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Most object recognition schemes fail in case of illumination changes between the color image acquisitions. One of the most widely
used solutions to cope with this problem is to compare the images by means of the intersection between invariant color histograms.
The main originality of our approach is to cope with the problem of illumination changes by analyzing each pair of query and
target images constructed during the retrieval, instead of considering each image of the database independently from each other.
In this paper, we propose a new approach which determines color histograms adapted to each pair of images. These adapted color
histograms are obtained so that their intersection is higher when the two images are similar than when they are different. The
adapted color histograms processing is based on an original model of illumination changes based on rank measures of the pixels
within the color component images.
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1. INTRODUCTION

1.1. Object recognition by color histogram analysis

Object searching in a database of color images, which is
aparticular problem of color image retrieval, is identical to
appearance-based object recognition. In this framework, the
recognition problem can be stated in terms of finding among
all the target images of a database, those which contain the
same object as that represented by the query image. Each of
these images contains one single object placed on a uniform
background.

In this context, the image indexing scheme consists in ex-
tracting robust and efficient characteristic indices from the
target and query images. These indices are typically derived
from the shape [1], the texture [2], or the color properties
[3] of the objects. Object recognition is performed by means
of a matching scheme which compares the indices of the
query image with those of the target images. The matching

scheme is based on a similarity measure between these in-
dices. The target images are ranked with respect to their sim-
ilarity measures with the query image, in order to determine
those which contain the same object as that represented by
the query image.

One of the most widely used image indices based on the
color distribution is the color histogram [4]. The color his-
togram H[I] of an image I is composed of bins H[I](c) as-
sociated with color vectors c whose coordinates are the lev-
els of the three color components, namely the red (cR), the
green (cG), and the blue (cB). Each bin indicates the number
of pixels which represent the object in the image and which
are characterized by this particular color.

Several similarity measures based on the color his-
tograms have been proposed [5]. For object recognition, a
widely used similarity measure between the query image Ique

and one of the target images Itar is derived from the inter-
section Inter(H[Ique], H[Itar]) between the color histograms
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H[Ique] and H[Itar] [4]:
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As
∑

c′ H[I](c′) represents the number of pixels which repre-
sent the object, the intersection requires a segmentation step
in order to detect these pixels. When the value of the intersec-
tion is close to 1, the two images have similar colors in similar
proportions. Although that does not necessarily mean that
the images contain the same objects, we assume so. On the
other hand, an intersection close to 0 means that the objects
are significantly different.

This measure adds up the minima between the bins asso-
ciated with the same color vectors. So, when two images con-
tain the same object, this measure is close to 1 only if most
of the color vectors of pixels, on which the same elementary
surfaces in the two compared images are projected, are equal.

1.2. Color images across illumination changes

In this paper, we specifically address the problem of recog-
nizing objects when they are subject to different illumination
during the image acquisitions. We consider that the differ-
ences result only from temperature and intensity variations.
The images acquired under different illumination contain
one single object that can be translated or rotated in a plane
perpendicular to the optical axis of the camera (see Figure 1).
The acquisition parameters of the camera are not modified.

During the retrieval process, two different cases may oc-
cur (see Figure 1):

(i) the query image Ique and the target image Itar contain
the same object observed with the same viewing con-
ditions but subject to different illumination. They con-
stitute a pair of similar images,

(ii) the images Ique and Itar contain different objects. They
constitute a pair of different images.

The color vector of a pixel P, denoted c(P) =

[cR(P), cG(P), cB(P)]T , where ck(P) represents the level of the
color component k, k = R,G,B, is not only a measure of the
reflectance properties of the elementary surface of the object
projected onto the pixel P. The color vector is also a function
of both the camera and the illumination [6].

We consider the image of Figure 1a as the query image
while one of the images of Figures 1b and 1c is the target im-
age. The color vectors of the pixels which represent the same
elementary surfaces of the object in the query and target im-
ages are significantly different, whereas these images are sim-
ilar. That explains why object recognition based on the inter-
section between color histograms fails in case of illumination
changes [7].

1.3. Invariant color histograms

Therefore, many authors propose to characterize the images
by histograms which are invariant to illumination changes.
These histograms are either the histograms of invariant color

(a) (b)

(c) (d)

Figure 1: As the images (a), (b), and (c) contain the same object
subject to different illumination during the acquisitions, they are
similar. As the image (d) contains another object, the pairs of im-
ages ((a), (d)), ((b), (d)), and ((c), (d)) constitute pairs of different
images.

images which are derived from the color images, or are ob-
tained by means of transformations of the color histograms
of the images.

In the first case, the main image transformation approach
consists in correcting the color vectors so that they represent
the surface reflectance properties of the object contained in
each image (color constancy). The main problem of this ap-
proach is the estimation of the illumination when the avail-
able information is only the image of the object acquired un-
der an unknown illumination [8, 9]. Hence, the color con-
stancy approach is not adapted to object recognition when
there is no prior knowledge about the acquisition conditions
[10].

In the second case, the invariant color histograms of the
images are obtained by means of transformations of the color
histograms of the images. These transformations are based
either on assumptions about color properties or on the anal-
ysis of the color distribution. When the transformations are
based on assumptions about color properties, they do not
depend on the considered image. They are obtained by the
color angles analysis [11] or by the “c1c2c3” space which is
only invariant for white illumination variations [12].

The greyworld normalization which divides the color
component levels by their averages in the image [13], the mo-
ments based on the rotation of the color distribution [14],
and the principal component analysis of the color distri-
bution [15] yield functions obtained by the analysis of the
color distribution with which the color histograms are trans-
formed into invariant color histograms.

The determination of most of these invariant color his-
tograms is based on illumination change models, which de-
scribe the variations of color vectors caused by any illumi-
nation change. As these models use such restrictive assump-
tions about the camera and the illumination, they partially
take into account the effects of illumination changes on the
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color vectors. That is the reason why object recognition based
on the intersection between these invariant color histograms
generally performs poorly [7, 16].

1.4. Pair of adapted color histograms

The main originality of our approach is to cope with the
problem of illumination changes by analyzing each pair of
query and target images (Ique, Itar) constructed during the re-
trieval, instead of considering each image of the database in-
dependently from each other.

To be more specific, we propose to analyze each pair of
query and target color histograms to compare the query and
target images. For this purpose, the pair of color histograms
is transformed into a pair of adapted color histograms associ-
ated with these two images, so that the intersection between
these adapted color histograms is higher when the two im-
ages are similar than when they are different. In this case,
this intersection allows to discriminate the case when the two
compared images are similar from the case when they are dif-
ferent.

The function used for transforming the pair of color his-
tograms into the pair of adapted color histograms takes into
account rank measures of the pixels. The image I is divided
into three color component images Ik, k = R,G,B, where
each pixel P is characterized by one single color component
level ck(P). Within each color component image, the pixels
are sorted in increasing order of level. With the pixels, we as-
sociate rank measures which are assumed to be coarsely pre-
served in case of illumination changes.

1.5. Paper overview

This assumption about rank measures is described in
Section 2. In Section 3, a new assumption is introduced for
defining the function which determines the pair of adapted
color histograms from the pair of query and target color his-
tograms. In Section 4, the effectiveness of our object recog-
nition scheme is assessed with a public database of im-
ages which contain objects subject to different illumination.
In order to demonstrate the improvement of our proposed
method, we compare the object recognition results obtained
with classical invariant color histograms and those obtained
with the adapted color histograms.

2. RANK MEASURES PROPERTIES

Most illumination change models describe the modifications
of the color vectors of pixels caused by the illumination
changes due to linear transformations of the color vectors
[17]. This section presents two illumination change models
which describe these modifications due to nonlinear trans-
formations. They analyze the rank measures of the pixels
within the color component images. Derived from his model,
Finlayson assumes that the rank measures of the pixels within
the color component images are strictly preserved across the
illumination changes [18]. Our proposed assumption, called
hereafter the closest rank measures assumption, takes into
account the possible modifications of rank measures which
may occur when the illumination changes.

2.1. Rank measures preservation

2.1.1. Illumination changes model

We consider similar query and target images (Ique, Itar). We
examine each of the three pairs of query and target color
component images, denoted (Ikque, Iktar), k = R,G,B, that can
be extracted from the pair (Ique, Itar). We consider two pix-
els Pque and Ptar, called hereafter corresponding pixels, which
respectively, belong to the query and target images and on
which the same elementary surface of the object contained
in these two similar images is projected.

Finlayson [18] stipulates that the level ck(Ptar), k =

R,G,B, of the pixel Ptar is deduced from the level ck(Pque)
of its corresponding pixel Pque by means of a monotonic in-
creasing function f kque,tar, which is specific to the pair of color

component images (Ikque, Iktar):
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, k = R,G,B. (2)

These three monotonic increasing functions f kque,tar are not a
priori linear transformations.

We now consider two different elementary surfaces of the
object which are projected onto the pixels Pque and Qque in
the query image and onto the corresponding pixels Ptar and
Qtar in the target image, respectively. If ck(Pque) is higher than
ck(Qque), k = R,G,B, we deduce from (2) that ck(Ptar) is
higher than ck(Qtar):
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2.1.2. Rank measures

Within each color component image Ik, we sort the pixels P
in increasing order of level. With each pixel, we associate a
normalized rank measure that is close to 0 for the first or-
dered pixels and equal to 1 for the last pixels. The rank mea-
sure Rk[I](P) of the pixel P within the color component im-
age Ik is expressed as

Rk[I](P) =

∑ck(P)
l=0 Hk[I](l)
∑L−1

l=0 Hk[I](l)
, k = R,G,B, (4)

where L is the number of levels used to quantize the color
components (L is generally set to 256), and Hk[I](l) is the
number of pixels characterized by the level l in Ik. Note that
this rank measure can be interpreted as the normalized cu-
mulative histogram.

2.1.3. Rank measures preservation assumption

From (3), Finlayson [18] assumes that the rank measures of
the corresponding pixels Pque and Ptar within each pair of
color component images (Ikque, Iktar) are equal:
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)

, k = R,G,B. (5)
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Table 1: Percentages of pixels with the same spatial coordinates
whose rank measures within the green target and query images of
Figure 1 are equal (L = 256).

Target image
Query image

Figure 1a Figure 1b Figure 1c

Figure 1a X 7 9

Figure 1b 7 X 3

Figure 1c 9 3 X

So, the rank measures of the pixels within each pair of color
component images are assumed to be invariant to any illu-
mination change between the acquisitions of similar images.

The histogram of the rank measures of the pixels within
each color component image Ik is obtained by the well-
known equalization of the 1D histogram Hk[I] (see (4)). Fin-
layson determines the invariant color histogram by indepen-
dently equalizing the three 1D histograms Hk[I], k = R,G,B
[18].

2.1.4. Validity on similar color images

We propose to verify the above rank measures preservation
assumption with the similar color images of Figure 1, where
the pixels with the same spatial coordinates in these three im-
ages are corresponding pixels. Equation (5) is verified only
if the rank measures of the corresponding pixels within the
green images are equal. As shown in Table 1, the rank mea-
sures preservation is only verified for a few pixels. The bad
results shown in Table 1 may be also explained by the acqui-
sition noise. Indeed, even if the same image is captured under
the same illumination, there will be shifts in rank measures
resulting from the noise. Furthermore, the rank measures
preservation assumption does not take into account possible
rank modifications due to illumination changes.

2.2. Closest rank measures

2.2.1. Extended Finlayson’s model

We propose to extend the Finlayson model which expresses
the relationship between the color component levels of two
corresponding pixels in two similar color images. Our pro-
posed model of illumination changes stipulates that the level
ck(Ptar) of the pixel Ptar is expressed from the level ck(Pque) of
its corresponding pixel Pque by

ck
(

Ptar

)

= f kque,tar

(

ck
(

Pque

))

+ ρk
(

Ptar

)

, k = R,G,B. (6)

When the two images are similar, the bias function ρk repre-
sents the possible modifications of the rank measures of cor-
responding pixels within the two color component images.
These possible rank measures modifications are the conse-
quences of illumination changes between the images.

2.2.2. Closest rank measures assumption

From this model, we cannot directly deduce any relation be-
tween the rank measures of corresponding pixels. However,

Table 2: Percentages of pixels with the same spatial coordinates
whose rank measures within the green target and query images of
Figure 1 are the closest (L = 256).

Target image
Query image

Figure 1a Figure 1b Figure 1c

Figure 1a X 70 53

Figure 1b 70 X 33

Figure 1c 53 33 X

we propose a new assumption called hereafter the closest
rank measures assumption, which stipulates that each pair
of corresponding pixels (Pque,Ptar) respects the two follow-
ing properties:

(i) the rank measure of Pque within the color component
image Ikque is among all the rank measures of the pix-

els within Ikque, the closest to the rank measure of Ptar

within Iktar:
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(ii) the rank measure of Ptar within the color component
image Iktar is among all the rank measures of the pix-
els within Iktar, the closest to the rank measure of Pque

within Ikque:
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As the rank measures of pixels within the color component
images are not always equal, the differences expressed by (7)
and (8) are not always equal to 0. For the sake of simplicity,
the rank measures of pairs of pixels which respect to (7) and
(8) are referred hereafter as the closest rank measures within
the pair of color component images (Ikque, Iktar).

This closest rank measures assumption is very original
because (7) and (8) do not only take into account the rank
measures of two corresponding pixels, but also the rank mea-
sures of all the pixels within the query and target color com-
ponent images for determining the closest rank measures.

2.2.3. Validity with similar color images

As for the rank measures preservation assumption, we ver-
ify our closest rank measures assumption with the similar
color images of Figure 1 (see Table 2). By comparing Tables 1
and 2, the percentages of pixels whose rank measures are the
closest are significantly higher than the percentages of pixels
with equal rank measures. These results show that our closest
rank measures assumption is respected in a higher number of
cases than the rank measures preservation assumption.
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3. COLOR HISTOGRAMS ADAPTED
TO QUERY-TARGET IMAGE PAIRS

For comparing the query and one of the target images,
we propose to adapt the query and target color his-
tograms instead of independently determining invariant
color histograms of the two images. The intersection between
these two adapted color histograms has to be higher when
the compared images are similar than when they are differ-
ent. First, we define the function Tque,tar which transforms
the pair of color histograms (H[Ique], H[Itar]) into the pair
of adapted color histograms (Hque,tar[Ique], Hque,tar[Itar]). Sec-
ondly, the pairs of the look-up tables which are associated
with the function Tque,tar, are detailed. Finally, we present the
scheme which determines these look-up tables.

3.1. Pair of adapted color histograms

The pair of adapted color histograms is determined thanks to
the analyses of the projections of the pair of color histograms
onto the three color components k, k = R,G,B. We denote
by (Hk[Ique],Hk[Itar]), k = R,G,B, the pair of 1D histograms
which is the result of the projection ψk of the pair of color
histograms (H[Ique], H[Itar]) onto the color component k:
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(9)

The function Tque,tar is decomposed into three functions
Tk

que,tar, k = R,G,B, each of them defining an elementary
transformation of the projection of the pair of color his-
tograms onto each color component k. To be more spe-
cific, for determining the pair of adapted color histograms
(Hque,tar[Ique], Hque,tar[Itar]), we successively apply three func-
tions Tk

que,tar, k = R,G,B, to the pair of color histograms
(H[Ique], H[Itar]):
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We denote by (Hk
que,tar[Ique],Hk

que,tar[Itar]) the pair of adapted

1D histograms which is the result of the projection ψk

of the pair of adapted color histograms (Hque,tar[Ique],
Hque,tar[Itar]) onto the color component k. The adapted
1D histograms contain N or less nonempty bins. The
parameter N , which is adjusted by the analyst, is lower
than or equal to the number L of levels. As each pair
of 1D histograms (Hk[Ique],Hk[Itar]) is transformed by
a specific function Tk

que,tar, the determination of the pair
of adapted color histograms (Hque,tar[Ique], Hque,tar[Itar]) re-
quires the processing of three pairs of adapted 1D histograms
(Hk

que,tar[Ique],Hk
que,tar[Itar]). Each pair of adapted 1D his-

tograms (Hk
que,tar[Ique],Hk

que,tar[Itar]) is determined from the

pair of 1D histograms (Hk[Ique],Hk[Itar]) thanks to the look-

up tables (LUTk
que,tar[Ique], LUTk

que,tar[Itar]):
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Equations (11) and (12) show that the adjacent bins
Hk[Ique](l) (Hk[Itar](l), resp.) for which the output of

LUTk
que,tar[Ique](l) (LUTk

que,tar[Itar](l), resp.) is equal to n, are

merged into the bin Hk
que,tar[Ique](n) (Hk

que,tar[Itar](n), resp.).

3.2. Pair of 1D look-up tables

To determine each pair of adapted 1D histograms, (N +
1) pairs of levels, denoted by (Xk

que(n), Xk
tar(n)) with n =

0, . . . ,N , are selected among the L2 possible pairs. The pair

of 1D look-up tables (LUTk
que,tar[Ique], LUTk

que,tar[Itar]) is ex-
pressed from these selected pairs of levels as

LUTk
que,tar

[
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]
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[

, n = 0, . . . , (N − 1),
(13)
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, n = 0, . . . , (N − 1).
(14)

The selected pairs of extreme levels (Xk
que(0), Xk

tar(0)) and

(Xk
que(N), Xk

tar(N)) are set to (0, 0) and (L− 1,L− 1), respec-
tively, so that the 1D look-up tables are defined for all the
levels from 0 to (L− 1). Hence, we have to select the (N − 1)
pairs of levels (Xk

que(n),Xk
tar(n)), n = 1, . . . , (N − 1).

3.3. Selection of the pairs of levels

In order to respect the closest rank measures assumption
when the color images are similar, we propose to select these
pairs of levels among those whose rank measures are the clos-
est within the pair of color component images.

Furthermore, these pairs of levels have to be selected
in order to reduce the effects of illumination changes on
the adapted color histograms. These effects are effectively
reduced if the intersection between the adapted color his-
tograms reaches a higher value when the images are similar
than when they are different. However, we do not a priori
know if the query and target images are similar. Hence, the
3× (N − 1) pairs of levels (Xk

que(n),Xk
tar(n)), k = R,G,B, are

selected so that the three intersections between the adapted
1D histograms Hk

que,tar[Ique] and Hk
que,tar[Itar] are high for

similar or different images.
When the 3×(N−1) pairs of levels (Xk

que(n),Xk
tar(n)) have

been selected, we determine the 3 pairs of 1D look-up tables

(LUTk
que,tar[Ique], LUTk

que,tar[Itar]) according to (13) and (14).
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These pairs of 1D look-up tables are then used to transform
the pair of color histograms (H[Ique], H[Itar]) into the pair of
adapted color histograms (Hque,tar[Ique], Hque,tar[Itar]) thanks
to (11) and (12).

The selection of the (N − 1) pairs of levels is divided into
two successive steps. In order to respect the closest rank mea-
sures assumption, the first step determines the pairs of levels
whose rank measures are the closest within the pair of color
component images. The second step selects among these so-
determined pairs of levels those which allow to reach a high
intersection between the adapted 1D histograms, in order
to reduce the effects of illumination changes on the pair of
adapted color histograms.

3.3.1. Pairs of levels whose rank measures
are the closest

The first step determines the nb pairsk pairs of levels whose
rank measures within the pair of color component images
(Ikque, Iktar) are the closest. We denote by Mk[I](l) the rank

measure of the level l within the color component image Ik,
which is expressed as

Mk[I](l) =

∑l
y=0 H

k[I](y)
∑L−1

y=0 H
k[I](y)

, l = 0, . . . , (L− 1). (15)

These nb pairsk pairs of levels, denoted by (xkque(a), xktar(a))

with a = 1, . . . ,nb pairsk, are those which respect the two
following properties:

(i) the rank measure of xkque(a) within the color compo-

nent image Ikque is, among the rank measures of all the

levels in Ikque, that which is the closest to the rank mea-

sure of xktar(a) within Iktar:

xkque(a) = y (16)
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(ii) the rank measure of xktar(a) within the color compo-
nent image Iktar is, among the rank measures of all the
levels in Iktar, that which is the closest to the rank mea-
sure of xkque(a) within Ikque:

xktar(a) = y (18)

so that
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The closest rank measures assumption considers that the pix-
els characterized by the level xkque(a) in Ikque and the pixels

characterized by the level xktar(a) in Iktar constitute a pair of

corresponding pixels when the images are similar. Thus, the
pairs of levels (xkque(a), xktar(a)), a = 1, . . . ,nb pairsk, char-
acterize pairs of corresponding pixels when the images are
similar. We notice that all the levels in each color compo-
nent image do not necessarily belong to a pair of levels whose
rank measures are the closest. Since the number nb pairsk is
probably higher than the number (N − 1), we propose to se-
lect (N − 1) pairs among the nb pairsk determined pairs of
levels. Otherwise, all the pairs are selected and the adapted
1D histograms Hk

que,tar[Ique] and Hk
que,tar[Itar] only contain

nb pairsk bins.

3.3.2. Selection of the (N − 1) pairs (Xk
que(n),Xk

tar(n))

In the second step, the (N−1) pairs of levels (Xk
que(n),Xk

tar(n))
are selected so that the intersection between the adapted 1D
histograms is as high as possible. A solution would be to se-
lect the (N − 1) pairs characterized by the closest rank mea-
sures among the nb pairsk determined pairs of levels. This
solution would not be sufficient in terms of image discrimi-
nation because it tends to select pairs of levels which repre-
sent low populations of pixels in the pair of color component
images.

To cope with this problem, the proposed scheme de-
termines the number of pixels characterized by levels of
Ikque ranging from xkque(a) to (xkque(a + 1) − 1). Indeed, the
intersection between the adapted 1D histograms takes into
account the minimum between the number of pixels whose
levels range from xkque(a) to (xkque(a + 1) − 1) in Ikque and

the number of pixels whose levels range from xktar(a) to
(xktar(a + 1)− 1) in Iktar. In order to maximize the intersection
between the adapted 1D histograms, the (N−1) selected lev-
els xkque(a) are those characterized by the highest numbers of

pixels. With each so-selected level xkque(a), we associate the

level xktar(a) to constitute one of the (N − 1) pairs of levels
(Xk

que(n),Xk
tar(n)).

4. EXPERIMENTAL RESULTS

4.1. Object recognition across illumination
changes with the SFU database

We propose to demonstrate the improvement of the inter-
section between the pairs of adapted color histograms for ob-
ject recognition purpose across illumination changes. We use
the Simon Fraser University (SFU) database [7] available at
http://www.cs.sfu.ca/∼colour/data. Its 187 images contain 17
objects lit by one of 11 available illumination sources and ac-
quired with the same viewing conditions by one camera (see
Figure 2).

For object searching, the images acquired under one il-
lumination, called the target illumination, are considered as
being the target images and one of those acquired under one
of the 10 other illumination sources, called the query illu-
mination, is considered as being the query image. So, there
are 11×10 different pairs of query-target illuminations. The
image retrieval is repeated for each of the 17 objects. Finally,
1870 retrievals are achieved (17 objects × 11 × 10 pairs of
different illuminations).

http://www.cs.sfu.ca/~colour/data
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q)

Figure 2: The 17 objects of the SFU database.

Table 3: Object recognition results obtained by the intersections between different histograms with the SFU database.

Intersection between (N = 16) (N = 64) (N = 256)

Invariant color histograms (greyworld) 93.85 80.43 39.73

Invariant color histograms (equalization) 89.89 75.08 48.72

Adapted color histograms 95.19 85.40 79.57

For each image retrieval, the 17 target images are ordered
with respect to the intersections between both their invari-
ant and adapted color histograms and both the invariant
and adapted color histogram of the considered query image.
When the first ordered target image is similar to the query
image, the research result is considered as perfect.

Finlayson demonstrates that the object recognition re-
sults obtained by the intersection between the invariant color
histograms processed by the greyworld normalization out-
performs those obtained by the intersection between classical
invariant color histograms [7]. Furthermore, Finlayson con-
cludes that the intersection between the invariant color his-
tograms resulting from 1D histogram equalization provides
better results than those obtained by greyworld normaliza-
tion [18]. Hence, we propose to compare the results obtained
by these two schemes with those obtained by the intersection
between the adapted color histograms.

In Table 3 each column indicates the percentage of suc-
cessful image retrievals.

Table 3 shows that, for object recognition across illumi-
nation changes, the intersection between the adapted color
histograms provides better results than those obtained by the
intersection between invariant color histograms, for signifi-
cantly different values of N . Furthermore, Table 3 shows that
the quality of object recognition by the intersection between

the invariant color histograms is very sensitive to N . On the
other hand, the results obtained by the intersection between
the adapted color histograms remain stable when N varies.

4.2. Discussion

The improvements provided by our scheme with this
database can be explained by three main points. First, the
pair of adapted color histograms determination is derived
from our original model of illumination changes, which re-
quires less restrictive assumptions than those used by the
classical models. As the results obtained with the adapted
color histograms are better than those obtained with the
invariant color histograms resulting from 1D histogram
equalization, we conclude that the possible rank measure
modifications which may occur between two similar color
component images, have to be taken into account by the
model. Secondly, the performance reached by object recog-
nition schemes depends on the number (N)3 of bins of the
invariant or adapted color histograms. For processing the
invariant color histograms, the reduction of the number of
bins from (L)3 to (N)3 is performed by means of a uniform
quantization of the color component levels. This quantiza-
tion merges adjacent bins without taking into account the
color distribution. On the contrary, the selection of pairs of
levels for determining the pairs of adapted color histograms
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takes into account the color distribution. Hence, the pairs
of adapted color histograms do not depend on any uniform
quantization step which degrades the quality of the color dis-
tribution representation. Finally, the proposed strategy based
on the independent analysis of each pair of color images al-
lows better results to be obtained than those achieved by the
separate analysis of each image of the database.

5. CONCLUSION

In this paper, we have proposed an original approach to cope
with the problem of the object recognition across illumina-
tion changes. We propose to consider each pair constituted
by the query image and one of the target images instead of
determining invariant color histograms for each image of the
database. For each pair, the proposed scheme determines the
pair of adapted color histograms whose intersection is higher
when the images are similar than when they are different.
This scheme is based on an original assumption which stip-
ulates that the rank measures of corresponding pixels are the
closest within similar color component images.

Although the experimental results obtained by the inter-
section between the adapted color histograms are satisfying,
the object recognition results may be improved by adapting
the pairs of color co-occurrence matrices which take into ac-
count the spatial interactions between the pixels [19].

The proposed scheme is designed for object recognition
when the images contain one single object. Presently, we
work on the generalization of the adapted color histograms
in order to recognize several objects lit by uncontrolled illu-
mination contained in the same image.
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nology, Université des Sciences et Tech-
nologies de Lille, France. He is a mem-
ber of the LAGIS Laboratory (Laboratoire
d’Automatique, Génie Informatique et Sig-
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