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Abstract. This paper presents a new quantization method for color images. It uses a local error
optimization strategy to generate near optimal quantization levels. The algorithm is simple to imple-
ment and produces results that are superior than those of other popular image quantization algorithms.
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1 Introduction

The quantization of a digital image consists in discretiz-
ing the image’s color gamut, which implies in a reduction
of the color information associated with each pixel in the
image.

Color image quantization is an important problem in
Computer Graphics and Image Processing. One practical
reason for quantization is related to image display. In
order to represent an image in a graphics device, the im-
age’s color gamut cannot be greater than the gamut of the
device. It is very common to find display devices that are
capable of displaying only 256 colors. To be displayed in
these devices, images must be quantized to 8 bits.

On the other hand, the discretization of color infor-
mation reduces the image size and is closely related to
compression. Quantization in itself does not constitute
an effective compression technique, but it is present as an
important part of several lossy image compression tech-
niques.

The ultimate goal of quantization is to change the
color resolution of an image (number of bits in the color
representation) with minimum distortion. This problem
involves a variety of theoretical issues, related with color
perception and optimization methods. The complexity of
the problem makes the computation of an optimal solu-
tion is not feasible in general. For this reason, existing
quantization methods usually produce only approximate
results.

We propose a new color image quantization method
that iterates a local optimization technique to reduce the
number of colors in the image’s gamut, until the desired
number of color quantization levels is achieved. The al-
gorithm is simple to implement and produces results that
are far superior to other popular image quantization algo-
rithms, such as the median cut [1].

2 Background

A color quantizationis a mapq:Rn ! C 0, whereRn is a
finite-dimensional color space representation, andC 0

�

R
n is a finite subset of colors of the space. The mapq is

called aquantization map. In practice we need to define
a quantization mapq : C ! C 0 from some finite set of
colorsC � R

n , with M colors, onto a setC 0
� R

n of N
colors, withN < M .

Consider a quantization mapq:C ! C 0. For a given
colorci 2 C 0 the inverse image

Ci = q�1(ci) = fc 2 C : q(c) = cig: (1)

is called aquantization cell. The color valueci is called
the quantization levelof the cellCi. The quantization
mapq defines a family of quantization cells that consti-
tutes a partition of the color spaceC. Figure 1 illustrates
a partition of a 2-dimensional color space into quantiza-
tion cells, with the associated quantization levels.

Figure 1: Quantization cells with associated levels.

The quantization of a color space, involves two
parts: determining the quantization cells and determining
the quantization level for each cell.

The distortion caused when we replace a colorc by
its quantized valueq(c) is calledquantization error. This



error is denoted byE(c; q(c)). We can write

c = q(c) +E(c; q(c)): (2)

A simple method to computeE consists in taking
some metricd of the euclidean spaceRn , and define
E(c; q(c)) = d(c; q(c)). Nevertheless, the reader should
be aware that perceptual issues are involved in the mea-
sure of the quantization distortion. The metricd, in
general, does not take that into account. In this paper
we will use thequadratic metricof the euclidean space:
d(ci; cj) = jjci � cj jj

2. This is a good choice from a
computational point of view.

Once we know the quantization mapq for the image
gamut, the quantization of an image is simple: for each
pixel colorc in the image, we must identify the quantiza-
tion cell containingc and replacec by the cell’s quantiza-
tion levelq(c). Thus, a measure of the quantization error
must take into account not only the quantization error of
each color, but also the frequency of the occurrence of the
color on the image: More frequent colors should produce
larger quantization distortions.

If we haveN quantization cellsC1; : : : ; CN , a nat-
ural measure for the quantization error of an imagei is
given by

E(i) =

NX

j=1

X

c2Cj

F (c)E(c; cj); (3)

whereF (c) is the frequency of the colorc on the im-
age, andcj is the quantization level of the cellCj . The
frequencyF (c) can be easily computed from theimage
histogram, which associates to each colorc its frequency
of occurrence in the image.

It is important to remark that the computation of the
quantization cells and the associated quantization levels
are interdependent:

� From the quantization levels, we can compute the
quantizations cells by mapping each color to the
quantization level nearest to it,

q(c) = c0i () d(c; c0i) � d(c; c0j); (4)

for all 1 � j � N with j 6= i.

� From the quantization cellsCi, i = 1; : : : ; N , we
compute the quantization levelc0i of each cellCi in
such a way to minimize the quantization error (3) in
Ci.

Therefore quantization algorithms should be able to
compute either the quantization levels or the quantization
cells.

3 Optimal Quantization and Clustering

From (3) we see that the quantization problem is naturally
posed as an optimization problem in cluster analysis: The
optimal solution should minimize the quantization error
E(i) over all possibleN -element partitions of the color
space.

The rationale behind clustering is to find subsets of
a data set that have similar properties. In the case of color
image quantization, this framework is used to identifyN

clusters of colors from the original image that are sim-
ilar according to the quantization measure. These clus-
ters constitute the quantization cells. For each cluster we
compute the quantization levelc0k. Because colors in each
cluster are “similar”, they can be replaced by their asso-
ciated quantization level introducing minimal distortion.

The direct solution to optimal clustering implies in
a search through the space of all possible cluster config-
urations to find the one that gives the global minimum.
The combinatoric complexity makes this kind of solution
intractable. For this reason, clustering methods rely on
heuristics in order to find a solution. Non-hierarchical
methods start with an initial guess of the cluster configu-
ration that is improved using a relaxation procedure. Hi-
erarchical methods, produce a sequence of cluster con-
figurations generated by means of splitting or merging
operations. (See [2].)

In this work we will describe an image quantiza-
tion algorithm that uses a pairwise clustering optimiza-
tion technique to obtain quasi-optimal quantization levels
for the image gamut.

3.1 Quantization Level of a Color Cluster

We now consider the problem of computing the opti-
mal quantization level associated with some color cluster
from an image gamut. The result is stated in the Theorem
below:

Theorem 1 LetK = fc1; c2; : : : ; cMg be a cluster ofM
colors from some color setC � R

n of an image gamut.
The optimal quantization level for the clusterK is

c =
1P
i Fi

X

j

Fjcj ; (5)

whereFi = F (ci) is the frequency of the color. Moreover,
the global quantization error in the cluster is given by

E(K) =
1

(
P

k Fk)
2

MX

j=1

jj

MX

i=1

Fi(ci � cj)jj
2: (6)

The first part of the theorem says that the optimal
quantization level of the cluster is the centroid of the clus-
ter.



Proof: TakeE(c; cj) = jjc � cj jj
2 in (3), and apply it

to the clusterK, to obtain

E(c) =

MX

j=1

F (c) jjc� cj jj
2: (7)

This is the quantization error associated to the optimal
quantization levelc of the cluster. The optimal quantiza-
tion levelc is obtained from the minimum of the function
E.

The gradient ofE is given by

grad(E) =

MX

j=1

2F (c)(c� cj): (8)

From (8) we obtain the critical point

c =
1P
i Fi

X

j

Fjcj : (9)

Since the functionE is convex,c is indeed a minimal
point.

Substituting the minimal pointc from (9) into equa-
tion (7), we obtain the quantization error in equation (6).
This concludes the proof of the Theorem 1.

The following Corollary follows as a particular case
of the Theorem.

Corollary 1 If we have a two color clusterK = fci; cjg,
the optimal quantization level, using the quadratic metric
of the euclidean space, is

c =
Fi

Fi + Fj
ci +

Fj

Fi + Fj
cj ; (10)

and the associated quantization error is given by

E(cicj) =
FiF

2

j + FjF
2

i

(Fi + Fj)2
jjci � cj jj

2 (11)

A geometric interpretation of the Corollary provides
a good insight into the result. From equation (7) the quan-
tization error is given by the second degree polynomial
function

Eq(c) = Fi(c� ci)
2 + Fj(c� cj)

2:

The graph of this function is the arc of parabola shown in
Figure 2 (sum of the two dashed arcs of parabola).

Note that the quantization levelc is given by the
unique minimum point of the parabola. WhenFi = Fj
que quantization level is the midpoint of the segmentcicj .

Figure 2: Graph of the quantization error.

4 Pairwise Clustering Quantization

The results from Corollary 1 will now be used to for-
mulate a new color image quantization procedure. The
method consists of a relaxation process that computes a
sequence of quantization levels by performing locally op-
timal pairwise cluster merging.

The input to quantization is the finite setC ofM col-
ors from the image gamut,C = fc1; c2; : : : ; cMg. Each
colorci has a frequencyFi = F (ci). To each colorci we
associate an accumulated quantization errorE(ci), which
is initially set to0.

The image quantization method is composed of the
following steps:

1. Compute the image histogram.

2. Using equation (11), compute the quantization error
E(cicj) of every two color clusterfci; cjg from the color
input color set.

3. Choose the two color clusterK0 = fci; cjg from
the input color set that minimizes the quantization error
E(cicj) computed in the previous step.

4. Using equation (10). Compute the quantization level
c of the clusterK0 = fci; cjg chosen in the step 2.

5. Substitute the clusterK0 = fci; cjg by its quanti-
zation levelck. This results in a quantized color setC 0

with M � 1 colors. The frequencyF (ck) of the color
ck is given by the sum of the frequencies ofci andcj :
F (ck) = Fi + Fj . The accumulated quantization error
E(ck) of the colorck is given by

E(ck) = E(cicj) +E(ci) +E(cj): (12)

6. Compute the quantization error for all two cluster
colorsfck; clg, from the quantized color setC 0.

7. Use the quantized color setC 0 as input to step 3 of the
algorithm. Repeat steps 3 to 7 until the desired number
of quantization levels is obtained.



After the quantization levels are generated, the im-
age quantization is computed using equation (4): For
each colorc of the image gamut, we quantize it to the
closest quantization level using the quadratic metric of
the color space.

4.1 Other Strategies to Quantization

We should remark that the quantization strategy de-
scribed in the previous section consists in optimal col-
lapsing of a two color cluster that constitutes a one-
dimensional simplex(ci; cj). The optimality of the col-
lapsing procedure is guaranteed by Corollary 1

Different flavors of this quantization method, using
the same strategy, consists in collapsing color clusters
constituted by simplices of higher dimension (triangles or
tetrahedrals). A triangulation of the color space must be
performed in order to obtain the clusters to be collapsed.

Certainly, the results will improve if we use higher
dimensional simplices. This is because they induce a bet-
ter spatial correlation in the computation of the quantiza-
tion error. Unfortunately, the computational complexity
increases with simplex dimension, and clever heuristics
must be found to make this viable.

5 The Quantization Algorithm

In this section we will describe the implementation of the
pairwise color quantization algorithm.

5.1 Data Structures

The algorithm uses two main data structures indexed by
color number. The structureReal E[][] for the joint error
matrixEi;j , and the arrayc[]:

struct c[] f
Color val;
Real freq;
Real err;

g

whereval is the color value,freq is the color frequency
on the image, anderr is the accumulated quantization er-
ror of colorc.

The joint quantization error (11) associated the the
two color clusterfci; cjg, is stored in the matrix entry
Ei;j . From (11)E is a symmetric matrix. Since we will
not perform matrix operations withE, we need to store
only the elementsEi;j for i < j, which constitutes a
lower triangular matrix.

5.2 Pseudo-Code and Operations

The codification of the algorithm is quite simple:

Image Quantize (image, m levels)
f

c = compute histogram(image)
E = compute error matrix(c)

while (number of colors in(E) > m levels) f
(ci,cj) = select color pair(E)
ck = merge color pair(ci, cj)
replace colors(ci, cj) by ck

g

apply quantization(image, c)
g

The function compute histogram computes the
frequency of each color in the input image, and selects
the set of colors with frequencyfreq > 0. In order to
reduce the computation involved, the image is uniformly
quantized to15 bits before computing the histogram.

The functioncompute error matrix computesEi;j

using equation (11).
The functionselect color pair simply selects the

pair of colors(ci; cj) with minimum joint quantization
errorEi;j in the matrixE.

The function merge color pair computes a new
quantized colorck to replace the clusterfci; cjg, using
equation (10).

The function replace colors substitutes the two
color clusterfci; cjg by the quantized colorck. This is
done in three stages: FirstFk = Fi + Fj andEk =

Ei;j+Ei+Ej are computed; Second, the entries for col-
ors ci andcj are deleted from the arrayc and from the
matrixE; Third, a new entry for colorck is added to both
c andE.

Functionreplace colors is central to the algorithm,
and its operation can be stated in terms of simple opera-
tions with matrixE: Deleting a colorcj is equivalent to
remove thejth row and column fromE. If the matrixE
has ordern (n colors are being processed), adding a new
color ck, is equivalent to append the(n + 1)�th row at
the end of the matrixE. This row stores the joint errors of
pairs of colors formed by the new colorck with all other
colorscl, l = 1 : : : n.

6 Results

To demonstrate the results of our color image quanti-
zation algorithm we have selected two 24-bit RGB im-
ages: one, “Fish”, is a computer-generated scene; and the
other,“Parrots”, is a photograph of a natural scene. These
images are shown in Figure 3.

To be able to visualize the color clusters generated
by our method, we have selected a detail of “Parrots” with
the Blue component set to zero (see Figure 4). In that
way the color space of the image is restricted to the Red–
Green plane. The set of image colors are shown in Fig-
ure 4, where the colored dots have an area proportional to



the frequency of their associated color.
The image in 4 is quantized to 16 colors using our

method and the color clusters produced are shown in Fig-
ure 5. Note how the color space partition is well adapted
to the set of image colors.

6.1 Visual Comparison

Figures 6 to 9 present color quantizations of the origi-
nal images. The results generated by our method are
compared with those from the median-cut algorithm [1],
which was chosen due to its widespread use in imaging
applications.

The images have a spatial resolution of 300x200
pixels and will be quantized, respectively, to 256 and
16 colors using both the pairwise clustering algorithm
(PCA), and the median–cut algorithm (MCA). The re-
sults of PCA are shown on the left side, and the results
of MCA on the right side. Below each quantized image
we show its normalized quantization error.

Figure 6 shows a 256-color quantization of the
”Fish”. One of the most import characteristic of the PCA
is the preservation of color visual information. Note that
in the fish’s fin there are some blue points that are de-
stroyed by the MCA, but this information was preserved
by our algorithm (PCA).

The ”Fish” is quantized to 16 colors in Figure 7.
Looking at both images we observe that the PCA has
chosen colors that are closer to the original colors. Note
that our algorithm (PCA) spreads the quantization error
evenly, while the MCA leads to areas with large errors,
for example the highlight areas.

In Figure 8, images of the ”Parrots” quantized to 256
colors by PCA and MCA look quite similar. A more ex-
treme quantization to 16 colors is shown in Figure 9. In
this last case, MCA produced colors that are not present
in the original image, specially in the background where
there are red areas that do not exist in the original image.

It’s important to emphasize that the PCA spreads the
quantization error throughout the entire image while the
MCA tends to concentrate its error in some image re-
gions.

6.2 Numerical Comparison

Now we compare PCA with other popular quantizations
algorithms: uniform quantization, populosity algorithm
[1], median-cut [1], local K-means [3], variance-based
[4] and octree [5].

For a numeric comparison we employ the quadratic
metric. The results of the tests are in Table 1, which gives
the total quantization error divided by the number of pix-
els in the image (i.e. the RMS error) for all algorithms
tested. Note that our algorithm is consistently superior to
all others.

Algorithm Fish Parrots
No. of colors 16 256 16 256

Uniform 90.35 27.61 105.56 29.56
Popularity 34.10 6.56 54.26 9.20
Median cut 17.67 6.42 22.23 7.27
Local K-means 18.02 7.50 25.67 9.43
Variance-based 16.50 6.85 20.18 7.16
Octree 18.22 5.52 21.11 6.66
Pairwise cluster 15.16 5.54 18.46 6.24

Table 1: Comparisons of quantization methods.

7 Conclusion

We have proposed a new color image quantization
method based on iterative clustering techniques. The al-
gorithm is simple to implement and gives very good re-
sults.

The pairwise clustering algorithm has computa-
tional complexity proportional to the square of the num-
ber of input colors. As a future work we are making ef-
forts to improve the efficiency of the algorithm using a
cluster split–merge strategy.
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Figure 3: Original RGB images: Fish (left) and Parrots (right)

Figure 4: Detail of Parrots projected to Red-Green color plane (left). Image Gamut (right). Area of dots is proportional
to color frequency

Figure 5: Red-Green image quantized to 16 colors (left). Color clusters and quantization levels (right)



Figure 6: Fish quantized to 256 colors. Pairwise Clustering (left). Median Cut (right).

Figure 7: Fish quantized to 16 colors. Pairwise Clustering (left). Median Cut (right).



Figure 8: Parrots quantized to 256 colors. Pairwise Clustering (left). Median Cut (right).

Figure 9: Parrots quantized to 16 colors. Pairwise Clustering (left). Median Cut (right).


