set consisting of G prototype enrolled face vectors of

known individuals, where gi ∈ R
N . In addition, let p be an un-

known face vector to be identified or verified, which is denoted

as a probe (or query), where p ∈ R
N . To perform FR tasks

on the probe, gi (i = 1, . . . , G) and p are projected onto the

feature subspace to get corresponding feature representations

such that

fgi
= ΦTgi, fp = ΦTp (1)

where fgi
∈ R

F and fp ∈ R
F . A nearest-neighbor classifier

is then applied to determine the identity of p by finding the

smallest distance between fgi
(i = 1, . . . , G) and fp in the

feature subspace as follows:

ℓ(p) = ℓ(gi∗), i∗ = arg
G

min
i=1

‖fgi
− fp‖ (2)

where ℓ(·) returns a class label of face vectors, and ‖ · ‖ denotes

the distance metric. To exploit why the role of color is getting

significant as face resolution is decreased within our baseline

color FR framework, a theoretical analysis will be given in the

following sections.

IV. ANALYSIS OF COLOR EFFECT AND FACE RESOLUTION

Wang and Tang [43] proposed a face difference model that

establishes a unified framework of PCA, LDA, and Bayesian

FR methods. Based on this model, intra- and extrapersonal

variations of feature subspace are critical factors in determining

the recognition performance in the three methods. These two

parameters are quantitatively well represented by the variation

ratio proposed in [44]. Before exploiting the color effect on

the recognition performance with respect to changes in face

resolution, we begin by introducing the variation ratio and

explore how chromaticity components affect the variation ratio

within our color FR framework.1

A. Variation Ratio

In PCA, covariance matrix C can be computed by using the

differences between all possible pairs of two face vectors [43]

included in {xi}
M
i=1 such that

C =
M
∑

i=1

M
∑

j=1

(xi − xj)(xi − xj)
T. (3)

Then, C is decomposed into intra- (or within) and extrapersonal

(or between class) covariance matrices [43], which are denoted

as IC and EC, respectively. IC and EC are defined as

IC =
∑

l(xi)=l(xj)

(xi − xj)(xi − xj)
T

EC =
∑

l(xi) �=l(xj)

(xi − xj)(xi − xj)
T (4)

where l(·) is a function that returns a class label of xi as input.

As pointed out in [43], the total variation that resides in

the feature subspace is divided into intra- and extrapersonal

1In this paper, a theoretical analysis in only the PCA-based color FR
framework is given. Our analysis, however, is readily applied to LDA and
Bayesian due to the same intrinsic connection of intra- and extrapersonal
variations described in [43].
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variations related to IC and EC, respectively. From a classifica-

tion point of view, it is evident that the recognition performance

is enhanced as the constructed feature subspace learns and

contains a larger variation of EC than that of IC. From this

principle, the ratio of extra- to intrapersonal variations can be

adopted as an important parameter that reflects the discrimina-

tive power of feature space [45]. To define variation ratio, first,

let Φ be an eigenvector matrix of C, and then, let VarΦ (IC) and

VarΦ (EC) be intra- and extrapersonal variations of the feature

subspace spanned by Φ, which are computed as [44]

VarΦ(IC)=tr(ΦTICΦ), VarΦ(EC)=tr(ΦTECΦ) (5)

where tr(·) is a trace operator of the matrix. Using (5), the

variation ratio (J) is defined as

J =
VarΦ(EC)

VarΦ(IC)
. (6)

As J increases, a trained feature subspace relatively includes a

larger variation of EC in comparison to that of IC. Therefore,

J represents a well-discriminative capability of the feature

subspace for classification tasks. In (6), the formulation of

VarΦ (IC) and VarΦ (EC) is similar to that of the J-statistic

[55] used in the field of economics. However, it should be

pointed out that the metric is used in a novel and quite different

way. In particular, the J-statistic has been used as a criterion

function to determine the optimal unknown parameter vectors

[55], while VarΦ (IC) and VarΦ (EC) are used to represent

quantitatively the discriminative “effectiveness” of the feature

subspace spanned by Φ.

B. Intra- and Extrapersonal Variations in Color FR

In the following section, without loss of generality, we

assume that the ith face vector xi is a configuration of one

luminance (si1) and two different chromaticity components

(si2 and si3) so that xi = [ sT
i1 sT

i2 sT
i3 ]T. By substituting

[ sT
i1 sT

i2 sT
i3 ]T into xi in (3), C is written as

C =

⎡

⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤

⎦ (7)

where Cmn =
∑M

i=1

∑M
j=1(sim − sjm)(sin − sjn)T, and m,

n = 1, 2, 3. As shown in (7), C is a block covariance

matrix whose entries are partitioned into covariance or cross-

covariance submatrices Cmn. For m = n, Cmn is a covariance

submatrix computed from a set {sim}M
i=1; otherwise, for m �=n,

Cmn is a cross-covariance submatrix computed between

{sim}M
i=1 and {sin}

M
i=1, where Cmn = CT

nm. From (4), the IC

and EC decompositions of C shown in (7) are represented as

IC =

⎡

⎣

IC11 IC12 IC13

IC21 IC22 IC23

IC31 IC32 IC33

⎤

⎦

EC =

⎡

⎣

EC11 EC12 EC13

EC21 EC22 EC23

EC31 EC32 EC33

⎤

⎦ (8)

where ICmn and ECmn are

ICmn =
∑

l(xi)=l(xj)

(sim − sjm)(sin − sjn)T

ECmn =
∑

l(xi) �=l(xj)

(sim − sjm)(sin − sjn)T. (9)

Like C, IC and EC are also block covariance matrices.

To explore the color effect on variation ratio, we analyze

how ICmn and ECmn, which are computed from two different

chromaticity components of sm and sn (m,n = 2, 3), impact

on the construction of variations of IC and EC in (8). By the

proof given in the Appendix, trace values of IC and EC can be

written as

tr(IC)=

3
∑

m=1

tr(IΛmm), tr(EC)=

3
∑

m=1

tr(EΛmm) (10)

where IΛmm and EΛmm are diagonal eigenvalue matrices

of ICmm and ECmm, respectively. Using (5) and the cyclic

property of the trace operator, the variations of IC and EC are

computed as

VarΦ(IC) = tr(ΦΦTIC) = tr(IC)

VarΦ(EC) = tr(ΦΦTEC) = tr(EC) (11)

where Φ is an eigenvector matrix of C defined in (7).

Furthermore, using (5) and the diagonalization of a matrix, the

variations of ICmm and ECmm are computed as

VarΦmm
(ICmm) = tr(IΛmm)

VarΦmm
(ECmm) = tr(EΛmm) (12)

where Φmm is an eigenvector matrix of Cmm, and m = 1, 2, 3.

It should be noted that, in case of m = 1, VarΦ11
(IC11) and

VarΦ11
(EC11) denote intra- and extrapersonal variations cal-

culated from a luminance component of the face vector, while

others (m = 2, 3) are corresponding variations computed from

two different chromaticity components.

Substituting (11) and (12) into (10), intra- and extraper-

sonal variations of the feature subspace spanned by Φ can be

represented as

VarΦ(IC) =
3

∑

m=1

VarΦmm
(ICmm)

VarΦ(EC) =

3
∑

m=1

VarΦmm
(ECmm). (13)

From (13), we can see that the variation of IC and EC is

equal to the summation of the variations of the respective

diagonal submatrices of ICmm and ECmm, respectively. This

means that VarΦ (IC) and VarΦ (EC) are partially decom-

posed into three independent portions of VarΦmm
(ICmm) and

VarΦmm
(ECmm), where m = 1, 2, 3. This confers an impor-

tant implication about the effect of color on the variation ratio in

the color-based FR. Two different chromaticity components can

make an independent contribution to construct the intra- and

extrapersonal variations in a separate manner with luminance.
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Aside from the independent contribution, since each spectral

component of skin-tone color has its own inherent character-

istics [38], [46], [47], VarΦmm
(ICmm) and VarΦmm

(ECmm)
may differently be changed by practical facial imaging con-

ditions, e.g., illumination and spatial-resolution variations. As

a result, intra- and extrapersonal variations in the color-based

FR are formed by the composition of variations computed

from each spectral component along with different imaging

conditions. On the contrary, in the traditional grayscale-based

subspace FR, the distribution of the intra- and extrapersonal

variations (denoted as VarΦ11
(IC11) and VarΦ11

(EC11)) in the

feature subspace spanned by Φ11 is entirely governed by the

statistical characteristic of only the luminance component.

C. Color Boosting Effect on Variation Ratio Along With

Face Resolution

Now, we make an analysis of the color effect on variation

ratio with respect to changes in face resolutions. Our analysis

is based on the following two observations: 1) As proven in

Section IV-B, each spectral component can contribute in an

independent way to construct the intra- and extrapersonal vari-

ations of the feature subspace in color-based FR; as described

in [54] and [58], such independent impact on evidence fusion

usually facilitates a complementary effect between different

components for recognition purposes, and 2) the robustness of

the color features against variation in terms of face resolution;

previous research [20], [48], [49] revealed that chromatic con-

trast sensitivity is mostly concentrated on low-spatial frequency

regions compared to luminance; this means that intrinsic fea-

tures of face color are even less susceptible to a decrease

or variation of the spatial resolution. Considering these two

observations, it is reasonable to infer that two chromaticity

components can play a supplement role in boosting the de-

creased variation ratio caused by the loss in the discriminative

power of the luminance component arising from low-resolution

face images.

To quantize the color boosting effect on variation ratio over

changes in the face resolution, we will now derive a simple

metric, which is called variation ratio grain (VRG). Using

(6) and (12), the variation ratio, which is parameterized by

face resolution (γ), for an intensity-based feature subspace is

defined as

J lum(γ) =
VarΦ11(γ) (EC11(γ))

VarΦ11(γ) (IC11(γ))
. (14)

It should be noted that all terms in (14) are obtained from

a training set of intensity facial images having resolution γ.

On the other hand, using (13), the variation ratio for a color-

augmentation-based feature subspace is defined as

J lum+chrom(γ) =
VarΦ(γ) (EC(γ))

VarΦ(γ) (IC(γ))

=

3
∑

m=1
VarΦmm(γ) (ECmm(γ))

3
∑

m=1
VarΦmm(γ) (ICmm(γ))

. (15)

Fig. 2. Average variation ratios and the corresponding standard deviations
with respect to six different face-resolution parameters γ. Note that the margin
between curves of J lum(γ) and J lum+chrom(γ) represents the numerator of
VRG defined as in (16).

Finally, a VRG having input argument γ is defined as

V RG(γ) =
J lum+chrom(γ) − J lum(γ)

J lum(γ)
× 100. (16)

V RG(γ) measures the relative amount of variation ratio in-

creased by chromaticity components compared to that from

only luminance at face resolution γ. Therefore, it reflects well

the degree of the effect of color information on the improved

recognition performance with respect to changes in γ.

To validate the effectiveness of VRG as a relevant metric

for the purpose of quantization of the color effect along with

variations in face resolutions, we conducted an experiment

using three standard color face DBs of CMU PIE, FERET,

and XM2VTSDB. A total of 5000 facial images were collected

from three data sets and were manually cropped using the eye

position provided by ground truth. Each cropped facial image

was first rescaled to a relatively high resolution of 112 ×
112 pixels. To simulate the effect of lowering the face resolution

from different distances to the camera, the 5000 facial images

with 112 × 112 pixels were first blurred and then subsequently

downsampled by five different factors to produce five different

lower-resolution facial images [18]. For blurring, we used a

point spread function, which was set to a 5 × 5 normalized

Gaussian kernel with zero mean and a standard deviation of

one pixel. After the blurring and downsampling processing,

we obtained six sets, each of which consisted of 5000 facial

images with six different face resolutions: 112 × 112, 86 × 86,

44 × 44, 25 × 25, 20 × 20, and 15 × 15 pixels (see Fig. 2).

We calculated J lum(γ) and J lum+chrom(γ) in (16) over six dif-

ferent face resolution γ parameters. For this, 500 facial images

were randomly selected from each set and then used to compute

variation ratios by using (14) and (15). The selection process

was repeated 20 times so that the variation ratios computed here

were the averages of 20 random selections. For luminance and

chromaticity components, the Y CbCr color space was adopted

since it has been widely used in image (JPEG) and video

(MPEG) compression standards.
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Experimental results are shown in Fig. 2. In Fig. 2, J lum(γ)
denotes the average variation ratio calculated from luminance

face images with resolution γ, i.e., the Y plane from the Y CbCr

color space. Furthermore, J lum+chrom(γ) denotes the average

variation ratio computed from Y CbCr component configura-

tion samples. To guarantee the stability of measured variation

ratios, the standard deviations for all cases of J lum(γ) and

J lum+chrom(γ) are shown in Fig. 2 as well. As can be seen in

Fig. 2, at a high resolution (above 44 × 44 pixels), the margin

between J lum(γ) and J lum+chrom(γ) is relatively small. This is

because the luminance component is even more dominant than

two chromaticity components in determining J lum+chrom(γ).
However, we can observe that J lum(γ) noticeably falls off at

low resolution (25 × 25 pixels or less) compared to those com-

puted from high-resolution faces (above 44 × 44 pixels). On the

other hand, J lum+chrom(γ) has a slower decay compared with

J lum(γ) even as the face resolution becomes much lower. In

particular, when the face resolution γ is below 25 × 25 pixels,

the difference between J lum(γ) and J lum+chrom(γ) is much

larger compared to cases of face resolutions above 44 ×
44 pixels. This result is mostly due to the fact that lumi-

nance contrast sensitivity drops off at low spatial frequencies

much faster than chromatic contrast sensitivity. Hence, two

chromaticity components in (15) can compensate a decreased

extrapersonal variation caused by luminance faces with low

resolution.

V. EXPERIMENTS

In the practical FR systems, there are two possible FR

approaches to perform FR tasks over lower-resolution probe

images [13]. The first method is to prepare multiple training

sets of multiresolution facial images and then construct multiple

feature subspaces, each of which is charged with a particular

face resolution of a probe. An alternative method is that a

lower-resolution probe is reconstructed to be matched with the

prototype resolution of training and gallery facial images by

adopting resolution-enhancement or interpolation techniques.

The second method would be appropriate in typical surveillance

FR applications in which high-quality training and gallery

images are usually employed, but probe images transmitted

from surveillance cameras (e.g., CCTV) are often at a low

resolution. To demonstrate the effect of color on low-resolution

faces in both FR scenarios, two sets of experiments have been

carried out in our experimentation. The first experiment is to

assess the impact of color on recognition performance with

varying face resolutions of probe-given multiresolution trained

feature subspaces. On the other hand, the second experiment

is to conduct the same assessment when a single-resolution

feature subspace trained with high-resolution facial images is

only available to the actual testing operation.

A. Face DB for the Experiment and FR Evaluation Protocol

Three de facto standard data sets of CMU PIE, Color FERET,

and XM2VTSDB have been used to perform the experiments.

The CMU PIE [32] includes 41 368 color images of 68 sub-

jects (21 samples/subject). Among them, 3805 images have

the coordinate information of facial feature points. From these

Fig. 3. (a) Examples of facial images from CMU PIE. These images have
illumination variations with “room lighting on” conditions. (b) Examples of
facial images from FERET. The first and second rows show image examples of
fa and fb sets. (c) Examples of facial images from XM2VTSDB. Note that the
facial images in each column belong to the same subject, and all facial images
are manually cropped using eye coordinate information. Each cropped facial
image is rescaled to the size of 112 × 112 pixels.

3805 images, 1428 frontal-view facial images with neutral ex-

pression and illumination variations were selected in our exper-

imentation. For one subject, 21 facial images have 21 different

illumination variations with “room lighting on” conditions. The

Color FERET [33] consists of 11 388 facial images correspond-

ing to 994 subjects. Since the facial images are captured over

the course of 15 sessions, there are pose, expression, illumina-

tion, and resolution variations for one subject. To support the

evaluation of recognition performance in various FR scenarios,

the Color FERET is to be divided into five sets: “fa,” “fb,” “fc,”

“dup1,” and “dup2” partitions [33]. The XM2VTSDB [34] is

designed to test realistic and challenging FR with four sessions

recorded with no control on severe illumination variations. It

is composed of facial images taken on digital video recordings

from 295 subjects over a period of one month. Fig. 3 shows

examples of facial images selected from three DBs. All facial

images shown in Fig. 3 were manually cropped from original

images using the eye position provided by a ground truth set.

To construct the training and probe (or test) sets in both sets

of experiments, a total of 3192 facial images from 341 subjects

were collected from three public data sets. During the collection

phase, 1428 frontal-view images of 68 subjects were selected



CHOI et al.: COLOR FACE RECOGNITION FOR DEGRADED FACE IMAGES 1223

Fig. 4. Examples of facial images from color FERET according to six different face resolutions. A low-resolution observation below the original 112 × 112
pixels is interpolated using nearest-neighbor interpolation.

from CMU PIE; for one subject, facial images had 21 different

lighting variations. From the Color FERET, the 700 frontal-

view images of 140 subjects (5 samples/subject) were cho-

sen from the fa, fb, fc, and dup1 sets. From XM2VTSDB,

1064 frontal-view images of 133 subjects were obtained from

two different sessions; each subject included eight facial images

that contained illumination and resolution variations. Further-

more, we constructed a gallery set composed of 341 different

samples corresponding to 341 different subjects to be identified

or verified. Note that, here, gallery images had neutral illumi-

nation and expression according to the standard regulation for

gallery registration described in [59].

To acquire facial images with varying face resolutions, we

carried out resizing over the original collected DB sets. Fig. 4

shows examples of facial images containing face-resolution

variations used in our experiments. We took original high-

resolution images of faces (shown in the leftmost image of

Fig. 4), synthetically blurred them with a Gaussian kernel

[41], and then downsampled them so as to simulate a lower

resolution effect as closely as possible to practical camera

lens. As a result, six different face resolutions of 112 × 112,

86 × 86, 44 × 44, 25 × 25, 20 × 20, and 15 × 15 (pixels)

were generated to cover face resolutions that are commonly

encountered from practical still-image- to video-based FR

applications previously reported in [14]–[16], and [18].

Table I shows the grayscale features, different kinds of color

spaces and chromatic features, and spectral component config-

urations used for our experiments. As shown in Table I, for the

grayscale face features, the “R” channel from the RGB color

space and the grayscale conversion method proposed in [56]

were adopted in our experiments. The R channel of skin-tone

color is known to be the best monochrome channel for FR [28],

[29]. Moreover, in [56], the 0.85 · R + 0.10 · G + 0.05 · B is

reported to be an optimal grayscale conversion method for face

detection. For the spectral component configuration features,

the Y CbCr, Y IQ, and L∗a∗b∗ color spaces were used in our

experimentation. The Y IQ color space defined in the National

Television System Committee video standard was adopted. The

Y CbCr color space is scaled and is the offset version of the

Y UV color space [57]. Moreover, the L∗a∗b∗ color space

defined in the CIE perceptually uniform color space was used.

The detailed description of the used color spaces is given in

[57]. As described in [57], the YCbCr and YIQ color spaces

separate RGB into “luminance” (e.g., Y from the YCbCr color

space) and “chrominance” (or chromaticity) information (e.g.,

Cb or Cr from the Y CbCr color space). In addition, since

the L∗a∗b∗ color space is based on the CIE XYZ color space

[57], it is separated into “luminance” (L∗) and “chromaticity”

(a∗ and b∗) components. To generate the spectral component

TABLE I
GRAYSCALE FEATURES AND DIFFERENT KINDS OF COLOR SPACES

AND SPECTRAL COMPONENT CONFIGURATIONS USED IN OUR

EXPERIMENTATION. NOTE THAT THE GRAYSCALE FEATURE IS

COMBINED WITH THE CHROMATIC FEATURES TO GENERATE

THE SPECTRAL COMPONENT CONFIGURATIONS

configurations depicted in Table I, two different chromaticity

components from the used color spaces are combined with a

selected grayscale component.

For FR experiments, all facial images were preprocessed

according to the recommendation of the FERET protocol [33]

as follows: 1) Color facial images were rotated and scaled

so that the centers of eye were placed on the specific pixels;

2) color facial images were rescaled into one of fixed template

size among six different spatial resolutions; 3) a standard

mask was applied to remove nonface portions; 4) each spectral

component of color facial images was separately normalized to

have zero mean and unit standard deviations; 5) each spectral

image was transformed to a corresponding column vector; and

6) each column vector was used to form a face vector defined

in Section III, which covers both grayscale only and spectral

component configurations shown in Table I.

To show the stability of the significance of color effect on

low-resolution faces regardless of FR algorithms, three repre-

sentative FR methods, which are PCA, Fisher’s LDA (FLDA),

and Bayesian, were employed. In subspace FR methods, the

recognition performance heavily relies on the number of linear

subspace dimensions (feature dimension) [50]. Thus, the sub-

space dimension was carefully chosen and then fixed over six

different face resolutions to make a fair comparison of perfor-

mance. For PCA, the PCA process in FLDA, and Bayesian,

a well-known 95% energy capturing rule [50] was adopted

to determine subspace dimension. In these experiments, the

number of training samples was 1023 facial images so that

the subspace dimension was experimentally determined as 200

to satisfy the 95% energy capturing rule. Mahalanobis [51],
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Euclidean distances, and “maximum a posteriori probability”

were used for similarity metrics in PCA, FLDA, and Bayesian,

respectively.

In FR tasks, the recognition performance results can be

reported for identification and verification (VER). Identification

performance is usually plotted on a cumulative match char-

acteristic (CMC) curve [33]. The horizontal axis of the CMC

curves is the rank, while the vertical axis is the identification

rate. The best found correct recognition rate (BstCRR) [50]

was adopted as the identification rate for fair comparison.

For the VER performance, the receiver operating characteristic

(ROC) [52] curve is popular. The ROC curve plots the face

VER rate (FVR) versus the false accept rate (FAR). For an

experimental protocol, the collected set of 3192 facial images

was randomly partitioned into two sets: training and probe

(or test) sets. The training set consisted of (3 samples ×
341 subjects) facial images, with the remaining 2169 facial

images for the probe set. There was no overlapping between

the two sets for an evaluation of the used FR algorithms’

generalization performance with regard to the color effect on

face resolution. To guarantee the reliability of the evaluation,

20 runs of random partitions were executed, and all of the

experimental results reported here were averaged over 20 runs.

B. Experiment 1: To Assess the Impact of Color in

Multiresolution Trained Feature Subspace FR Scenario

In experiment 1, it should be noted that the face resolution of

each pair of training, gallery, and probe sets were all the same.

Since six different face resolutions were used, each feature

subspace was trained with a respective set of facial images

whose spatial resolution was one of six different kinds. We

performed the comparative experiment to compare the recogni-

tion performances between the two different grayscale features

depicted in Table I. Our experimentation indicates that the R

grayscale [28], [29] shows a better performance for most of

the face resolutions, as shown in Fig. 4, in the PCA, FLDA,

and Bayesian methods. However, the performance difference

between the two grayscale configurations is marginal. Thus, R

was selected as the grayscale feature of choice for the exper-

iments aiming to the effect of color on low-resolution faces.

In addition, “RQCr” shows the best BstCRR performance of

all kinds of spectral component configurations represented in

Table I in all face resolutions and the three FR algorithms. This

result is consistent with a previous one [26] that reported that

“QCr” is the best chromaticity component in the FR grand

challenge DB and evaluation framework [33]. Hence, RQCr

was chosen as a color feature in the following experiments.

Fig. 5 shows the CMC curves for the identification rate (or

BstCRR) comparisons between the grayscale and color features

with respect to six different face resolutions in the PCA, FLDA,

and Bayesian FR methods. As can be seen in CMC curves

obtained from the grayscale R feature (in the left side of Fig. 5),

the differences in BstCRR between face resolutions of 112 ×
112, 86 × 86, and 44 × 44 pixels are relatively marginal in

all three FR methods. However, the BstCRRs obtained from

a low resolution of 25 × 25 pixels and below tend to be

significantly deteriorated in all three FR methods. For example,

for PCA, FLDA, and Bayesian methods, the rank-one BstCRRs

(identification rate of top response being correct) decline from

77.20%, 83.69%, and 82.46% to 56.03%, 37.29%, and 62.32%,

respectively, as face resolution is reduced from 112 × 112 to

15 × 15 pixels.

In case of CMC curves from the RQCr color feature (on the

right side of Fig. 5), we can first observe that color information

improves the BstCRR compared with grayscale features over

all face resolutions in all three FR algorithms. In particular, it is

evident that color features make a substantial enhancement of

the identification rate as face resolutions are 25 × 25 pixels

and below. In PCA, 56.03%, 59.81%, and 60.97% of rank-

one BstCRRs for 15 × 15, 20 × 20, and 25 × 25 grayscale

faces increase to 69.70%, 62.16%, and 75.14%, respectively,

by incorporating color feature QCr. In FLDA, the color feature

raises rank-one BstCRRs from 37.29%, 49.72%, and 56.48% to

62.16%, 74.64%, and 77.45% for 15 × 15, 20 × 20, and 25 ×
25 face resolutions, respectively. Furthermore, in Bayesian,

rank-one BstCRRs increase from 62.23%, 69.17%, and 71.05%

to 75.14%, 82.46%, and 84.07% for 15 × 15, 20 × 20, and

25 × 25 face resolutions, respectively.

To demonstrate the color effect on the VER performance

according to face-resolution variations, the ROC curves are

shown in Fig. 6. We followed the protocol of FRVT [52] to

compute the FVR to the corresponding FAR ranging from 0.1%

to 100%, and the z-score normalization [54] technique was

used. Similar to the identification performance in Fig. 6, face

color information significantly improves the VER performance

at low-resolution faces (25 × 25 pixels and below) compared

with high-resolution ones. For example, when facial images

with a high resolution of 112 × 112 pixels are applied to

PCA, FLDA, and Bayesian, 5.84%, 4.04%, and 2.18% VER

enhancements at a FAR of 0.1% are attained from the color

feature in PCA, FLDA, and Bayesian methods, respectively. On

the other hand, in case of a low resolution of 15 × 15 pixels,

the color feature achieves 19.46%, 38.58%, 15.90% VER

improvement at the same FAR for the respective method.

Table II shows the comparison results of VRGs defined in

(16) with respect to six different face resolutions in PCA.

The V RG(γ) for each face resolution γ has been averaged

over 20 random selections of 1023 training samples generated

from 3192 collected facial images. The corresponding standard

deviation for each V RG(γ) is also given to guarantee the

stability of the V RG(γ) metric. From Table II, we can see

that V RG(γ) computed from high-resolution facial images

(higher than 44 × 44 pixels) are relatively small compared with

those from low-resolution images (25 × 25 pixels or lower).

This result is largely attributed to the dominance of grayscale

information at high-resolution facial images to build intra-

and extrapersonal variations in the feature subspace, so that

the contribution of color is comparatively small. Meanwhile,

in low-resolution color faces, V RG(γ) becomes much larger,

since color information can boost the decreased extrapersonal

variation, thanks to its resolution-invariant contrast characteris-

tic and independent impact on constructing variations of feature

subspace [20]. The results in Table II verify that face color

features play a supplement role in maintaining an extrapersonal

variation of feature subspace against face-resolution reduction.
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Fig. 5. Identification rate (or BstCRR) comparison between grayscale and color features with respect to six different face resolutions of each pair of training,
gallery, and probe facial images in the three FR methods. The graphs on the left side resulted from grayscale feature R, while those on the right side were generated
from color feature RQC

r
for each face resolution. (a) PCA. (b) FLDA. (c) Bayesian.

C. Experiment 2: To Assess the Impact of Color in a

Single-Resolution Trained Feature Subspace FR Scenario

In the practical subspace-based FR applications with face-

resolution constraints (e.g., video surveillance), a single fea-

ture subspace is usually provided to perform identification or

VER tasks on probes. It is reasonable to assume that the fea-

ture subspace is pretrained with relatively high-resolution face

images [13]. On the other hand, the probes to be tested may

have lower and various face resolutions due to heterogeneous

acquisition conditions. Therefore, the objective of Experiment 2

is to evaluate the color effect on recognition performance in the

FR scenario where high-resolution training images are used to

construct a single feature subspace, while probe images have

various face resolutions. In Experiment 2, the face resolution

of training images was fixed as 112 × 112 pixels, while the

resolution of probe was varied as six different resolutions, as

shown in Fig. 4. Since the high-quality gallery images are

usually preregistered in FR systems before testing probes [33],

we assume that the resolution of gallery is the same as the

training facial images, i.e., 112 × 112 pixels. In Experiment 2,

R from the RGB color space was used as a grayscale feature.

Due to the best performance from Experiment 1, RQCr was

adopted as a color feature.

Fig. 7 shows the CMC curves with respect to six different

probe resolutions in both cases of grayscale (in the left side) and

color features (in the right side) in PCA, FLDA, and Bayesian.

To obtain a low-dimensional feature representation for a lower

face-resolution probe, the probe has been upsampled to have the

same resolution of training faces by using a cubic interpolation

technique in Fig. 7. From Fig. 7, in case of a grayscale feature,

we can see a considerable identification rate degradation in all

three FR methods, considering low-resolution (25 × 25 pixels

and below) probes compared with relatively high-resolution

counterparts (above 44 × 44 pixels). In particular, similar to the
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Fig. 6. FVR comparison at FAR ranging from 0.1% to 100% between grayscale and color features with respect to six different face resolutions in the three
FR algorithms. The graphs on the left side came from grayscale feature R, while those on the right side were obtained from color feature RQC

r
for each face

resolution. Note that the z-score normalization technique was used to compute FVR and FAR. (a) PCA. (b) FLDA. (c) Bayesian.

TABLE II
COMPARATIVE EVALUATION OF VRGs DEFINED IN (16) WITH RESPECT TO SIX DIFFERENT FACE RESOLUTIONS OF TRAINING

IMAGES IN PCA. GRAYSCALE AND COLOR FEATURES USED FOR COMPUTATION OF VRGs ARE R AND RQC
r

(SEE TABLE I), RESPECTIVELY. NOTE THAT THE UNIT OF VRGs IS PERCENT

results from Experiment 1, the identification rate resulting from

FLDA is significantly deteriorated at low-resolution probes.

The margins of a rank-one identification rate between 112 ×
112 and each 25 × 25, 20 × 20, and 15 × 15 pixel grayscale

probe in FLDA are 25.66%, 43.77%, and 62.41%, respectively.

In case of a color feature, the BstCRR improvement is made

at all probe face resolutions in all three FR algorithms. As

expected, face color information greatly improves the identifi-

cation performance obtained from low-resolution probes (25 ×
25 pixels and below) compared with grayscale feature. In PCA,

by incorporating a color feature, the BstCRR margins between

a grayscale probe of the 112 × 112 resolution and a color

probe of the 25 × 25, 20 × 20, and 15 × 15 resolutions are

reduced to 3.33%, 4.77%, and 8.02%, respectively. In FLDA,

these differences are decreased to 6.65%, 7.28%, and 11.60%

at 25 × 25, 20 × 20, and 15 × 15 resolutions, respectively.



CHOI et al.: COLOR FACE RECOGNITION FOR DEGRADED FACE IMAGES 1227

Fig. 7. Identification rate comparison between grayscale and color features with respect to six different face resolutions of probe images. The graphs on the left
side resulted from R as a grayscale feature from the RGB color space, while those on the right side were generated from RQC

r
as a color feature for each face

resolution. Note that a single feature subspace trained with face images having a resolution of 112 × 112 pixels was given to test probe images with varying face
resolutions. (a) PCA. (b) FLDA. (c) Bayesian.

In addition, in Bayesian, 1.47%, 2.61%, and 5.64% perfor-

mance margin decreases are achieved with the aforementioned

three different probe resolutions, thanks to the color feature.

Table III presents the FVRs at a FAR of 0.1% obtained from

the R grayscale and RQCr color features with respect to six dif-

ferent face resolutions of probes in three FR methods. Similar

to the identification rates shown in Fig. 7, the color feature has

a great impact on the FVR improvement at low-resolution faces

(25 × 25 pixels and below) in all three FR algorithms. In case

of 15 × 15 probe resolutions in PCA, FLDA, and Bayesian, the

color feature makes FVR improvements of 15.67%, 54.05%,

and 15.62% at a FAR of 0.1%, respectively, in comparison with

corresponding FVRs from grayscale probes.

VI. DISCUSSION AND CONCLUSION

According to the results from Experiments 1 and 2, there

was a commonly harsh drop-off of identification and VER rates

caused by a low-resolution grayscale image (25 × 25 pixels

or less) in PCA, FLDA, and Bayesian methods. Considering

the performance sensitivity depending on variations in face

resolution, FLDA is found to be the weakest to low-resolution

grayscale faces (25 × 25 pixels and below) of all three methods.

As shown in the CMC curves on the left side of Figs. 5(b)

and 7(b), the margins of identification rates between 112 ×
112 and 15 × 15 pixels were even 46.40% and 62.41%,

respectively. The underlying reason behind such weakness is

that optimal criteria used to form the feature subspace in FLDA

takes strategy with emphasis on the extrapersonal variation by

attempting to maximize it. Therefore, the recognition perfor-

mance in FLDA is even more sensitive to the portion of ex-

trapersonal variation in the feature subspace compared with the

other two methods. Since grayscale features from much-lower-

resolution images have a difficulty in providing a sufficient

amount of extrapersonal variation to the construction of the fea-

ture subspace, the recognition performance could significantly
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TABLE III
FVR COMPARISONS AT A FAR OF 0.1% BETWEEN GRAYSCALE AND COLOR FEATURES WITH RESPECT TO SIX DIFFERENT FACE RESOLUTIONS OF

PROBE IMAGES IN THE THREE FR ALGORITHMS. R FROM THE RGB COLOR SPACE WAS USED AS A GRAYSCALE FEATURE, WHILE THE RQC
r

CONFIGURATION WAS EMPLOYED AS A COLOR FEATURE. NOTE THAT THE z-SCORE NORMALIZATION WAS USED TO COMPUTE FVR VERSUS FAR

be decreased. On the contrary, thanks to the color’s boosting

characteristic of the extrapersonal variation, color features in

FLDA outperformed by 24.86% and 50.81% margins in case

of 15 × 15 pixels, compared with corresponding grayscale

images, as shown in Figs. 5(b) and 7(b), respectively. As

another interesting finding, Bayesian is more robust to face-

resolution variations than PCA and FLDA. For example, from

the CMC curves in the left side of Fig. 7, the performance

difference between 112 × 112 and 25 × 25 pixels was not so

even with 8.54% compared with 15.40% and 25.66% obtained

from PCA and FLDA, respectively. A plausible reason under

such robustness lies in the fact that Bayesian depends more

on the statistical distribution of the intrapersonal variation

rather than the extrapersonal variation [30], [37] so that the

recognition performance is less likely affected by the reduc-

tion of the extrapersonal variation caused by low-resolution

images.

Traditionally, low-resolution FR modules have extensively

been used in video-surveillance-like applications. Recently, FR

applications in the web environment are getting increasing

attention due to the popularity of online social networks (e.g.,

Myspace and Facebook) and their high commercialization po-

tentials [4]–[7]. Under a web-based FR paradigm, many devices

such as cellular phone cameras and web cameras often produce

low-resolution or low-quality face images which, however,

can be used for recognition purposes [4], [5]. As shown in

our experimentation, color-based FR outperforms grayscale-

based FR over all face resolutions. In particular, thanks to

color information, both identification and VER rates obtained

by using low-resolution 25 × 25 or 20 × 20 templates are

comparable to rates obtained by using much larger grayscale

images such as 86 × 86 pixels. Moreover, as shown in Fig. 3,

the face DB, which is used in our experimentation, contains

images obtained under varying illumination conditions. Hence,

the robustness of color in low-resolution FR appears to be stable

with respect to the variation in illumination, at least, in our

experimentation. These results demonstrate that facial color can

reliably and effectively be utilized in real-world FR systems

of practical interest, such as video surveillance and promising

web applications, which frequently have to deal with low-

resolution face images taken under uncontrolled illumination

conditions.

APPENDIX

Let IΦmm and IΛmm be eigenvector and corresponding di-

agonal eigenvalue matrices of ICmm in (9), where m = 1, 2, 3.

That is

IΦT
mmICmmIΦmm = IΛmm. (A.1)

Using IΦmm(m = 1, 2, 3), we define a block diagonal matrix

Q given by

Q = diag(IΦ11, IΦ22, IΦ33). (A.2)

Note that Q is an orthogonal matrix. Using (8) and (A.2), we

now define matrix IS as

IS =QTIC Q

=

⎡

⎣

IΛ11 IΦT
11IC12IΦ22 IΦT

11IC13IΦ33

IΦT
22IC21IΦ11 IΛ22 IΦT

22IC23IΦ33

IΦT
33IC31IΦ11 IΦT

33IC32IΦ22 IΛ33

⎤

⎦ .

(A.3)

IS in (A.3) is similar to IC since there exists an invertible matrix

Q satisfying IS = Q−1ICQ = QTICQ, where Q−1 = QT. Due

to their similarity, IS and IC have the same eigenvalues and

trace value, so that tr(IS) = tr(IC). Note that tr(IΛmm) is the

sum of all the eigenvalues of ICmm. Using tr(IS) = tr(IC),
tr(IC) can be expressed as

tr(IC) =

3
∑

m=1

tr(IΛmm). (A.4)

A similar derivation to (A.1)–(A.3) is also readily applied to EC

shown in (8). That is, tr(EC) can represented as

tr(EC) =

3
∑

m=1

tr(EΛmm) (A.5)

where EΛmm(m = 1, 2, 3) is a diagonal eigenvalue matrix of

ECmm.
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