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ABSTRACT 

Histogram warping is a novel histogram specification technique for use in color image processing. As a general purpose 

tool for color correction, our technique constructs a global color mapping function in order to transform the colors of a 

source image to match a target color distribution to any desired degree of accuracy. To reduce the risk of color distortion, 

the transformation takes place in an image dependent color space, featuring perceptually uniform color axes with 

statistically independent chromatic components. Eliminating the coherence between the color axes enables the 

transformation to operate independently on each color axis. Deforming the source color distribution to reproduce the 

dominant color features of the target distribution, the histogram warping process is controlled by designating the color 

shifts and contrast adjustments for a set of key colors. Assisted by mode detection, matching quantiles establish the 

correspondence between the color distributions. Interpolation by monotonic splines serves to extend the mapping over 

the entire dynamic range without introducing artificial discontinuities into the resulting color density. We show how our 

method can be applied to color histogram equalization as well as color transfer from an example image or a color palette. 

Keywords:  Color image processing, color histogram specification, color histogram modification, color histogram 

equalization, color mapping function, color transfer, color palette, color space, mode detection, monotonic splines 

1. INTRODUCTION 

Histogram specification, sometimes called histogram matching or histogram normalization, is a basic signal processing 

operation. It is the transformation of one histogram into another by remapping the signal values to control the relative 

frequency of their occurrence. Histogram specification is the generalization of histogram equalization, which stipulates a 

uniform output histogram, making each signal value equally likely in order to maximize the signal’s entropy and thus 

optimize the information content of the quantized signal. As a preprocessing step in signal analysis or a postprocessing 

step in signal synthesis, histogram specification is used to adjust the statistical profile of a signal’s dynamic range while 

retaining the local structure and relative ordering of the signal values. For over thirty years, histogram specification has 

been the subject of parallel research with a wide variety of applications, including image synthesis, digital photography, 

video processing, remote sensing, medical imaging, computer vision, and speech recognition. In the context of image 

processing, histogram specification is primarily a technique of global contrast enhancement. In the context of pattern 

recognition, histogram specification is used to compensate for differences in data acquisition, improving the performance 

of a classifier by removing the influence of test conditions that were absent from the training environment. Despite a 

wide variety of available approaches, histogram specification remains an unresolved practical problem, especially for 

multidimensional data. The measure of success depends on the application. In the case of image enhancement for visual 

inspection, it may be subjective. As Gonzalez and Woods remark in their textbook1, "histogram specification is, for the 

most part, a trial-and-error process". Clearly, there is still scope for improvement. 

We present a novel histogram specification technique for use in color imaging†. Our histogram warping framework is 

designed to make color correction tasks easier to control. Given a source image and a target color distribution, our task is 

to construct a global color mapping function that transforms the colors of the source image so that the colors of the 

resulting image match the target color distribution to any desired degree of accuracy. Our approach to histogram 

modification encompasses a range of intermediate transformations, from histogram stretching and histogram moment 
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specification to exact histogram specification. Our approximate histogram specification technique is versatile enough to 

adapt to various applications. The target color distribution can be specified by a probability density function, an example 

image, or a color palette. For instance, the transfer of a color scheme from one image to another (Figure 1) can be useful 

in adjusting the illumination. In applications where speed is crucial, as the analysis time dominates the synthesis time in 

our algorithm, it is possible to perform the analysis on subsampled image data. 

We treat histogram specification as a continuous transformation of a random variable expressing the distribution of 

colors along a color axis. To reliably apply this operation independently to each color axis, we advocate the use of a 

color space adapted to the statistical properties of the source color distribution, offering perceptually uniform color axes 

with statistically independent chromatic components. Eliminating the coherence between color axes reduces the risk of 

color aberration inherent in the decomposition of the 3D color histogram specification task into three computationally 

efficient 1D histogram transformations. The transformation of each color axis is defined by mapping a set of quantiles of 

the source distribution to the corresponding quantiles of the target distribution. Through the selection of these key colors, 

we can easily set the accuracy of the transformation. To better reproduce the target color distribution, we can guide the 

transformation according to the dominant colors of the target color distribution as reflected in the modes of its histogram. 

To smoothly extend the color mapping over the entire dynamic range of each color axis, we fit a monotonic interpolating 

spline to the matched color values of the corresponding quantiles. In effect, our continuously differentiable 

transformation ensures that color and contrast change in a continuous and predictable manner, and thereby reduces false 

contouring artifacts. By separately specifying the color shift and contrast adjustment for a set of key colors, our 

histogram warping technique can easily be configured to perform any monotonic transformation of a histogram.  

Our previous work2,3 introduced histogram warping as a technique for interactive and automatic contrast enhancement of 

graylevel images. This paper expands our histogram warping framework to handle histogram specification for color 

 

 

Figure 1.  Color transfer of lighting conditions using our histogram warping transformation in La″b″ color space. 

The colors of the original images (top) are exchanged (bottom). 



images. We start off with a survey of existing approaches for histogram specification and its extension to color 

processing. Subsequently, we describe the components of our algorithm: the color space conversion, the color mapping 

function, the color feature matching, and the color contrast adjustment. Finally, we demonstrate the applications of our 

technique, including color histogram equalization as well as color transfer from an example image or a color palette. 

2. SURVEY OF RELATED WORK 

2.1. Algorithms for Histogram Specification 

Histogram specification1,4-6 traces its roots to histogram equalization1,7, one of the earliest image processing algorithms 

which is still widely used for contrast enhancement. Its classical implementation is based on the fact that transforming a 

random variable by its cumulative distribution function results in a uniform distribution. Histogram specification1,4-6 is 

performed by using the source cumulative distribution function to map the source histogram to an equalized histogram 

and then using the inverse of the target cumulative distribution function to reshape the equalized histogram to reproduce 

the target histogram. Typically it is used to specify the distribution of colors in an image. It can also be applied to render 

spatial structures8 by specifying the histograms of the subband coefficients of an image decomposition formed by 

resolution and orientation selective filters, such as a steerable image pyramid. For antialiasing, the source image values 

may need to be appropriately preprocessed4,5,9. Histogram specification can be performed more directly10 by constructing 

a lookup table to provide a single-valued mapping between the source and target histograms. Histogram specification by 

sorting11 performs a multi-valued mapping between the order statistics, where each element of the source distribution is 

mapped to the correspondingly ranked element of the target distribution. Under various measures of discrepancy between 

distributions, the optimization of the histogram specification transformation can be framed in terms of tree search12,13, 

integer linear programming14, dynamic programming15, or a histogram distance metric16. It is possible to rigorously 

derive an intermediate mapping that balances the discrepancy with respect to multiple target distributions17. All of these 

exact histogram specification techniques generate a discrete mapping designed to reduce quantization error, typically 

without any account for the distortion of the source histogram that the mapping entails. Forcing the source image to 

conform as exactly as possible to an arbitrary target color distribution necessitates abrupt changes in color and contrast. 

By relaxing this constraint, our approximate histogram specification technique results in fewer image artifacts. 

The simplest method for approximate histogram specification is a linear transformation, commonly used in color 

processing to specify the range18 or the mean and standard deviation19 of the resulting color distribution. Specification of 

higher order statistical moments20 is more difficult, requiring the numerical optimization of a nonlinear transformation. A 

more adaptable histogram modification method models the histogram as a tree of nested intervals21, allowing for a 

hierarchy of linear transformations. Piecewise linear mappings1,22-24 can approximate histogram equalization and 

histogram specification. However, they lack the flexibility for separate adjustment of color and contrast. As previously 

proposed for use in histogram modification, piecewise exponential splines can fail to be continuously differentiable25 

while piecewise cubic splines can fail to be monotonic6. Our histogram warping transformation is purposefully designed 

to resolve these deficiencies of previous piecewise defined methods for histogram modification. 

2.2. Color Processing for Histogram Modification 

Traditionally, color spaces have been developed for the convenience of physical measurement (XYZ), physiological 

measurement (LMS), perceptual measurement (Lab and Luv), user control (HSV, HSB, and HLS), or hardware design 

(RGB, YIQ, YCbCr, and CMY). By default, these standard color spaces share a common weakness. Since their fixed color 

axes disregard the distribution of colors in the image, they can not eliminate the statistical dependence between the color 

axes. Removing the correlation between the color axes prior to independently modifying the histogram of each color axis 

has proven useful in texture synthesis8 and remote sensing18. We improve on this approach by selecting color axes which 

exhibit minimal statistical dependence. Rather than adapting the color space to the image, it is always possible to devise 

a color space that reflects the statistical properties of a representative ensemble of images. For such a decorrelation 

strategy to be effective, the color space should only be applied to color distributions that are similar to the training set. 

For instance, recent color transfer experiments19 have tried using the lαβ color space. Defined on the basis of a dozen 

wilderness scenes, the lαβ color space features logarithmic axes to model visual perception. Instead, our color space is 

founded on Lab. However, even the standard CIE color spaces, Lab and Luv, are only designed to be perceptually 

uniform for just noticeable color differences and they still suffer from clearly visible distortions for some hues26. While 



research is continuing on newer perceptually uniform color spaces27, such as DIN99c, their effectiveness in practical 

applications remains to be seen. The large color differences commonly encountered by our algorithm are better modeled 

by color order systems, such as Munsell. As they are usually defined through a collection of printed color samples, the 

need for configuring 3D lookup tables26 discourages their use. Sophisticated color appearance models, such as 

CIECAM97s, remain difficult to apply in practice because they require correct assumptions about the viewing conditions. 

Independent processing of appropriately chosen color axes has the decisive advantage of speed and simplicity in many 

practical applications of color adjustment. Color axes that correspond to perceptually meaningful attributes make color 

processing easier to control. Relying on the color axes to impose a sensible ordering of colors, standard 1D histogram 

modification techniques do not readily extend to 3D histogram transformations. Without a natural ordering relation to 

arrange colors in sequence, it is harder to derive a well founded matching between color distributions28. However, 3D 

color processing has the potential to perform more powerful and flexible transformations. Not every transformation of 

the joint color distribution can be decomposed into monotonic transformations of the marginal color distributions. For 

instance, a 3D transformation is necessary when an arbitrary correspondence between a source set of input colors and a 

target set of output colors is used to define the mapping of the entire color space. By taking into account the shape of the 

available color space, a 3D transformation can avoid mapping colors out of gamut. Yet, these methods remain unpopular 

because their complex implementations invariably demand much greater processor or memory resources. Existing 

methods for multidimensional histogram specification by a multivariate transformation require either an iterative 

solution to a partial differential equation29 or a numerical solution to a nonlinear minimization problem30.  

An alternative approach employs conditional color distributions, where a profusion of color axes induces an appropriate 

partition of the color space. When used in color image enhancement to improve visibility of image features without 

altering the interpretation of image content, the color space decomposition is often designed to ensure that the hue values 

are left unchanged31,32. A general purpose color space decomposition33 can consist of the luminance histogram, the hue 

histograms conditioned on luminance values, and the saturation histograms conditioned on hue and luminance values. In 

the histogram explosion approach34, the color axes are rays emanating from a common origin so that each histogram is 

conditioned on its spherical angles in the color space. The histogram decimation approach35 recursively subdivides the 

color space into regions of equal volume while suitably displacing the colors of each region. These computationally 

intensive approaches are prone to producing false contouring artifacts whenever they result in apparent discontinuities 

between the independently obtained color mappings of adjacent regions of the color space. The same problem affects 

attempts to discretize the color histogram specification process by performing color palette mapping36. 

3. COLOR SPACE 

When mapping the colors of the source image to match the target color distribution, our algorithm performs a continuous 

deformation of the color space by warping each color axis independently. In our experiments, the choice of color space is 

observed to have three substantial effects on the outcome. The sequence of color tones along each color axis influences 

the color correspondences inferred by the algorithm. The nonlinearity of the color axes governs the perceptual uniformity 

of the color transitions, resulting in the smoothness of the color gradients. The statistical independence of the chromatic 

axes is required to ensure that separate transformations can be applied independently to each axis without disturbing any 

statistical relationship between them. For instance, the direct use of RGB color channels gives unpredictable results since 

these axes are both highly correlated and perceptually nonuniform. Independently altering the statistically dependent 

color primaries in an additive color space tends to produce unexpected hues. Our color histogram specification technique 

is carefully formulated to avoid introducing colors that are absent from both the source and target color schemes. 

For statistically independent and perceptually uniform color axes, we advocate the use of a color space that adapts to the 

source image. We start with the perceptually uniform Lab color space. Observe that any linear combination of the ab 

chromatic axes remains a perceptually uniform color axis. By translation and scaling, we standardize the chromatic axes 

to have zero mean and unit variance. Rotating the axes to remove the correlation between them, we perform principal 

component37 analysis a′b′ using a singular value decomposition of the covariance matrix. While decorrelating the 

chromatic axes is adequate for many cases, particularly difficult images can benefit from additional processing because 

decorrelation generally does not produce statistically independent chromatic axes. To further alleviate the side-effects of 

operating on each chromatic axis separately, we apply independent component38 analysis a″b″ to find a linear 

transformation that minimizes an estimate of the mutual information between the axes, a measure of their statistical 



dependence. In effect, the resulting axes are apt to reflect the distinguishing characteristics of chromatic distribution 

since their projection is chosen to make the histogram of each axis appear as dissimilar from a Gaussian distribution as 

possible. Observe that independent component analysis can only improve on principal component analysis as long as the 

independent components are not Gaussian since uncorrelated Gaussian random variables are already independent.  

Using a set of 16 color transfer experiments on stock photographs, we tested a wide variety of color spaces (including 

XYZ, LMS, lαβ, HSV, RGB, R′G′B′, R″G″B″, Lab, L′a′b′, L″a″b″, La′b′, and La″b″). As expected, a color space that 

produces reasonable results for one image can not be guaranteed to be equally effective for another. Yet, some color 

spaces appear much more prone to color distortion than others. For color histogram warping, we selected the La″b″ as 

our color space because, under our subjective visual inspection, it gave the most consistently reliable results, especially 

in the presence of large color shifts. By separating the brightness of the luminance channel L from the hues and tones of 

the independent chromatic components a″b″, our algorithm permits novel shades and tints to occur while reducing the 

possibility that unforeseen hues arise. Such an approach to global color adjustment is in agreement with human color 

perception, where a change in brightness intensity signals a readily discounted change of illumination while a change of 

hue category signals a more significant change of scenery.  

When our algorithm results in an out of gamut color, we project it in the direction of its original color in the source 

image and clip it against the nearest face of the RGB color cube. Recent studies39 have found that viewers tend to favor 

gamut clipping over gamut compression. With the independent component analysis resulting in nonorthogonal chromatic 

axes, occasionally a significant portion of the color distribution can be mapped out of gamut. In practice, should such a 

problem be detected, the algorithm could be instructed to fall back from La″b″ to Lab or RGB. Aliasing artifacts may 

also arise whenever the mapping stretches the contrast of quantized color values. Because our histogram transformation 

operates on continuous color values rather than discrete color levels, we need to augment each quantized source color 

with a suitable fractional part. To mask aliasing artifacts, we slightly perturb the source color values with white noise9. 

For higher quality rendering, one may use a blue noise dithering mask40.  

4. COLOR TRANSFORMATION 

For each color axis, the histogram warping transformation is controlled by defining its effect on a set of key colors, with 

its displacement determining the color shift and its slope determining the contrast adjustment. Thus, the transformation 

( )=y T x  is specified by the mapping of corresponding key colors values ( )=k kb T a  along with their contrast 

adjustments ( )′=k kd T a .  In this way, we have separate and independent control over how the color histogram is shifted 

≠k ka b , stretched 1>kd  or compressed 0 1≤ <kd . We use a piecewise defined, interpolating spline to ensure that 

these parameters have local effect. Our only constraint is that the parameters must delineate a valid monotonic function, 

with 1− <k ka a , 1− ≤k kb b  and 0 ≤ < ∞kd . In addition to being potentially invertible, a monotonic transformation serves 

to preserve the natural order of colors and thus avoids the banding artifacts caused by local reversals of image polarity. 

We require a continuous transformation in order to avoid abrupt changes in color that can create false contours in 

homogeneous image regions. We also require its derivative to be to be continuous in order to avoid abrupt changes in 

contrast that can create false contours in smooth image gradients. In effect, a continuously differentiable transformation 

refrains from introducing artificial discontinuities into the resulting color density. To satisfy these requirements, our 

histogram warping transformation relies on a piecewise rational quadratic interpolating spline41,42: 
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How a transformation stretches and compresses the histogram determines its impact on image contrast. There can be 

either noise and aliasing artifacts where the histogram is overly stretched or detail loss where it is overly compressed. 

Such defects manifest themselves as spurious holes and spikes in the resulting histogram. Since the dynamic range has a 

fixed span of colors, color shift makes contrast adjustment inevitable. Furthermore, raising the contrast in one region of 

the histogram necessitates lowering the contrast in another, and vice versa. The tradeoff is governed by the choice of 

transformation function. For more precise control over how the transformation stretches and compresses the color 

transformation, it is possible to use a piecewise rational cubic interpolating spline with adjustable shape parameters42. 



5. COLOR MATCHING 

Histogram specification seeks to reshape the source color distribution to take on the features of the target color 

distribution. For the source A  and target B  colors, we examine their probability densities f , cumulative distributions 

F , and quantiles 1−F . The intended effect of applying the transformation ( )=y T x  to the color distribution ( )AF x  of 

the source image is for the outcome, 1

( ) ( ) ( ( ))−=T A AF y F T y  with ( ) 

1 1 1

( ) ( ) ( ( )) ( ( ))− − −′=T A Af y f T y T T y , to approximate 

the target color distribution ( )BF x . Exact histogram specification, using 1( ) ( ( ))−= B AS x F F x , precisely reproduces the 

target distribution 1 1

( ) ( ) ( ( )) ( ( ( ))) ( )− −= = =S A A A A B BF y F S y F F F y F y . Its effect on contrast ( ) ( ) ( ( ))′ = A BS x f x f S x  is 

to stretch the more probable regions and compress the less probable regions of the source histogram as compared with 

the corresponding regions of the target histogram. Yet, for many practical applications, exact histogram specification is a 

needlessly rigid directive, causing unwarranted contrast distortion of the source image. Typically, the goal is to retain the 

color scheme rather than necessarily reproduce the color histogram, as the color balance is reflected in the overall shape 

of the distribution while minor discrepancies between histograms can often be below the threshold of visual perception.  

An approximate transformation can prove more effective by ensuring that color and contrast change in a gradual and 

controlled manner. Therefore, our algorithm only enforces the correspondence ( ) ( ) ( )=T A k B kF b F b  of the resulting 

distribution to the target distribution at a few representative key colors 1( ) ( ( ))−= =k k B A kb T a F F a  selected to capture the 

relevant features of the color distributions. It maps a set kq  of quantiles 1( )−=k A ka F q  of the source distribution to the 

corresponding quantiles 1( )−=k B kb F q  of the target distribution. Thus the source color range 1 1

0[ , ] [ (0), (1)]− −=K A Aa a F F  

is transformed to match the target color range 1 1

0[ , ] [ (0), (1)]− −=K B Bb b F F . The total number 1K +  of matching quantiles 

used in the color mapping determines the accuracy of the transformation. As it increases, our transformation ( )T x  

converges to exact histogram specification ( )S x , since 1( ) ( ) −− ≤ −k kT x S x b b  for 1[ , ]−∈ k kx a a . The key colors can be 

chosen in various ways. Evenly spaced quantiles can be used to convey the overall shape of the target color distribution, 

while its modes can be used to discern its predominant colors. The key colors can also be designated by a color palette.  

6. COLOR CONTRAST 

A key color’s contrast adjustment controls the local deformation of its region of the source color histogram. The contrast 

adjustments ( )′=k kd T a  serve both to improve the accuracy of histogram specification and to moderate the distortion of 

histogram transformation. To combat artifacts, our implementation places limits on contrast adjustments 1− ≤ ≤kdλ λ  

(our experiments set 5=λ ). Observe that preserving the contrast of the key colors, by setting every 1=kd , merely 

pushes the brunt of the distortion to the intermediate colors between them. But performing exact histogram specification 

at the key colors, by setting contrast adjustments ( ) ( )=k A k B kd f a f b  so that ( ) 

1

( ) ( ) ( ) ( ) ( )−′= =T A k A k k B kf b f a T a f b , 

also risks excessive distortion of the intermediate colors. We avoid the direct use of the ratio between the source and 

target histograms since the raw histograms that are derived from image data can exhibit substantial short range variations 

whereas the impact of the contrast adjustments extends from the key colors to their intermediate colors. In this context, 

nearest neighbor estimation43 offers a simple, adaptive way to more smoothly approximate probability densities. We use 

it to relate the contrast adjustments ( )′=k kd T a  to the slopes of the color mapping ( ) ( )1 1− −= − −k k k k kr b b a a .  

For a data set of size n , given the distance ( | ) ( | )= −x x x∆ η ξ η  from x  to its η  nearest neighbor ( | )xξ η , the nearest 

neighbor density estimator is ( )( | ) 2 ( | ) ( )f x n x f xη η ∆ η∗ = ≈ . Each span [ ( | ), ( | )]− +x x x x∆ η ∆ η  holds the same 

probability mass 2 ( ) ( ( | ))n F x F xρ η ξ η= −≈ . We write the left nearest neighbor density estimator as 
L L( | ) ( | ) ( )f x x f xρ ρ ∆ ρ= ≈ , where L L( | ) ( | )= −x x x∆ ρ ξ ρ  is the distance from x  to its left neighbor 
L 1( | ) ( ( ) )−= −x F F xξ ρ ρ  such that the span L[ ( | ), ]x p xξ  has probability mass ρ . Since the key colors are defined by 

matching quantiles, their spans are equiprobable 1 1( ) ( ) ( ) ( )− −= − = −k B k B k A k A kF b F b F a F aρ  so that L

1( | ) −=B k k kb bξ ρ  

and L

1( | ) −=A k k ka aξ ρ . Hence, as ( ) ( )L L L L

1 1( | ) ( | ) ( | ) ( | ) − −= = − − =A k k B k k B k k A k k k k k k kf a f b b a b b a a rρ ρ ∆ ρ ∆ ρ , the 

left slope of the color mapping provides a left sided estimate of the contrast adjustment. For the right nearest neighbor 

density estimator R R( | ) ( | ) ( )f x x f xρ ρ ∆ ρ= ≈  with R R( | ) ( | )= −x x x∆ ρ ξ ρ  and R 1( | ) ( ( ) )−= +x F F xξ ρ ρ , by 

similar argument R R

1 1 1( | ) ( | )+ + +=A k k B k k kf a f b rρ ρ , the right slope of the color mapping provides a right sided estimate 

of the contrast adjustment. To better regulate how the transformation affects intermediate colors, we use the local median 

colors, kα  and kβ , to define the local slopes that act as the left and right contrast adjustment estimates, L

kd  and R

kd : 
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For the slope of the transformation to reflect a compromise between its left and right estimates, it is reasonable to apply 

the geometric mean ( ) 

L R 1 2=k k kd d d , which has the advantage of preserving flat slopes, so 0=kd  when L 0=kd  or 
R 0=kd , as well as canceling inverse slopes, so 1=kd  when ( ) 

L R 1−=k kd d . However, unless the key colors are defined 

by evenly spaced quantiles, the left and right contrast adjustment estimates generally do not carry equal weight 
1 1

12 2 +≠k kρ ρ . Therefore, our contrast adjustments are defined using the geometric mean of the slopes of the local 

median colors weighted by the relative probability mass of their spans: 
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In our experiments, this contrast adjustment formula has proven effective at moderating the distortion of the histogram 

transformation. In fact, it is related to a derivative formula proposed for monotonic splines42. However, outside of the 

key colors, the result of this transformation is not guaranteed to coincide with exact histogram specification. In situations 

where accuracy needs to take precedence over distortion, it is possible to ensure that an intermediate color 
1 1 1

12 2
( ( ))−

−= +k A B k kF F b bγ  of the source color distribution is correctly mapped to the corresponding local midpoint 

color 1 1
12 2

( )−+ =k k kb b T γ  of the target color distribution by appropriately specifying the contrast adjustments: 
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This sequence of contrast adjustments can be initialized in various ways. It is always possible to select 0d  to ensure a 

monotonic transformation, with every 0≥kd . If feasible, the contrast of one of the key colors can also be preserved, so 

that median( ) 1=kd . Yet, when bounds are imposed on all the contrast adjustments 1− ≤ ≤kdλ λ ,  they may no longer 

uphold the mapping of the local midpoint colors 1 1
12 2

( )−+ =k k kb b T γ , and thus we decided against using this approach. 

7. COLOR APPLICATIONS 

7.1. Histogram specification by a color distribution function 

Our histogram warping technique can be used to alter the color histogram of an image to resemble a specified probability 

distribution. In particular, by designating a uniform target distribution, our method offers a quick way to equalize the 

color histograms of the color axes (Figure 2). In applications such as remote sensing, color histogram equalization serves 

to make image features easier to detect, interpret and compare by standardizing the contrast and colorfulness of the 

image. Our approach is more flexible than exact color equalization, which dictates that each possible color value be 

assigned to an equal number of image pixels. By adjusting the accuracy of our transformation, it easy to control the 

tradeoff between enforcing a flat histogram and retaining the features of the image’s original color distribution.  

   
 

Figure 2.  Color histogram equalization (from left to right): the original image, our median equalization (K=2), our quartile 

equalization (K=4), and exact histogram equalization. This example uses the standard RGB color space. In remote sensing 

applications, colors are often artificially exaggerated to improve the contrast between image features. 



For approximate color histogram specification, our transformation ( )=k kb T a  decides on the key colors where the 

resulting distribution will coincide with the target distribution. It establishes a mapping between sets of evenly spaced, 

matching quantiles of the source 1( )−= k
k A K

a F  and target 1( )−= k
k B K

b F  color distributions. Quantiles readily offer a 

comprehensive characterization (Table 1) of a distribution’s shape that is more resilient to outliers and noise than the 

traditionally used central moments. The number of matched quantiles 0 ≤ ≤k K  sets the accuracy of the transformation. 

As long as the median is not too far away from the mode, only a few evenly spaced quantiles suffice to describe a typical 

unimodal distribution. For instance, a rough but robust 2=K  transformation maps the minimum, the median, and the 

maximum color values of the source image to the corresponding quantiles of the target color distribution. A more 

accurate 4=K  transformation uses the quartiles to model color contrast, thus resulting in a color distribution with the 

same range, location, dispersion, and skewness as the target color distribution. Higher order features, such as kurtosis 

captured with a 8=K  transformation, often tend to have a less apparent influence on the resulting image20.  

7.2. Histogram specification by an example image 

Our histogram warping technique can perform color transfer (Figure 1 and 3), transforming the colors of a source image 

to resemble the colors of a target image. This type of method is useful for various color correction tasks: preprocessing 

for image comparison, rendering artificial scenes with natural colors, altering the illumination of depicted scenes, 

synthesizing textures and photomosaics, removing shadows from aerial images, eliminating striping artifacts from 

multisensor images, reducing flicker between video frames, as well as calibrating 2D image slices for 3D volumetric 

reconstruction. Typically, the challenge is to apply the minimal color distortion necessary to the source image so that the 

resulting image reflects the dominant color characteristics of the target image. Previous approaches commonly relied on 

exact histogram specification or a linear histogram transformation in a predetermined color space. Our technique 

substantially improves the reliability of the transformation by using a color space adapted to the statistics of the source 

image and a color feature set adapted to the statistics of the target image. However, global histogram specification can 

never be entirely foolproof since by looking at the distribution of colors only in the dynamic range and not in the spatial 

domain, it is impossible to tell how changing the relative proportions of colors will change the semantics of the picture. 

Color histogram specification that adapts intelligently to local image structure is a worthy subject for future research. 

To capture dominant colors of the target color distribution, we use the modes of its histogram as the key colors that guide 

our transformation and determine its accuracy. We establish a mapping ( )=k kb T a  between the corresponding set of 

quantiles 1( ( ))−=k A B ka F F b  of the source distribution and the modes kb  of the target color distribution. When the target 

color distribution is derived from an image, the raw histogram of the color values can exhibit spurious variations due to 

quantization effects. Mode detection for empirical distributions requires carefully calibrated smoothing of the data. Our 

implementation relies on kernel density estimation43, a robust nonparametric statistical method. We approximate the 

target density ( )Bf y  as a sum of Gaussians centered on each of the Bn  color values iy  of the target image: 

 2

1

1
( ) ( | , )

=

= ∑
Bn

B i B
B i

f y N y y h
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2
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=

x
eN x

µ σ
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Table 1.  Robust descriptive statistics, based on quantile analysis, evaluated for the standard Gaussian and uniform distributions. 

Order K  Property Statistical Measure Quantile Formula Uniform Gaussian

0 1=K  Range Minimum and Maximum 
1 1[ (0), (1)]− −F F  [0,1]  ( , )−∞ ∞

1 2=K  Location Median 
1 1

2
( )−F  0.5 0 

2 4=K  Dispersion Interquartile Range 
1 13 1

4 4
( ) ( )− −−F F  0.5 1.34898

3 4=K  Skewness Bowley Skewness 

1 1 1

1 1

3 2 1
4 4 4

3 1
4 4

( ) 2 ( ) ( )

( ) ( )

− − −

− −

− +
−

F F F

F F
 0 0 

4 8=K  Kurtosis Moors Kurtosis 

1 1 1 1

1 1

7 5 3 1
8 8 8 8

6 2
8 8

( ) ( ) ( ) ( )

( ) ( )

− − − −

− −

− + −
−

F F F F

F F
 1 1.23310

 



The bandwidth Bh  sets the resolution of the analysis, the minimal scale for detectable histogram features. There are 

many approaches for automatic scale selection in density estimation44. Rather than a truncated kernel with finite support, 

we selected the Gaussian kernel to ensure that the bandwidth acts as a proper smoothing parameter. In effect, increasing 

bandwidth causes the density estimate to become smoother and its modes fewer, which increases the estimate’s bias 

while decreasing its variance. Minimizing the asymptotic mean integrated squared error of the derivative estimate results 

in an optimized bandwidth 1 7O( )−=B Bh n  for determining the sensitivity of the mode detection process to fluctuations in 

the data. A conservative bandwidth ensures no more modes are detected than would be observed in an asymptotically 

optimal estimate. Using this maximal smoothing principle45, we calculate the largest degree of smoothing compatible 

with the interquartile range, ( ) ( )1 1 1 73 1
4 4

0.7816774 ( ) ( )− − −= −B B B Bh F F n . We define a legitimate mode kb , spanning a 

minimal probability mass 2δ  (our experiments set 2%=δ ), to be a critical point ( ) 0′ =B kf b  such that every interval  
L R[ , ]k kb b , where L R[ , ]∈k k kb b b  and R L( ) ( )≥ −B k B kF b F bδ , satisfies L R( ) 0 ( )′ ′≥ ≥B k B kf b f b . The mode can be quickly 

located by repeated bisection: compute the midpoint L R1 1
2 2

← +k k kb b b  and move the left limit L ←k kb b  when ( ) 0′ >B kf b  

or move the right limit R ←k kb b when ( ) 0′ <B kf b . To avoid detecting ripples on an inflection or a plateau, it is better to 

use a method that validates the probability mass of a detected mode. Hence, we use the mean shift procedure46 which 

converges to the mode by monotonically ascending its gradient in steps adapted to the density estimate: 

 2 2

1 1

( | , ) ( | , )
= =

   
←       

   
∑ ∑

B Bn n

k i k i B k i B

i i

b y N b y h N b y h  . (7) 

 

 

Figure 3.  Color transfer of scene ambience using our histogram warping transformation in La″b″ color space. 

The colors of the original images (top) are exchanged (bottom). 



7.3. Histogram specification by a color palette 

Our histogram warping transformation can render an image according to a specified palette of colors (Figure 4). This 

method can serve as an interactive tool for color emphasis. In graphic design, it is desirable for illustrations to share a 

unified color scheme. A color scheme can be selected to convey a particular mood or theme. It can be used underline 

desirable aspects of an image by making more pronounced those image colors which accord with the given palette. We 

selectively apply a color palette to an image, emphasizing those palette colors that are already present in the image. We 

use the palette colors to define a target color distribution that is adapted to the source image. For each color axis, the 

target color distribution is expressed as an equally weighted sum of Gaussians centered on the palette colors. For each 

palette color, we need to estimate the desired spread of its component in the sum. When a palette color is prominent in 

the source image, it is further emphasized by concentrating the spread of its influence. On the other hand, when a palette 

color is absent from the source image, it will attract less attention if the spread of its influence is increased.  

Treating the palette colors as the key colors ( )=k kb T a , we map the corresponding set of quantiles 1( ( ))−=k A B ka F F b  of 

the source distribution to the target palette’s colors kb . For the target color density 21
1

1
1

( ) ( | , )K
kB k kK

f y N y b σ−
=−= ∑ , its 

cumulative distribution is truncated to fit the color range and its quantiles are evaluated numerically. We use expectation 

maximization47 to estimate the parameters 2

kσ  of the Gaussian components so that the target color distribution accords 

with the An  color values ix  subsampled from the source image. At each iteration, the parameters 2

kσ  are updated to 

maximize the likelihood of observing the source color values given an estimate of the target color components: 
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Figure 4.  Recoloring of image colors by applying a color palette using our histogram warping transformation in La″b″ color space.

The color palette designates which colors of the original image (top right) need to be emphasized. 



8. CONCLUSION 

Our work presents original contributions to the color space, color transformation, and color features used in histogram 

specification. Our image dependent La″b″ color space relies on independent component analysis to make the algorithm 

more reliable by being less prone to hue artifacts. Our histogram warping transformation applies continuously 

differentiable, monotonic splines to make the algorithm easier to control through the separate specification of color shifts 

and contrast adjustments for a set of key colors. Our color features use mode detection by kernel density estimation to 

make the algorithm more adaptable to the structure of color distribution it seeks to reproduce. For the restricted case of 

unimodal distributions, color features based on evenly spaced quantiles can offer a robust description of distribution 

shape akin to traditional statistical moments. We are now exploring the practical applications for our histogram warping 

framework, and the initial results appear encouraging. So far we have investigated color specification by a probability 

distribution, color transfer between images, and color emphasis according to a color palette, in addition to our earlier 

experiments2,3 in interactive and automatic contrast enhancement. In future work, we wish to apply histogram warping to 

adaptive contrast enhancement as well as interactive color correction. 
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