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Color Filter Array Demosaicking:
New Method and Performance Measures

Wenmiao Lu, Student Member, IEEE, and Yap-Peng Tan, Member, IEEE

Abstract—Single-sensor digital cameras capture imagery by
covering the sensor surface with a color filter array (CFA) such
that each sensor pixel only samples one of three primary color
values. To render a full-color image, an interpolation process,
commonly referred to as CFA demosaicking, is required to esti-
mate the other two missing color values at each pixel. In this paper,
we present two contributions to the CFA demosaicking: a new and
improved CFA demosaicking method for producing high quality
color images and new image measures for quantifying the per-
formance of demosaicking methods. The proposed demosaicking
method consists of two successive steps: an interpolation step that
estimates missing color values by exploiting spatial and spectral
correlations among neighboring pixels, and a post-processing step
that suppresses noticeable demosaicking artifacts by adaptive
median filtering. Moreover, in recognition of the limitations of
current image measures, we propose two types of image measures
to quantify the performance of different demosaicking methods;
the first type evaluates the fidelity of demosaicked images by
computing the peak signal-to-noise ratio and CIELAB for
edge and smooth regions separately, and the second type accounts
for one major demosaicking artifact—zipper effect. We gauge the
proposed demosaicking method and image measures using several
existing methods as benchmarks, and demonstrate their efficacy
using a variety of test images.

Index Terms—Color filter array demosaicking, color interpola-
tion, false color, image measure, zipper effect.

I. INTRODUCTION

D
IGITAL cameras are becoming popular and replacing tra-

ditional film-based cameras in many applications. To re-

duce the cost and size, most digital cameras acquire imagery

using a single-chip CCD (Charge Coupled Device) or CMOS

(Complementary Metal Oxide Semiconductor) sensor whose

surface is covered with a color filter array (CFA). The CFA con-

sists of a set of spectrally selective filters that are arranged in

an interleaving pattern so that each sensor pixel samples one of

the three primary color values (for example, red, green and blue

values). We refer to these sparsely sampled color values as CFA

samples. To render a full-color image from the CFA samples,

an image reconstruction process, commonly referred to as CFA
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demosaicking or CFA interpolation method, is required to esti-

mate for each pixel its two missing color values.

An immense number of demosaicking methods have been

proposed in the literature [1]–[15]. The simplest one is prob-

ably bilinear interpolation, which fills missing color values with

weighted averages of their neighboring pixel values. Although

computationally efficient and easy to implement, bilinear inter-

polation introduces severe demosaicking artifacts and smears

sharp edges. To obtain more visually pleasing results, many

adaptive CFA demosaicking methods have been proposed to ex-

ploit the spectral and spatial correlations among neighboring

pixels.

In [1], Cok presents a simple spectral correlation between dif-

ferent color planes: within a local image region, the ratios be-

tween the red and green values are highly similar, so are the

ratios between the blue and green values. Based on this ob-

servation, several schemes (e.g., [1], [2], [13]) have been de-

vised to estimate missing color values with the aid of other

color planes. Besides color ratios, many methods also make use

of inter-channel color differences (red-green and blue-green)

[1]–[4]. However, these methods normally do not perform sat-

isfactorily around sharp edges and fine details, where the as-

sumed spectral correlation does not necessarily hold. In [15],

Gunturk et al. have recently proposed an effective scheme to ex-

ploit spectral correlation by alternately projecting the estimates

of the missing color values onto constraint sets based on orig-

inal CFA samples and prior knowledge of spectral correlation.

As many undesired demosaicking artifacts are due to im-

proper fusing of neighboring pixel values, a number of CFA

demosaicking methods (e.g., [2], [5]–[10]) first analyze the spa-

tial structure of a local image neighborhood and then select suit-

able interpolation schemes or neighboring pixels to estimate the

missing color values. In general, by exploiting this spatial corre-

lation among neighboring pixels, these methods aim to perform

color interpolation along image edges, rather than across them.

For example, several edge classifiers are proposed in [6], [7],

[10] to identify the best directions for interpolating the missing

color values.

By taking the advantages of both types of demosaicking

methods mentioned above, hybrid demosaicking methods are

capable of generating demosaicked images with sharper recon-

structed edges and less visible demosaicking artifacts. In [13],

Kimmel uses an edge-directed scheme to estimate each missing

color value by iteratively interpolating its four surrounding

color values or color ratios weighted by some edge indicators;

an inverse diffusion process is then used to remove artifacts by

smoothing the demosaicked results. In a recent related effort, Li

and Orchard [14] propose to use a new edge-directed scheme
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Fig. 1. Schematic diagram of the Bayer color filter array pattern.

to interpolate inter-channel color differences by exploiting the

geometric duality between the covariances of low-resolution

CFA samples and high-resolution demosaicked images.

In this paper, we propose a new and improved hybrid CFA de-

mosaicking method. It consists of two successive steps: an inter-

polation step to render full-color images and a post-processing

step to suppress visible demosaicking artifacts. Although the

proposed method can be generalized to other CFA patterns, we

limit our discussion in this paper to the Bayer CFA pattern [16]

because of its popularity. Fig. 1 shows a schematic diagram of

the Bayer CFA pattern, where R, G and B denote the pixels

having only red, green and blue color values, respectively.

The interpolation step of our proposed method fills in missing

color values progressively; the green plane is the first to be fully

populated, and then it is used to assist the red and blue plane in-

terpolation. The three color planes are interpolated in the same

manner as follows. To interpolate a missing value of one color

plane, we first obtain its estimates from four different interpo-

lation directions by exploiting the spectral correlation and then

combine these estimates with proper weights. The weights are

determined based on the spatial correlation among pixels along

the respective interpolation directions to reflect the odds that the

associated estimates are accurate.

The proposed post-processing step is designed to suppress

visible artifacts residing in the demosaicked images obtained

from the interpolation step. We extend the Freeman’s median

filtering method [3] by lifting the constraint of keeping the orig-

inal CFA-sampled values intact. This extension can reduce more

effectively such demosaicking artifacts as “false colors” and

“zipper effect.” Furthermore, to avoid tempering the good es-

timates obtained in the interpolation step, the post-processing

step is only selectively applied to image regions around sharp

edges and fine details, which are prone to demosaicking arti-

facts.

In another major contribution of the paper, we propose

several image measures to quantify the performance of demo-

saicking methods, which include modified peak signal-to-noise

ratio (PSNR) and CIELAB as well as a new objective

measure for one prominent demosaicking artifact—zipper

effect [8]. The experimental results show that the proposed

Fig. 2. Flowchart of the interpolation step.

image measures are well correlated with the human perceptual

evaluation of demosaicked results.

The remainder of this paper is organized as follows. Sec-

tions II and III are devoted to the interpolation step and the

post-processing step of the proposed demosaicking method,

respectively. Section IV describes the proposed image measures

for quantifying the performance of different demosaicking

methods. The experimental results are presented with compar-

ison to that of other existing methods in Section V, and the

paper is concluded in Section VI.

II. INTERPOLATION STEP

We describe in this section the first step of our proposed de-

mosaicking method, an interpolation step that progressively ren-

ders a full-color image from CFA samples. Fig. 2 depicts the

flowchart of this interpolation step; the green plane is the first to

be interpolated and, once fully populated, used to assist the sub-

sequent red and blue plane interpolation. Although processed in

a sequential order, the three color planes are interpolated in the

same manner. Specifically, every missing color value is inter-

polated by properly combining the estimates obtained from its

four interpolation directions, which are defined according to the

four nearest CFA samples of the same color.

The estimate from one particular interpolation direction is ob-

tained by exploiting the spectral correlation among the neigh-

boring pixels along that direction. The spectral correlation refers

to the assumption that the differences between the green and

red/blue values within a local neighborhood are well correlated

with constant offsets [1], [2], [17]. However, this spectral cor-

relation is defined for the color values at each individual pixel,

which are not fully available from the CFA samples. To make

use of this spectral correlation, we further assume that the rate

of change of neighboring pixel values along an interpolation di-

rection is also a constant. Clearly, all these assumptions fail to
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Fig. 3. A 7� 7 window where the green value of the central pixel is to be
estimated.

hold in the presence of sharp edges and fine details, where color

values experience abrupt changes.

The abrupt changes of color values indicate low spatial cor-

relation among neighboring pixels. Intuitively, the higher the

spatial correlation among pixels along an interpolation direc-

tion, the more accurate the estimate of a missing color value can

be obtained from that direction. Therefore, to interpolate one

missing color value, we combine the estimates from its four in-

terpolation directions by assigning them with weights that mea-

sure the spatial correlations among the neighboring pixels along

the corresponding interpolation directions.

In Sections II-A and B, we will describe the interpolation of

each color plane in detail. Note that although the missing color

values at each pixel will be progressively interpolated, we shall

denote pixels as red, green and blue pixels according to the color

of their original CFA samples.

A. Green Plane Interpolation

We start with interpolating the green plane because it contains

twice as many samples as the red or blue plane. Thus, the green

plane possesses most spatial information of the image to be de-

mosaicked and has great influence on the perceptual quality of

the image. Furthermore, once fully interpolated, the green plane

can assist the subsequent red and blue plane interpolation by

making full and direct use of the spectral correlation.

Fig. 3 shows a 7 7 window of CFA samples, where the in-

dices and of each color value ( , or ) denote its row

and column locations, respectively. Consider the central pixel

whose green value is to be estimated from the four interpo-

lation directions corresponding to its four nearest green pixels,

, , and , at the top, left, right and bottom loca-

tions, respectively. The missing green value is estimated by

(1)

where is a color-adjusted green value at pixel and

is its associated weight. To exploit the spectral correlation, the

four neighboring green pixel values, , , and ,

are adjusted with the help of the blue pixels along the respective

interpolation directions, given by

(2)

These color values are adjusted based on two assumptions:

1) the green and blue/red pixel values are well correlated with

constant offsets; and 2) the rate of change of neighboring pixel

values along an interpolation direction is also a constant. We

now show how these two assumptions lead to (2).

Consider the top interpolation direction of . The first as-

sumption suggests that the following relationship exists among

the pixels along that direction

(3)

where , and denote the missing color values at the

respective pixel locations.

Since is not available from the CFA samples, we can only

use and to assist the estimation of , and rewrite the

above relationship as

(4)

The second assumption gives the following relationship for the

neighboring green pixel values along the top interpolation di-

rection

(5)

Combining (4) and (5), we have

(6)

which states that . Therefore, the

color-adjusted green value is in fact the estimate of

from the top interpolation direction.

To properly combine the estimates from the four interpolation

directions, we assign each estimate with an appropriate weight

, which is the reciprocal of the gradient magnitude along the

respective interpolation direction. As the two aforementioned

assumptions fail to hold in the presence of sharp edges and fine

details, the weights in fact reflect the odds that the associated

estimates are accurate.

Let us illustrate how the gradient magnitude is computed by

using the top interpolation direction of as an example. Re-

ferring to Fig. 4, the gradient magnitude along the top interpo-

lation direction is computed by applying a Sobel operator [18]

and a 1-D gradient operator on the Group A and Group B pixels,

respectively. As a result, the gradient magnitude of this interpo-

lation direction is obtained as

. Since a large
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Fig. 4. Illustration of computing the gradient magnitude of an interpolation
direction.

gradient magnitude implies low spatial correlation among pixels

along the respective interpolation direction, proper weights of

the four color-adjusted green values are given by (7), shown at

the bottom of the page, where 1 in the denominator is included

to avoid division by zero.

Once the green plane is fully populated, it will be used to

assist the subsequent red and blue interpolation, as detailed in

Section II-B.

B. Red and Blue Plane Interpolation

Since the red and blue planes are more sparsely sampled than

the green plane, their interpolation evolves over two sub-steps:

1) interpolating the missing red values at blue pixels and vice

versa, and then 2) filling the rest of the missing red and blue

values at green pixels. As the same procedure is used to inter-

polate the missing red and blue values, only the red plane inter-

polation will be described.

Referring to Fig. 5, the red value of the pixel at the center

of a 5 5 window is to be estimated. Similar to the green plane

interpolation, the missing red value is estimated by

(8)

where is a color-adjusted red value at pixel and

is its associated weight. Note that for the sake of clarity, not

Fig. 5. A 5� 5 window where the red value of the central pixel is to be
estimated.

all the available color values are shown in Fig. 5; it should be

understood that at this step the green values are available at all

pixels and the blue values exist at pixels whose row index and

column index are odd integers.

Following a derivation similar to that for the green plane in-

terpolation, the four neighboring red values, , , and

, are adjusted with the help of the green pixel values along

the respective interpolation directions as follows:

(9)

Based on the fully populated green plane, the weights asso-

ciated with these color-adjusted red values are given by (10),

shown at the bottom of the next page.

Finally, we proceed to fill in the rest of the missing red values

at green pixels. Referring to Fig. 6, the red value of the pixel

at the center of the 5 5 local window is similarly estimated as

follows:

(11)

where is a color-adjusted red value at pixel and is

its associated weight. Note again that not all the available color

values are shown in Fig. 6.

(7)
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Fig. 6. A 5� 5 window where the red value of the central pixel is to be
estimated.

The four neighboring red values are adjusted with the help of

the associated green values as follows:

(12)

The weights of these color-adjusted red values are also com-

puted based on the fully populated green plane, as given by (13)

shown at the bottom of the page.

A full-color image can be obtained after applying all the in-

terpolation processes described above.

III. POST-PROCESSING STEP

The proposed post-processing step aims to suppress visible

artifacts residing in the initial demosaicked images obtained

from the aforementioned interpolation step. There are two main

types of demosaicking artifacts, namely false colors and zipper

effect. False colors are those artifacts corresponding to notice-

able color errors as compared to the original, nonmosaicked

image. One example is shown in Fig. 7(a), where the left hand is

a full-color image and the right hand is its demosaicked image

with false colors around the numbers region. The zipper effect

refers to abrupt or unnatural changes of color differences be-

tween neighboring pixels, manifesting as an “on-off” pattern.

One example is shown in Fig. 7(b), where the left hand is a

full-color image and the right hand is its demosaicked image

with the zipper effect around the fence region.

As demosaicking artifacts often exhibit as color outliers,

Freeman [3] proposed to use a median filter to process the

inter-channel differences (red-green and blue-green) of de-

mosaicked images obtained by bilinear interpolation. The

rationale is that median filtering the inter-channel differences

can force pixels with distinct colors to be more similar to their

neighbors, thus eliminating color outliers or errors. Note that

in Freeman’s method, the original CFA-sampled color value at

each pixel is not altered, and it is combined with median-filtered

inter-channel differences to obtain the other two missing color

values. In general, Freeman’s method is rather effective in sup-

pressing demosaicking artifacts, while preserving sharp edges.

However, when applying this method to post-process the initial

demosaicked images obtained from our proposed interpolation

step, we observed that some demosaicking artifacts still remain

around sharp edges and fine details. This is partly due to

the fact that each pixel has two independent inter-channel

(10)

(13)
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Fig. 7. (a) Example of false colors and (b) example of zipper effect.

differences, and filtering the differences separately does not

take into account the spectral correlation between color planes.

To make use of the spectral correlation, one intuitive exten-

sion of Freeman’s method is to adopt a vector median filter [19]

which takes as input the vector of two inter-channel differences.

However, we found this extension barely shows any improve-

ment in suppressing artifacts as compared to Freeman’s method.

This is because when the three color planes are separately inter-

polated, the estimation errors incurred in different color planes,

which can be regarded as additive noise, are rather independent

from each other. It has been shown in [19] that when the noise

is independent in different vector components, the vector-based

median filtering cannot outperform the component-wise median

filtering in suppressing noise.

To incorporate median filtering with the spectral correlation

for more effective suppression of demosaicking artifacts, we lift

the constraint of keeping the original CFA-sampled color values

intact. Furthermore, we make use of the latest processed color

values to filter the subsequent pixels so that estimation errors

can be effectively diffused into local neighborhoods. Specifi-

cally, we adjust the three color values at the central pixel of a

local window (the window size is equal to the support of the

median filter) as follows:

(14)

where ,

, and denotes

the support of the median filter, which covers 5 5 pixels

in our implementation. Subsequently, the color values of the

central pixel are replaced by , and so

that they will be involved in filtering the following pixels.

Experimental results show that this post-processing step is ca-

pable of suppressing most visually annoying artifacts. The first

column of Fig. 8 shows the originals of two test image regions:
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Fig. 8. (From left to right) Nonmosaicked originals, initial demosaicked images, post-processing results using Freeman’s method and our post-processing step
of (a) the trousers region of Barbara image and (b) the fence region of Lighthouse image.

the trousers region in Barbara image and the fence region in

Lighthouse image. (See Fig. 14 for all the test images exam-

ined in this paper.) The fine details in these two regions pose

great challenges to many demosaicking methods. The second

column of Fig. 8 shows the initial demosaicked images, which

have some visible false colors and zipper artifacts, obtained by

the proposed interpolation step. We then post-process them with

Freeman’s method and our post-processing step; the results are

shown in the third and fourth columns of Fig. 8, respectively. It

is clear that our proposed post-processing step can perform no-

ticeably better than Freeman’s method.

Although effective in eliminating most demosaicking arti-

facts, the proposed post-processing method, like many other

median filtering schemes, may de-saturate the color of demo-

saicked images if applied indiscriminately. To strike a good bal-

ance between suppression of demosaicking artifacts and preser-

vation of color fidelity, the post-processing step is only selec-

tively applied around image regions that are prone to demo-

saicking artifacts. We detect these artifact-prone regions as fol-

lows.

1) Convolve the green plan, denoted as , of the initial de-

mosaicked image with the following discrete Laplacian

operator

(15)

which is a second-order derivative operator for detecting

image edges and details.

2) Threshold the output of convolution to produce

a binary edge map, given by

if

otherwise
(16)

where is the threshold for identifying pixels prone to

demosaicking artifacts (i.e., those pixels corresponding

to ). In our implementation, we found that

setting equal to 15 gives satisfactory identification of

artifact-prone regions. Fig. 9 shows the edge map of

the initial demosaicked Lighthouse image obtained by

the procedures described above. The post-processing step

will only be applied to those pixels (highlighted in white)

that are identified to be prone to demosaicking artifacts.

IV. IMAGE MEASURES FOR DEMOSAICKING PERFORMANCE

While a large number of demosaicking methods have been

proposed in the literature, there is, however, a lack of image

measures which can effectively quantify the performance of

these methods. Ideally, from a psychological standpoint, effec-

tive image measures should be in accordance with perceptual

judgements made by human observers. Such image measures

could help simplify the development, improvement, and eval-

uation of different demosaicking methods, as they would rely

much less on subjective test of image preference, which is not

only time consuming but also dependent on the experimental

settings and the subjects involved.

It is generally agreed that current image measures cannot

effectively quantify the perceptual quality of images obtained

from a restoration process [14], [20], [21]. This limitation holds

for CFA demosaicking and is supported by the recent experi-

ments conducted by Philippe et al. on the subjective preference
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Fig. 9. (a) Initial demosaicked Lighthouse image and (b) its artifact-prone regions detected by the Laplacian operator.

of demosaicked results [22]. Their experiments reveal that when

evaluated using the current image measures, some demosaicked

results that are very different from the nonmosaicked originals

are the most preferred. They also discover that many most-pre-

ferred results are sharpened by the demosaicking method under

examination. Only when the image sharpness is removed as

a salient factor, the nonmosaicked originals are the most pre-

ferred.

As it remains unclear what factors are conducive to visu-

ally-pleasing images, we will treat demosaicking as a recon-

struction process. In our view, since subjective image prefer-

ence could vary from individual to individual, the images should

be first reproduced as accurately as possible before any en-

hancement process, such as image sharpening, is applied. There-

fore, we propose to quantify the performance of a demosaicking

method from two aspects: 1) to measure the image fidelity of its

demosaicked results as compared to the nonmosaicked originals

and 2) to measure the amount of artifacts residing in the demo-

saicked results, in particular, the zipper effect.

A. Measures for Image Fidelity

Peak signal-to-noise ratio (PSNR) and CIELAB are

two common measures for assessing the image fidelity of

the outputs of many image processing tasks, such as image

restoration, enhancement, and compression. The PSNR in

decibels (dB) for a color plane of a processed image computes

the mean squared difference between the processed image and

its original image, given by

(17)

where is the total number of image pixels, is the color

value (red, green, or blue) of the th pixel in color plane of the

original image, and is the corresponding color value in

the reconstructed image. Note that the PSNR computed in RGB

color space does not equate with human perception of color dif-

ference. The CIELAB , which measures the Euclidean

distance between the original and the reconstructed images in

CIELAB color space (a more perceptually uniform color space

recommended by the CIE [23]), can better capture the color dif-

ference perceived by human observers. (Readers are referred to

[23] and [24] for details of converting a color image from RGB

color space to CIELAB color space.) The CIELAB is

given by

(18)

where and are the CIELAB color values of

the th pixel in the original and reconstructed images, respec-

tively. According to [25], the greater than 2.3 indicates

the color difference is visible. When the is greater than

10, the reconstructed image is so different from the original that

color comparison is not worthwhile.

Nevertheless, the PSNR and are not considered

effective especially when used as global measures of image

fidelity [14], [22]. Most demosaicking methods perform rea-

sonably well in smooth regions; however, they normally result

in different amounts of artifacts and color errors around edge

regions. Both PSNR and , when computed for the entire

image, will likely disguise estimation errors incurred in edge

regions with those in smooth regions. One example is shown

in Fig. 10, where the two demosaicked images have almost
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Fig. 10. Two demosaicked images with almost the same PSNR and4E values but different amounts of demosaicking artifacts perceived in smooth and edge
regions.

Fig. 11. Nonmosaicked original and its detected edge regions.

TABLE I
PSNR (IN DECIBELS) AND4E VALUES COMPUTED FOR THE EDGE AND SMOOTH REGIONS OF THE TWO DEMOSAICKED IMAGES IN FIG. 10

the same PSNR and when computed for the entire

image—29.58 dB (PSNR) and 2.48 for the left-hand

image, and 30.32 dB (PSNR) and 2.78 for the right-hand

image. However, it is visually clear that these two demosaicked

images have different amounts and types of demosaicking

artifacts around their edge and smooth regions. This example

demonstrates the need for better image measures to assess the

fidelity of demosaicked images.

To evaluate the fidelity of demosaicked images of different

methods, we compute the PSNR and for edge and smooth

regions separately. For fair comparison, the edge and smooth

regions are identified from the same original, nonmosaicked

image using the following procedure.

1) Perform edge detection on the grayscale of the nonmo-

saicked original to obtain an edge map.

2) Label the edge regions by dilating the edge map with the

following 3 3 structuring element [18]

(19)

3) Label the rest of the image as the smooth regions.

Note that in our implementation, we have used the edge detec-

tion function (with the Sobel method and the default threshold)

and the dilation function from MATLAB 6.5 [26]. Fig. 11 shows

Fig. 12. Illustration of computing the change in color difference between a
pixel under consideration, P , and its eight neighboring pixels in the original
nonmosaicked image and the demosaicked image, respectively.

the edge regions (highlighted in white) detected in the non-

mosaicked original, from which the two demosaicked images

shown in Fig. 10 are derived. As can be seen from Table I, the

PSNR and computed for the edge and smooth regions

correlate well with the observation that the demosaicking arti-

facts in the left-hand image mainly exist around the edge re-

gions, and that in the right-hand image mainly in the smooth re-

gions. Therefore, evaluating the PSNR and for the edge
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Fig. 13. (From left to right) Nonmosaicked original and its demosaicked results with 91.14%, 78.39%, 58.74%, 11.22%, and 5.43% pixels having the zipper
effect.

Fig. 14. Test images: Barbara, Window, Brickhouse, Bike, Lighthouse, Sails, and Starburst (from left-to-right and top-to-bottom).

and smooth regions separately can provide more effective and

informative measures for the fidelity of demosaicked images.

B. Measure for Zipper Effect

While accounts for false colors (i.e., visible color dif-

ferences as compared to the nonmosaicked original), another

objective measure is designed to quantify the zipper effect that

results from improper fusing of neighboring pixel values (see

Fig. 7(b) for the example of zipper effect). The zipper effect

mainly manifests as “on-off” image patterns artificially created

in smooth regions near edges. For an individual pixel, the zipper

effect is in fact an increase in color difference with respect to its

most similar neighboring pixel. Based on this observation, we

first compute the change in color difference between each pixel

and its most similar neighboring pixel as follows.

1) For a pixel in the original, nonmosaicked image, we

compute the color differences to its eight nearest neigh-

bors, as shown in Fig. 12. We identify its neighboring

pixel that has the minimum color difference as follows:

(20)

where denotes the set of eight neighboring pixels.

2) We then compute the CIELAB color difference

between the same pair of pixels, and , in the de-

mosaicked image (referring to Fig. 12), and denote it as

.

3) The change in the color difference between pixels

and is given by

(21)

When (in our implementation is set to 2.3 based

on the results reported in [25]), the pixel in the demosaicked

image is considered to have noticeable change in color differ-

ence with respect to its most similar neighboring pixel . De-

pending on the sign of the associated , the pixel could have
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Fig. 15. (a) Nonmosaicked original from Barbara image and demosaicked results obtained from (b) bilinear interpolation, (c) Freeman’s method, (d) Hamilton’s
method, (e) Gunturk’s method, and (f) the proposed method.

Fig. 16. (a) Nonmosaicked original from Starburst image and demosaicked results obtained from (b) bilinear interpolation, (c) Freeman’s method, (d) Hamilton’s
method, (e) Gunturk’s method, and (f) the proposed method.

reduced or increased color difference with respect to the pixel

. Specifically, indicates that the pixel has reduced

contrast compared to the pixel , while states that the

zipper effect exists at the pixel .
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Fig. 17. (a) Nonmosaicked original from Bike image and demosaicked results obtained from (b) Li’s method, (c) Gunturk’s method, and (d) the proposed method.

The proposed measure that quantifies the zipper effect re-

siding in a demosaicked image is the percentage of pixels for

which . For the sake of completeness, we also examine

the percentage of pixels having reduced contrast as compared to

their neighboring pixels. Fig. 13 shows a nonmosaicked image

and its several demosaicked results having different amounts of

the zipper effect. It can be seen that the proposed measure is well

correlated with the amount of the zipper effect that our eyes can

perceive. For example, the second from the right demosaicked

image in Fig. 13, which is obtained using a threshold-based vari-

able gradient demosaicking method [10], has a lot of false colors

as compared to the original, but it maintains good smoothness

along the edges (i.e., little amount of the zipper effect). This ob-

servation is well captured by the proposed measure indicating

only 11.22% pixels suffer from the zipper effect, which is the

second lowest in the series of images compared in Fig. 13.

V. EXPERIMENTAL RESULTS

We demonstrate in this section the efficacy of our pro-

posed method by comparing it with six existing demo-

saicking methods—bilinear interpolation, Freeman’s method

[3], Hamilton’s method [7], Kimmel’s method [13], Li’s

method [14], and Gunturk’s method [15]. Among the

methods to be compared, bilinear interpolation is the sim-

plest and also the most common reference for performance

comparison. As reported in [22], [27] on comparing dif-

ferent demosaicking methods, both Freeman and Hamilton’s

methods are capable of producing more visually pleasing

results than many others in terms of sharper reconstructed

edges and less demosaicking artifacts. This is also supported

by our experiments in comparing them with a number

of other methods, including [1], [2], [5], [6], [9]–[12].

Kimmel’s method is another one capable of producing good

demosaicked results; it is similar to Freeman’s method and

our proposed method in the sense that all consist of two

successive steps: a reconstruction step and an enhancement

step. Li and Gunturk’s methods are two recently proposed

methods that can obtain superior results.

Two sets of test images are used in the experiments re-

ported in this paper. Test Set I includes two standard test

images (Barbara and Bike), four natural images from Kodak
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Fig. 18. Demosaicked SmallLighthouse image of (a) the first step and (b) the second step of Kimmel’s method, as well as that of (c) the interpolation step and
(b) the post-processing step of our proposed method.

PhotoCD (Lighthouse, Window, Sails, and Brickhouse), and

one synthetic images (Starburst). The Barbara and Bike test

images contain many sharp edges and fine textures, while the

four natural images have been used as test images for several

demosaicking methods [10], [11], [13], [15]. The synthetic

image is used to test the ability of demosaicking methods in

handling edges of various orientations and spatial resolutions.

Test Set I is used for comparing our proposed method with

bilinear interpolation, Freeman, Hamilton, Li, and Gunturk’s

methods. For Gunturk’s method, we make use of one-level

(1-L) decomposition with eight projection iterations in our

experiments as it generally performs better than two-level (2-L)

decomposition [15]. Test Set II comprises the down-sampled

versions of the Lighthouse, Window, and Sails test images,

which are used by Kimmel in [13] and will be referred to here-

after as the SmallLighthouse, SmallWindow, and SmallSails

images. Because Kimmel’s method depends on several preset

parameters and our implementation of the method may not be

exactly the same as his, we shall compare our results of Test

Set II directly with the demosaicked results made available by

Kimmel at [28]. All the test images are shown in Fig. 14. They

are sampled by the Bayer CFA pattern and then reconstructed

using the demosaicking methods under comparison in RGB

color space.

In Sections V-A and B, we will first present some demo-

saicked images generated by the different methods for visual

comparison. To quantify the improvement made by the pro-

posed method, we then tabulate the performance scores of each
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Fig. 19. Demosaicked SmallSails image of (a) the first step and (b) the second step of Kimmel’s method, as well as that of (c) the interpolation step and (b) the
post-processing step of our proposed method.

method based on the proposed image measures described in

Section IV.

A. Visual Comparison

Figs. 15–17 show the sample demosaicked results produced

by our proposed method and the other existing methods under

comparison. It can be observed that our proposed method in-

curs much fewer false colors in high-frequency image regions,

for example, the scarf in the Barbara image (Fig. 15), the cen-

tral part of the Starburst image (Fig. 16), and the white racket in

the Bike image (Fig. 17). Furthermore, compared to Gunturk’s

method, our proposed method can reconstruct sharp edges with

little zipper effect, which can be seen by examining the bound-

aries of the fruits in the Bike image.

Figs. 18 and 19 present the demosaicked results of the Smal-

lLighthouse and SmallSails images produced by the first and

second steps of Kimmel’s method and our proposed method,

respectively. Compared to Kimmel’s results, our demosaicked

results have fewer artifacts around the fence region (Fig. 18)

and the pole region (Fig. 19). Moreover, the second step of

Kimmel’s method oversmooths fine image details, such as the

lighthouse’s texture (Fig. 18) and the water’s surface (Fig. 19).

In comparison, our post-processing step can well preserve these

image details.

B. Quantitative Comparison Based on the

Proposed Image Measures

The PSNR values computed for the edge and smooth regions
of the demosaicked test images are listed in Table II. The table
shows that our proposed interpolation step can reconstruct more
accurate red, green and blue planes in most images than the
other methods under comparison. Gunturk’s method is the only
method that can produce very comparable PSNR results. By
comparing the PSNR values for the edge and smooth regions
separately, we can see the improvement made by our proposed
method around the edge regions, which are image contents cru-
cial to the visual image quality. Because the post-processing
step is only applied to artifact-prone regions (mainly the edge
regions), the PSNR values obtained from the smooth regions
of the initial and the post-processed demosaicked images are
about the same. In some cases, as our post-processing step al-
ters the original CFA-sampled color values, it leads to smaller
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TABLE II
PROPOSED PSNR (dB) MEASURES FOR EDGE AND SMOOTH REGIONS OF DEMOSAICKED IMAGES. THE RESULTS OF THE RED, GREEN, AND BLUE PLANES FOR

EACH IMAGE ARE SHOWN IN THE TOP, MIDDLE, AND BOTTOM ROWS, RESPECTIVELY. (A) RESULTS OF TEST SET I. (B) RESULTS OF TEST SET II

(a)

(b)

PSNR values, especially for the edge regions. Such degradation
in PSNR, however, is relatively imperceptible as compared to
the demosaicking artifacts removed by the post-processing step.
Therefore, evaluating demosaicking performance only based on
the modified PSNR may not be sufficient to quantify the im-
provement made by different demosaicking methods. This is
supported by the visual comparison given above and the results
of other proposed image measures to be presented below.

When resorting to the computed for the edge and
smooth regions of Test Set I [see Table III(a)], the performance
of the demosaicking methods under comparison is in the
following order: the proposed post-processing step (the best),
the proposed interpolation step or Gunturk’s method, Li’s
method, Hamilton’s method, Freeman’s method, and bilinear
interpolation (the worst). The results computed for
Test Set II also show that the proposed method outperforms
Kimmel’s method in both edge and smooth regions. For five

out of the seven test images in Test Set I and two out of the three
test images in Test Set II [see Table III(b)], the post-processing
step further reduces the for the edge regions of the initial
demosaicked results obtained by the proposed interpolation
method. One common characteristic of these test images is that
they have many sharp edges and fine details. This is what we
expected, as the post-processing step is designed to suppress
visible demosaicking artifacts around edge regions.

Several insights into the existing demosaicking methods can
be obtained by carefully examining the listed in Table III.
Comparing Hamilton’s method with Freeman’s method, we can
see that the former mainly outperforms the latter around edge re-
gions, while showing little difference in smooth regions. This is
mainly due to the fact that Hamilton’s method employs several
edge classifiers to identify the ‘best’ interpolation direction so
that the missing color values are estimated with adaptation to
the edges present in a local neighborhood. On the other hand,
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TABLE III
PROPOSED4E MEASURES FOR EDGE AND SMOOTH REGIONS OF DEMOSAICKED IMAGES. (A) RESULTS OF TEST SET I. (B) RESULTS OF TEST SET II

(a)

(b)

TABLE IV
PERCENTAGE (%) OF PIXELS WITH THE ZIPPER EFFECT (ZE) AND WITH REDUCED CONTRAST (RC) TO THEIR NEIGHBORS IN DEMOSAICKED IMAGES. (A) RESULTS

OF TEST SET I. (B) RESULTS OF TEST SET II

(a)

(b)

the performance of Freeman’s method relies much on the size
of the median filter’s support, for which it is difficult to find
an optimal value suitable for different image contents. For the
Kimmel’s method, its second step increases the color dif-
ferences for all the demosaicked images obtained by its first re-
construction step. This complies with the result of the above
visual comparison: the second step of Kimmel’s method sup-
presses demosaicking artifacts at the expense of fine image de-
tails.

Table IV lists the percentages of pixels with the zipper ef-
fect (ZE) and that with reduced color contrast (RC) with re-

spect to their neighboring pixels. The table shows that for most
of the test images in Test Set I, our proposed post-processing
step consistently generates demosaicked images with the lowest
amount of the zipper effect, followed by the proposed inter-
polation step or Gunturk’s method, Li’s method, Hamilton’s
method, Freeman’s method and bilinear interpolation; for Test
Set II, our proposed post-processing step outperforms Kimmel’s
method in suppressing the zipper effect. Note that while Gun-
turk’s method is capable of producing demosaicked results with
PSNR and comparable to that obtained by our proposed
method, it results in more severe zipper effect along sharp edges,
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which can be seen around the fruits in the Bike image (Fig. 17).
Such degradation in visual quality is well predicted by our pro-
posed measure for the zipper effect.

It should be noted that the percentages of pixels with reduced
contrast obtained by our proposed method (as well as Li and
Gunturk’s methods) are generally larger than that of bilinear in-
terpolation, Freeman, and Hamilton’s methods. However, when
compared to the pixels where the zipper effect is suppressed by
the proposed method, the pixels with reduced contrast not only
make up a small percentage but also randomly scatter in the de-
mosaicked images. Hence, these pixels have little adverse effect
on the perceptual quality of the demosaicked images generated
by our proposed method.

VI. CONCLUSION

In this paper, we have presented a new CFA demosaicking
method that consists of two successive steps: an interpolation
step that fills in missing color values in a progressive fashion
by exploiting the spectral and spatial correlations among neigh-
boring pixels, and a post-processing step that incorporates spec-
tral correlation with median filtering of inter-channel differ-
ences to suppress demosaicking artifacts. To preserve the color
fidelity of demosaicked images, the post-processing step is se-
lectively applied to artifact-prone regions identified by a dis-
crete Laplacian operator. When applied to the CFA samples of
a variety of test images, the proposed method is able to generate
demosaicked images with better perceptual quality compared to
that produced by other existing methods.

Several image measures are also proposed to quantify the
performance of different demosaicking methods. Considering
CFA demosaicking as a reconstruction process, we make use
of original, nonmosaicked images as baselines to compare the
results of different demosaicked methods. For each test image,
we compute the PSNR and CIELAB values for the edge
and smooth regions, separately. A new objective measure has
also been devised to explicitly account for the zipper effect in
demosaicked images. Experimental results show that the pro-
posed image measures can effectively quantify the performance
of different demosaicking methods.
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