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Transactions Briefs

Color Image Processing Using
Adaptive Vector Directional Filters

K. N. Plataniotis, D. Androutsos, and A. N. Venetsanopoulos

Abstract—A new class of filters for multichannel image processing is in-
troduced and analyzed in this brief. This class constitutes a generalization
of vector directional filters. The proposed filters use fuzzy transformations
of the angles among the different vectors to adapt to local data in the
image. The principle behind the new filters is explained and comparisons
with other popular nonlinear filters are provided. The specific case of
color image processing is studied as an important example of multichannel
image processing. Simulation results indicate that the new filters offer
some flexibility and have excellent performance.

Index Terms—Adaptive filters, color image processing, fuzzy member-
ship functions, vector directional filters.

I. INTRODUCTION

Filtering of multichannel images has received increased attention
recently due to its importance in processing color images. Numerous
filtering techniques have been proposed to date for multichannel
image processing [1]–[3]. Nonlinear filters applied to images are
required to preserve edges and details, and remove impulsive and
Gaussian noise. On the other hand, vector processing is one of the
most effective methods available to filter noise and detect edges on
multichannel images. Rank, and especially median filters, have been
used extensively as multichannel image filters [4]. A new class of
filters for processing vector-valued signals was introduced in [5].
The so-called vector directional filter (VDF) uses the angle between
the image vectors as an ordering criterion. The VDF operates on the
direction of the image vectors, separating in this way the processing
of vector data intodirectional processingandmagnitude processing.
Thus, it preserves chromaticity while removing impulsive noise [6].

In this brief, a new class of VDF’s is introduced. Fuzzy member-
ship functions based on an angle criterion are adopted to determine
the weights of an adaptive weighted mean filter [1], [7], [8]. Our
objective is to develop a computationally efficient multichannel filter,
which will have good performance without requiring anya priori
knowledge about the signal and noise characteristics.

II. A DAPTIVE VDFS

A. The Filter Structure

Let y(x): Z l
! Zm, represent a multichannel image and let

W 2 Zl be a window of finite sizen (filter length). Usually we
consider a square window (n = N1 � N1) centered around the
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current pixel. The noisy image pixels inside the windowW are
denoted asxj , j = 1; 2; � � � ; n.

Since the most commonly used methodology to decrease the level
of random noise present in the signal is smoothing, we select an
averaging operation in order to replace the noisy vector at the window
center with a suitable representative vector. The general form of the
adaptive filter proposed here is given as a fuzzy weighted average
of the input vectors inside the windowW . Thus, the uncorrupted
multichannel signal is estimated by determining the centroid as
follows:

ŷ =

n

j=1

wjxj =

n

j=1

��j
n

j=1

��j

xj (1)

where � is a parameter such that� 2 [0; 1). According to (1),
the output of the proposed filter is a weighted average of all the
vectors inside the operation window. The weighting coefficients are
transformations of the sum of distances between the center of the
window (pixel under consideration) and all input vectors inside the
filter window. In multichannel filtering, it is desirable to perform
smoothing on all vectors which are from the same region as the vector
at the window center. Thus, the adaptive weights should represent
the confidence that the vectors under consideration come from the
same region. It is, therefore, reasonable to make the weights in (1)
proportional to the difference in terms of a distance measure between
a given vector and its neighbors inside the filtering window. The
design objective is: “Assign the maximum weight to the vector which is
most centrally located inside the processing window.” Thus, the vector
with the maximum weight will be the one which has the minimum
distance from all the other vectors. In this way, atypical vectors due
to noise or missing components (outliers), which are placed far away
from the centermost vector, will be assigned smaller weights and will
contribute less to the final output. The weighting transformation is
essentially a membership function with respect to the specific window
component. In accordance to our design objective it is reasonable
to select an appropriate fuzzy transform so that the vector with
the minimum distance will be assigned the maximum weight. The
membership function value can be regarded as the comparison of
the vector under consideration with the ideal vector which results
in a distance. Thus, the degree of membership is a function of the
distance, which can be defined as follows [10]:

�j =
1

1 + d(xj)
(2)

where d(:) is the distance function yet to be determined. If the
vector under considerationxj has all the features of the ideal vector,
the distance should be zero resulting in�j ! 1, otherwise, if no
similarity between the ideal and the vectorxj exists, the distance
shall be1 with �j ! 0.

B. Directional Distances

It is evident that the value of the membership function depends
on the choice of the distance criterion selected as a measure of
dissimilarity. Any distance criterion used to calculate distances among
multichannel signals can be utilized. Our primary objective, however,
is to apply the new filter to color images, thus a criterion suitable to
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TABLE I
ANGULAR DISTANCES

measure distances among color vectors is used. The distance measure
selected is thevector angle criterion. This criterion considers the
angle between two vectors as their distance. A scalar quantity

aj =

n

i=1

A(xi; xj) (3)

with

A(xi; xj) = cos�1
xix

t
j

jxikxj j
(4)

is the distance associated with the noisy vectorxj inside the pro-
cessing window of lengthn. We can consider the distance in (3) as
the sum of absolute angular distance for spherical data. This criterion
was first introduced in [5] to measure distances among color vectors.
Since in theRGB color space, color is defined as relative values
in the trichromatic channel and not as a triplet of absolute intensity
values, it was argued in [5] that the distance measure must respond to
relative intensity differences (chromaticity) and not absolute intensity
differences (luminance). Therefore, the orientation difference between
two color vectors was selected in [5] as their distance measure
because it correlates well with their spectral ratio difference. Based
on the angle between two vectors, a number of other useful distance
measures can be defined (see Table I). Any one of the four angular
distance measures listed in Table I can be used to generate the weights
in the adaptive design of (1).

Utilizing our general membership function and taking into account
the fact that the relationship between a distance measured in units and
perception is generally exponential, a sigmoidal (piecewise) linear
membership function is appropriate [11]. In such a case the fuzzy
weight�j associated with the vectorxj can take the following form:

�j =
�

[1 + exp(�j)]r
(5)

where�; r = 1=� are parameters to be determined and�i is any
angular distance measure listed in Table I.

The parameter� is a soft parameter used only to adjust the limit
of the S-shaped membership function (weight scale threshold). In our
experiments we assigned the value� = 2, since we decided to use
membership functions that deliver an output in the interval [0, 1].
The parameterr is the smoothing parameter. Since, by definition,
the angle distance measure in (4) delivers a positive number in the
interval [0,�] [5], the output of the fuzzy transformation introduced
above produces a membership value in[�=f1 + exp[(n�)]gr; �=2].
It can easily be seen that for a moderate size window, such a 3� 3
window we can consider the above membership function as having
values in the interval (0, 1], e.g., [1.4� 10�12, 1] for the angular
distance of (3) with parametersr = 1 and� = 2.

As one should expect, the function used here does not change
too much when its values are around the minimum distance (region
of confidence) and does not increase quickly when the membership
function’s input values are around1, the region of rejection.

The fuzzy transformation of (5) is not unique. Other commonly
used shapes, such as triangular or Gaussian-like curves can be
used instead. However, despite past efforts, a unified form of fuzzy

membership function has not yet been shown. Since its choice is very
much problem dependent, the only applicablea priori rule is that the
designer must confine himself to the functions which are continuous
and monotonic [12].

C. The Adaptive Filters

The weighted average form of (1) it can be seen in the context
of fuzzy systems as a generalized defuzzification process, where a
defuzzified value is selected as output based on a probability-like
distribution obtained in the fuzzification step.

In fuzzy set theory defuzzification is realized by a decision-making
algorithm which selects the best crisp value based on a fuzzy set. The
defuzzification process can be considered as a two step process. The
first step is the conversion of the membership values associated with
the fuzzy inputs into a probability-like distribution which satisfies
the identity and monotonicity conditions. In the second step of the
defuzzification process the defuzzified value is selected based on
values from the probability-like distribution [13].

It is not hard to see that through the definitions in (1), (3)–(5) the
adaptive weightswj = �j=

n

j=1 �j satisfy the above conditions.
Specifically:

1) 8 i; j, if �i = �j thenwi = wj , (identity);
2) 8 i; j, if �i > �j thenwi > wj , (monotonicity).

Furthermore, through the normalization procedure, our weightswj

in (1) have the basic properties which characterize any probability
distribution, namely:

1) wj > 0 andwj 2 [0; 1];
2) n

j=1 wj = 1.

Given the satisfaction of the above conditions the defuzzification
strategy can be seen as a form of pseudo-expectation formula [12],
[13].

Indeed, from the generalized defuzzification rule of (1) if� = 1
the widely used “Center of Area” (COA) defuzzification strategy
(Centroid Defuzzifier) can be obtained. According to the COA
defuzzification the defuzzified value of the adaptive fuzzy filter,
hereafterAdaptive Vector Directional Filter(AVDF), is given as:

ŷ =

n

j=1

wjxj =

n

j=1

�j

n

j=1

�j

xj : (6)

The AVDF obtained through the COA strategy generates a vector
valued signal, which is not included among the original set of
input vectors. Controlling the parameterr in (5), we can adjust the
smoothness of the output. As a general rule, smaller values ofr can
smooth out noisy vectors, while larger values can make the overall
output as nonlinear as required to prevent details and to discard
impulsive-type noise. Thus, the parameter should be properly chosen
to provide a balance between smoothing and detail preservation. Since
r is one-dimensional parameter, it is not difficult to determine an
appropriate value for practical applications. In most cases, a few
trial-and-error procedures may be enough to determine a good value.
Moreover, our experience indicates that acceptable results can be
obtained by assigning the valuer = 1.

However, if the output of the adaptive fuzzy filter is required to
be part of the original input set, a different defuzzification strategy
should be used. Defining�(max) as the largest membership value
obtained through (5), the adaptive weights in (1) can be rewritten
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as follows:

wj =
��j
n

j=1

��j

=

�
�
j

�
�
(max)

n

j=1

�
�
j

�
�
(max)

=

�j
�(max)

�

n

j=1

�j
�(max)

�
: (7)

Given that�j < �(max), as� ! 1 then

wj =1; �j = �(max)

=0; �j 6= �(max): (8)

Equation (8) represents the “maximum defuzzifier” strategy. Since
given the form of the function in (3)–(5) the maximum value occurs
at a single point only, the maximum defuzzifier strategy coincides
with the “mean of maxima” (MOM) defuzzification process. Through
the maximum defuzzifier the output of the adaptive fuzzy filter is
defined as:

ŷ = xj ; �j = �(max): (9)

In other words, we single out the input vector associated with the
maximum fuzzy weight. We name this filtermaximum adaptive vector
directional filter (MAVDF). It must be emphasized that through the
fuzzy membership function, the maximum fuzzy weight corresponds
to the minimum distance. If the absolute angle distance is used as the
dissimilarity function the new fuzzy filter coincides with the spherical
median and delivers the same output as the basic VDF (BVDF) [5],
[6]. The MADVF filter defined above is a purechromaticity filter
in the case of color image filtering. In other words, it operates on
the chromaticity component of the color vector by filtering out color
vectors with large chromaticity errors. The importance of such an
image processing strategy was documented in [5].

On the other hand, the AVDF defined in (6) is not only achromatic-
ity filter since it uses both the directional filtering information through
the angle distances for its weights as well as the magnitude component
of each one of the color vectors. This is a feature that differentiates
our design from the chromaticity filters with gray-level processing
components introduced in [5]. The generalizedchromaticity filters
introduced there select a subset of the color vectors and then apply
gray-scale techniques only to the selected group of vectors. However,
if important color information was eliminated due to errors in
the chromaticity-based decision part, the filters in [5] are unable
to compensate using their gray-scale processing step. That is not
the case in the new design. The adaptive filter introduced in (6)
does not discard anymagnitudeinformation based onchromaticity
analysis. All the vectors inside the operational window contribute
to the final output. Simply stated, the filter assigns weights to the
magnitudecomponent of each color vector modifying in this way
their contribution to the output. This natural blending ofchromaticity-
based weights withmagnitude-basedinput contributions makes the
filter appropriate for color image processing.

III. A PPLICATION TO COLOR IMAGES

A. Properties

It must be emphasized that the proposed filter framework can be
applied in any multichannel signal and any multivariate data with
a spatial domain. The most common multichannel filtering problem,
however, is that of color image filtering, therefore in this section
we also outline some basic properties that make the proposed filters
appropriate in color image processing. We confine ourselves mainly
to the MAVDF due to its amenability for mathematical treatment.

• Property I. Invariance Under Scaling and Rotation:
The criterion used by the MAVDF filter to single out one vector
is the sigmoidal transformation of the vector angle criterion.

Fig. 1. MAVDF: Edge preservation.

From (4) it can easily be seen that the angle between two
vectors does not depend on the scale. Furthermore, any rotation
of the coordinate system does not change the angle between
two vectors. Thus, if the input to the sigmoidal remain the
same, the fuzzy weight selected under scaling or rotation is the
same. Therefore, the MADVF filter is invariant under scaling
and rotation, but is not invariant under bias since the addition
of a constant vector could change the sum of angles among the
vectors.

• Property II. Preservation of Step Edges:
It is easy to establish that a step edge is a root signal of
the MAVDF. An illustrative example is depicted in Fig. 1. A
window with size 5 is centered around the vectorx4. Calculating
the absolute angle distances among the vectors it can be seen
from the diagram thata4 = a5 = a6 < a2 = a3, since the
vectorsx4, x5, andx6 are parallel. Using the transformation in
(8), the higher weights will be the ones associated with these
vectors. It is obvious that the MAVDF will discard the vectors
x3 andx2, resulting in the preservation of the vector edge.

For the adaptive filter in (6) we can not use the same methodology
to justify the edge preservation property. Thus, a simple example is
introduced to illustrate the effectiveness of the proposed algorithms
in filtering operation near noisy edges. In the experiment we use a
step edge of height 2, for a two channel invariant signal corrupted
by additive mixed Gaussian noise. The signal description is:

y(t) = x+w(t) (10)

with

x =
1:5
1:75

t � 45

x =
3:5
3:75

t > 45 (11)

and

w(t) = u(t)v1(t) + [I� u(t)]v2(t) (12)

whereu(t) = u(t)I2�1 and u(t) is a random number uniformly
distributed over the interval [0, 1]. Thev1(t) results from a Gaussian
distribution with zero mean and covariance0:05I2�2. Thev2(t) is
Gaussian with zero mean and covariance0:25I2�2.

A operational window of sizen = 5 was used in the experiment.
Results are shown in Fig. 2, where the curves denote: 1) the actual
signal; 2) the noisy input, and in Fig. 3, where 3) the output of the
filter devised from (2) with parameters� = 2, r = 1, and� = a; 4)
the output of the Median filter; and 5) the output of the (arithmetic)
Mean filter are depicted. From the above experiment the following
conclusions can be drawn.

1) The Median algorithm works better near the sharp edges.
2) The Mean filter works better than the Median for the homo-

geneous signal.
3) The proposed AVDF can suppress the noise in homogeneous

regions much better than the vector Median filter and can
preserve edges better than the Mean filter.
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(a)

(b)

Fig. 2. Simulation experiment. (a0 Actual signal and (b) noisy input.

(a)

(b)

Fig. 3. Simulation experiment.—filtering results. (a) First component. (b)
Second component.

TABLE II
ADAPTIVE VDF’S

B. Simulation Results

The performance of our adaptive designs (see Table II) is compared
against that of popular vector processing filters, such as the widely
used vector median filter (VMF), thechromaticity-based generalized
VDF (GVDF) [5] and the arithmetic mean vector filter (AMVF).

TABLE III
NOISE DISTRIBUTIONS

Fig. 4. “Lenna” corrupted with (4%) impulsive noise.

The test image selected for the comparison is the RGB color image
“Lenna.” The test image has been contaminated using various noise
source models in order to assess the performance of the filters under
different noise distributions (see Table III). The normalized mean
square error (NMSE) has been used as quantitative measure for
evaluation purposes. It is computed as

NMSE=

N1

i=0

N2

j=0

ky(i; j)� ŷ(i; j)k2

N1

i=0

N2

j=0

ky(i; j)k2

(13)

whereN1, N2 are the image dimensions, andy(i; j) and ŷ(i; j)
denote the original image vector and the estimation at pixel(i; j),
respectively. Table IV summarizes the results obtained for the test
image “Lenna” for a 3� 3 filter window. The results obtained using
a 5� 5 filter window are given in Table V. A “�” in a table entry
indicates the best filter performance in the corresponding row.

In addition to the quantitative evaluation presented above, a
qualitative evaluation is necessary since the visual assessment of the
processed images is, ultimately, the best subjective measure of the
efficiency of any method [5]. Therefore, we present sample processing
results in Figs. 4–9. Fig. 4 shows the color “Lenna” image corrupted
with (4%) impulsive noise. Figs. 5–7 show results of the AVDF1,
AVDF2, and GVDF, respectively. Similarly, Fig. 8 shows the color
“Lenna” image corrupted with Gaussian noise(� = 15) mixed with
(2%) impulsive noise. Figs. 9–11 present again the processing of the
same filters and with the same order.

C. Conclusions

From the results listed above, it can be easily seen that our filters
provide consistently good results in every type of noise, outper-
forming the other three multichannel filters under consideration. The
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TABLE IV
NMSE (X10�2) FOR THE “L ENNA” I MAGE, WINDOW 3 � 3

TABLE V
NMSE (X10�2) FOR THE ”L ENNA” I MAGE, WINDOW 5 � 5

Fig. 5. ADVF1 of (4) using 3� 3 window.

Fig. 6. AVDF2 of (4) using 3� 3 window.

different fuzzy filters attenuate both impulsive and Gaussian noise
with or without outliers present in the test image. The effect of the
distance measure and the smoothing parameter selected are evident in
the results summarized above. Regarding the effect of the parameters
the following can be concluded.

Fig. 7. GVDF of (4) using 3� 3 window.

Fig. 8. “Lenna” corrupted with Gaussian noise(� = 15) mixed with (2%)
impulsive noise.

• For small window size, namely, 3� 3 window, the filters based
on the average distances have worse performance than the filters
based on the overall distances for all noise scenarios except for
the case of Gaussian noise.
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Fig. 9. ADVF1 of (8) using 3� 3 window.

Fig. 10. AVDF2 of (8) using 3� 3 window.

• Filters based on average distances cannot smooth out impulsive
noise. Despite the fact that they have relatively good perfor-
mance for a larger window size (5� 5), they are still less
effective in removing impulsive noise than the filters based on
overall distances.

• By increasing the value of the smoothing parameterr better
results can be obtained for impulsive-type noise. This is expected
since increasedr values enhances the nonlinear nature of the
filter. However, the ability of the filter to smooth nonimpulsive-
type noise is restricted, especially for larger windows.

As a general conclusion, the versatile design of (1) allows for a
number of different fuzzy filters, which can provide solutions to many
types of different filtering problems. Simple adaptive fuzzy designs,
such as the AVDF1 can preserve edges and smooth noise under
different scenarios, outperforming other widely used multichannel
filters. If knowledge about the noise characteristics is available, the
designer can tune the parameters of the adaptive filter to obtain better
results.

Finally, considering the number of computations, the computation-
ally intensive part of the adaptive algorithm is the distance calculation
part. However, this step is common in all multichannel algorithms
considered here. In conclusion, our design is simple, does not increase

Fig. 11. GVDF of (8) using 3� 3 window.

the numerical complexity of the multichannel algorithm and delivers
excellent results for complicated multichannel signals, such as real
color images.

IV. CONCLUDING REMARKS

A new class of AVDF’s for multichannel image processing has
been introduced in this brief. These filters combine, in a novel
way, fuzzy memberships, average filters and angle-based distances.
Depending on the criterion which the designer uses to select the mem-
bership, a number of different filters can be obtained. Experimental
simulation results have demonstrated the efficiency of the proposed
filters. The new filters outperform other nonlinear filters, such as
the VMF and the GVDF. Moreover, the new filters preserve the
chromaticity component, which is very important in visual perception
of color images.
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