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ABSTRACT
We propose an effective color image denoising method that exploits
�ltering in highly sparse local 3D transform domain in each chan-
nel of a luminance-chrominance color space. For each image block
in each channel, a 3D array is formed by stacking together blocks
similar to it, a process that we call �grouping�. The high similarity
between grouped blocks in each 3D array enables a highly sparse
representation of the true signal in a 3D transform domain and thus
a subsequent shrinkage of the transform spectra results in effective
noise attenuation. The peculiarity of the proposed method is the ap-
plication of a �grouping constraint� on the chrominances by reusing
exactly the same grouping as for the luminance. The results demon-
strate the effectiveness of the proposed grouping constraint and show
that the developed denoising algorithm achieves state-of-the-art per-
formance in terms of both peak signal-to-noise ratio and visual qual-
ity.

Index Terms� color image denoising, adaptive grouping, block-
matching, shrinkage.

1. INTRODUCTION

Recently, we proposed the block-matching and 3D �ltering (BM3D)
grayscale-image denoising method [1, 2]. It achieves excellent re-
sults in terms of both mean-squared-error and subjective visual qual-
ity [3]. These results, to the best of our knowledge, not only over-
come those by any other prior algorithm but are a signi�cant step
beyond the current state-of-the-art in image denoising (e.g., [4]).

The BM3D is based on grouping, a procedure that �nds mutu-
ally similar 2D image blocks and stacks them together in 3D arrays
(groups). Due to the similarity between such grouped blocks, a 3D
transform produces very sparse representations of the groups. It is
well known that sparsity is a fundamental property allowing for ef-
fective denoising. The sparsity depends on the similarity, and thus on
the grouping. Therefore, a proper grouping is crucial for the BM3D.
However, measuring mutual similarity of image blocks is dif�cult
when only noisy data are available. In this sense, grouping should be
applied in a wise manner in order to achieve the desired sparsity.

In this paper we extend the grayscale BM3D method to color-
image denoising. Given an RGB image corrupted by additive white
Gaussian noise, we �rst transform the image to a luminance-chromi-
nance color space (such as YCbCr, opponent, YIQ, etc.). Our gen-
eralization of the BM3D is non-trivial because we do not apply the
grayscale BM3D independently on the three luminance-chrominance
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channels but we impose a grouping constraint on both chrominances.
The grouping constraint means that the grouping is done only once,
in the luminance (which typically has a higher SNR than the chromi-
nances), and exactly the same grouping is reused for �ltering both
chrominances.

This constraint is based on the assumption that the underlying
image structures (objects, edges, patterns, etc.) which determine the
existence of mutually similar blocks are the same across all color
channels. This assumption is typically ful�lled for natural images.
Loosely speaking, we treat grouping as a color-invariant process.
The constraint on the chrominances increases the stability of the
grouping with respect to noise. This results in more accurate and
sparsely represented groups in the chrominances and thus in more
effective denoising.

2. BLOCK-MATCHING AND 3D FILTERING (BM3D)

We brie�y explain the grayscale BM3D method; for a comprehen-
sive study one can refer to [2].

Images are processed in a sliding-window manner, where for
each processed window (block), used as a reference one, a 3D ar-
ray is formed by stacking together blocks similar to it. We call
this process �grouping� and the obtained 3D arrays we denominate
�groups�.

2.1. Grouping by block-matching

The grouping in BM3D is realized by block-matching. It searches
in a local neighborhood for similar blocks by measuring the dissimi-
larity to the reference one. If the dissimilarity is smaller than a �xed
threshold, the block is considered similar and is used for composing
the group. The evaluation of the dissimilarity between noisy image
blocks is sensitive to the noise. In particular, if the mean square
difference is used as dissimilarity measure, then its variance grows
quadratically with respect to the variance of the noise.

2.2. Collaborative �ltering

The high similarity between grouped blocks in each 3D array enables
a highly sparse representation of the true signal in a 3D transform
domain. Therefore, a subsequent shrinkage of the transform spectra
results in effective noise attenuation and the inverse of the 3D trans-
form produces estimates of all blocks in the group. These estimates
can be different for different blocks. Since each grouped block col-
laborates for the �ltering of all other blocks in the group and vice
versa, this �ltering approach is called �collaborative �ltering�.
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Fig. 1. Flowchart of the proposed color-image denoising method. Operations surrounded by dashed lines are repeated for each reference
block.

Fig. 2. The top row contains noise-free Y, Cb, and Cr channels
of a fragment of House and the bottom row contains correspond-
ing noisy ones (noise with standard deviation 22 is added in RGB
space). Block-matching in the luminance Y is illustrated by showing
a reference block (denoted by `R') and the ones matched as similar
to it; the same matched locations are used for both chrominances due
to the grouping constraint.

3. GROUPING CONSTRAINT ON THE CHROMINANCES

Let us perform a luminance-chrominance transformation of an RGB
natural image corrupted by independent noise, denoting the lumi-
nance with Y and the chrominances with U and V. We consider
in particular the YCbCr and opponent color transformations, whose
transform matrices are respectively

AYCbCr =

24 0:30 0:59 0:11
�0:17�0:33 0:50
0:50�0:42�0:08

35, Aopp=
264
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Due to properties of the underlying natural color image, such as high
correlation between its R, G, and B channels, the following observa-
tions can be made:

� Y has higher SNR than U and V (decorrelation of the R, G,
and B channels);

� Y contains most of the valuable information (edges, shades,
objects, texture patterns, etc.);

� U and V contain mostly low-frequency information (very of-
ten these channels come from undersampled data);

� iso-luminant regions with variation only in U and V are un-
likely.

A naive, straightforward way to use the BM3D for color-image
denoising would be to apply it separately on each of the Y, U and
V channels. This approach would suffer from the lower SNR in the
chrominances since the grouping is quite sensitive to the level of
noise. Because a proper grouping is essential for the BM3D, we
propose to perform the grouping only once for Y and reuse exactly
the same grouping when applying BM3D on U and V. That is, we
impose a grouping constraint on the chrominances based on the as-
sumption that if the luminances of two blocks are similar, then their
chrominances are also similar. An illustration of block-matching in
the luminance (in YCbCr color space) is given in Figure 2. The ob-
servations that we made earlier about the Y, U, and V channels can
be con�rmed from this �gure (e.g. Y has a higher SNR than both U
and V, and it also contains the most valuable information about the
image structures).

Furthermore, given that grouping by block-matching takes ap-
proximately half of the execution time of the BM3D, the grouping
constraint enables a computational reduction of approximately one
third as compared to applying the grayscale BM3D separately on Y,
U and V.

4. C-BM3D ALGORITHM FOR COLOR-IMAGE
DENOISING

We consider a noisy RGB image zrgb modeled as zrgb = yrgb + �rgb,
where yrgb = [yR; yG; yB] is the true image and �rgb = [�R; �G; �B]

is independent Gaussian noise, where �C (�) � N
�
0; �2C

�
for C=

R,G,B; the variances �2R, �2G, and �2B can be different. Following
is the proposed algorithm, denominated Color-BM3D (C-BM3D),
whose �owchart is shown in Figure 1.

1. Transform zrgb to a luminance-chrominance space, the result
is zyuv = [zY ; zU; zV ]. The applied transform is not restricted;
e.g., YCbCr, opponent, or others can be used.

2. Obtain the basic estimate, denoted bybasicyuv =
�bybasicY ; bybasicU ; bybasicV

�
.

(a) Block-wise estimates. For each block in zY , do the fol-
lowing. Use block-matching to �nd the locations of the
blocks in zY that are similar to the currently processed
one. For each of the Y, U, and V channels, form a 3D
array (group) by stacking blocks located at the obtained
locations in zY , zU , and zV , respectively. Subsequently,



Lena (512�512 RGB) Peppers (512�512 RGB) Baboon (512�512 RGB)
Method � 10 15 20 25 10 15 20 25 10 15 20 25
C-BM3D (proposed) 35.22 33.94 33.02 32.27 33.78 32.60 31.83 31.20 30.64 28.39 26.97 25.95
P.wise SA-DCT [5, 6] 34.95 33.58 32.61 31.85 33.70 32.42 31.57 30.90 30.62 28.33 26.89 25.86
ProbShrink-MB [7] 34.60 33.03 31.92 31.04 33.44 32.05 31.12 30.35 30.17 27.83 26.38 25.27
VMMSE [8] 34.02 31.89 30.24 28.88 33.12 31.13 29.67 28.45 30.68 28.24 26.63 25.36

Table 1. Comparison of the output PSNR of a few denoising methods.

for each of these three formed groups, apply a 3D trans-
form, attenuate the noise by hard-thresholding its trans-
form spectrum, and invert the 3D transform to produce
estimates of all grouped blocks.

(b) Aggregation. Compute each of bybasicY , bybasicU , and bybasicV
by a weighted average of the obtained block-wise es-
timates corresponding to the Y, U, and V channels, re-
spectively.

3. Obtain the �nal estimate by�nalyuv , by using bybasicyuv to further im-
prove the grouping and to perform collaborative Wiener �l-
tering.

(a) Block-wise estimates. For each block in bybasicY , do the
following. Use block-matching to �nd the locations
of the blocks in bybasicY that are similar to the currently
processed one. For each of the Y, U, and V channels,
form a pair of 3D arrays by stacking blocks located at
the obtained locations in zY and bybasicY , zU and bybasicU ,
and zV and bybasicV , respectively. This results in the for-
mation of six 3D arrays (groups). Subsequently, apply
a 3D transform on each of these six 3D arrays and per-
form 3D Wiener �ltering on the three noisy ones using
the energy spectra of the ones from the basic estimate.
Then, invert the 3D transform to produce estimates of
all grouped blocks for each of the color channels.

(b) Aggregation. Compute by�nalY , by�nalU , and by�nalV by a weigh-
ted average of the obtained block-wise estimates corres-
ponding to the Y, U, and V channels, respectively.

4. Obtain the �nal denoised image by�nalrgb by transforming by�nalyuv to
RGB space.

We note that the shrinkage (hard-thresholding and Wiener �lter-
ing) uses the variance of the noise in each of the Y, U, and V chan-
nels, which are computed by

�
�2Y ; �

2
U; �

2
V
�T

= A2
�
�2R; �

2
G; �

2
B
�T ,

where A2 is the used luminance-chrominance transform matrix, e.g.
Eq. (1), whose elements are squared and where the superscript T
denotes transposition.

5. EXPERIMENTAL RESULTS

The implementation of the C-BM3D algorithm used in the follow-
ing experiments is publicly available1 and it is based on the �Nor-
mal Pro�le� of the BM3D algorithm speci�ed in [2] without any
modi�cation of its parameters. The computational complexity of
the algorithm is quite reasonable; e.g., a 256�256 RGB image is
denoised for about 5 seconds on a 3 GHz Pentium PC. The used
test color images are House, Lena, Peppers, F16, Baboon and the
12th image from the Kodak PhotoCD dataset. In all experiments the

1Matlab code available at www.cs.tut.fi/~foi/GCF-BM3D.

� Lena Peppers Baboon F16 House Kod. 12
5 37.82 36.82 35.25 39.68 38.97 41.34
10 35.22 33.78 30.64 36.68 36.23 37.84
15 33.94 32.60 28.39 34.99 34.85 35.95
20 33.02 31.83 26.97 33.77 33.84 34.70
25 32.27 31.20 25.95 32.78 33.03 33.76
30 31.59 30.61 25.14 31.93 32.34 32.96
35 30.91 30.00 24.46 31.13 31.58 32.24
50 29.72 28.68 23.14 29.40 30.22 30.74
75 28.19 27.12 21.70 27.60 28.33 29.31

Table 2. Output PSNR of the proposed C-BM3D algorithm.

noise variance is the same for each of the R, G, and B channels,
�2R = �2G = �2B = �2. We always calculate the peak signal-to-
noise ratio (PSNR) in the RGB space. Unless speci�ed otherwise,
we utilize luminance-chrominance transformation to the opponent
color space.

In Table 2, we present peak signal-to-noise ratio (PSNR) results
of the proposed algorithm, where the PSNR is computed in the RGB
space. A comparison with other methods is given in Table 1; to
our knowledge, [7, 6] represent the current state-of-the-art in color-
image denoising. One can see that the proposed algorithm outper-
forms all of the other methods for the three test images presented
there, except for Baboon in the case of � = 10.

Figure 3 shows a noisy (� = 35) House image and the corre-
sponding C-BM3D estimate. Most of the image details are well-
preserved in the denoised image (e.g. edges, singularities, uniform
areas) and in the same time there are almost no visible artifacts.
The enlarged fragment in the same �gure shows how effective is
the proposed method for well structured details, such as the roof of
the house.

6. DISCUSSION AND CONCLUSIONS

It is worth comparing the performance of the proposed C-BM3D
versus the independent application of the grayscale BM3D on the
individual color channels. Table 3 shows that the C-BM3D achieves
0.2 � 0.4 dB better PSNR than the independent application of BM3D
on the opponent color channels and 0.3 � 0.8 dB better PSNR than
the independent application of BM3D on the RGB channels. This
improvement is not insigni�cant and shows the bene�t of the pro-
posed grouping constraint on the chrominances.

Although iso-luminant image regions with variation only in the
chrominances are unlikely in natural images, we show such example
in Figure 4 for YCbCr color space. The luminance of the swimsuit
is nearly constant in contrast to the Cr chrominance channel that
contains a sharp transition. Note also the signi�cantly lower SNR of
the chrominance channel as compared with the luminance. Because
of the imposed grouping constraint, one can expect that the sharp
transition in the chrominance is not well reconstructed. However,



Fig. 3. On the left: noisy (� = 35) House and a fragment of it; on
the right: the corresponding denoised image (PSNR 31.58 dB) and
fragment.

Approach Lena House Peppers
C-BM3D, with grouping constraint
in opponent color space 32.27 33.03 31.20

BM3D independently on the
opponent color channels 32.01 32.64 31.01

BM3D independently on the R, G,
and B color channels 31.44 32.18 30.93

Table 3. PSNR results of C-BM3D and of the independent applica-
tion of the grayscale BM3D on the noisy color channels; the noise
in RGB has � = 25; all PSNR values were computed in RGB space.

even in such a case of grouping potentially dissimilar blocks, the
proposed method can still achieve satisfactory reconstruction. The
reason for this is that the BM3D uses a complete 3D transform to
represent each group. The shrinkage will not be able to attenuate the
noise as effectively but the chrominance details will be preserved, as
shown in the denoised swimsuit in Figure 4.

We note that a similar idea of �ltering the chrominances using
information from the luminance was exploited already in the Point-
wise SA-DCT denoising method [5, 6]. There, adaptive-shape es-
timation neighborhoods are determined only for Y and then reused
for both U and V. The PSNR improvement (0.1 � 0.4 dB) of the
proposed approach compared with [5, 6] is consistent with the im-
provement between the grayscale versions of these two methods.

The proposed C-BM3D achieves state-of-the-art performance in
terms of both PSNR and subjective visual quality. This is achieved
at a reasonable computational complexity. In addition, effective
complexity scalability can be realized by exploiting the complex-
ity/performance trade-off of the BM3D presented in [2].

Fig. 4. Original (left), noisy (middle), and denoised (right) frag-
ments of the luminance (top) and the chrominance Cr (bottom) of
the 12th Kodak test image in YCbCr color space. The noise (added
in RGB space) has � = 25.

7. REFERENCES

[1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, �Image de-
noising with block-matching and 3D �ltering,� in Proc. SPIE
Electronic Imaging: Algorithms and Systems V, vol. 6064A-30,
San Jose, CA, USA, January 2006.

[2] ��, �Image denoising by sparse 3D transform-domain collab-
orative �ltering,� IEEE Trans. Image Process., December 2006,
accepted, preprint at www.cs.tut.�/�foi/GCF-BM3D.

[3] E. Vansteenkiste, D. Van der Weken, W. Philips, and E. E.
Kerre, �Perceived image quality measurement of state-of-the-
art noise reduction schemes,� in Lecture Notes in Computer Sci-
ence ACIVS, vol. 4179, Antwerp, Belgium, September 2006, pp.
114�124.

[4] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, �Im-
age denoising using a scale mixture of Gaussians in the wavelet
domain,� IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338�
1351, November 2003.

[5] A. Foi, V. Katkovnik, and K. Egiazarian, �Pointwise
shape-adaptive DCT denoising with structure preservation in
luminance-chrominance space,� in Proc. Video Process. Qual.
Metrics Cons. Electr., Scottsdale, AZ, USA, January 2006.

[6] ��, �Pointwise shape-adaptive DCT for high-quality denois-
ing and deblocking of grayscale and color images,� IEEE Trans.
Image Process., vol. 16, no. 5, May 2007.

[7] A. Pizurica and W. Philips, �Estimating the probability of
the presence of a signal of interest in multiresolution single-
and multiband image denoising,� IEEE Trans. Image Process.,
vol. 15, no. 3, pp. 654�665, March 2006.

[8] P. Scheunders and J. Driesen, �Least squares inter-band denois-
ing of color and multispectral images,� in Proc. IEEE Int. Conf.
Image Process., Singapore, October 2004.


