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Abstract

We revisit the problem of specific object recognition using color distributions. In
some applications - such as specific person identification - it is highly likely that
the color distributions will be multimodal and hence contain a special structure.
Although the color distribution changes under different lighting conditions, some
aspects of its structure turn out to be invariants. We refer to this structure as an
intra-distribution structure, and show that it is invariant under a wide range of
imaging conditions while being discriminative enough to be practical. Our sig-
nature uses shape context descriptors to represent the intra-distribution struc-
ture. Assuming the widely used diagonal model, we validate that our signature
is invariant under certain illumination changes. Experimentally, we use color
information as the only cue to obtain good recognition performance on publicly
available databases covering both indoors and outdoors conditions. Combining
our approach with the complementary covariance descriptor, we demonstrate
results exceeding the state of the art performance on the challenging VIPeR
database.



Abbreviations and
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Notations
SC Shape Context
PARTS-SC Parts Based Shape Context
HI Histogram Intersection
EMD Earth Movers Distance



Chapter 1
Introduction

In this work we revisit object recognition using color. In contrast with most
current research which is concerned with category recognition, here we focus on
specific object recognition. Even more specifically, we are interested in video
surveillance applications, where specific person recognition is an important ap-
plication. This problem is also known as person re-identification and has re-
ceived a lot of attention recently [31, 24, 58, 36, 28, 27, 53, 1, 11].

Person re-identification in general, and using color in particular, is very
challenging. Figure 1.1 shows several examples of people imaged by different
cameras in a surveillance context. In such an uncontrolled environment, appear-
ances of the same person are highly variable due to changes in illuminations,
cameras, geometry and pose. In addition, surveillance cameras are often of a
low resolution.

1.1 Background

Color Invariants. In early work on color-based recognition by Swain and
Ballard [52], color histograms were used as the discriminating feature between
different objects. Colors were used "as is” with no attempt to incorporate in-
variance to different illuminations, cameras and geometry which greatly affect
the perceived colors. Funt and Finlayson [19] used indexing of color ratios com-
puted from neighboring points instead of indexing the color values themselves,
in order to achieve some invariance. Gevers and Smeulders [22] derived several
color invariants, using physics-based modeling of the image acquisition process.
Different invariants were designed to handle different types of variabilities in
the imaging conditions. For example, the rgb colorspace® is invariant to illu-
mination intensity and to changes in the illuminant-object-camera geometry,

b_

Lrgb color space is defined by r = R+g+B’ g= R+g+B’ = R+g+B'




Figure 1.1: Some examples from our database. Notice the large variations in
each person’s appearance, due to uncontrolled changes in illumination, viewing
direction, camera and pose.

but is not invariant to illumination color changes. It was recognized that no
single colorspace was able to achieve invariance to all the encountered imaging
conditions. These invariants were successfully used by the authors in [23, 21]
for image retrieval, segmentation and tracking. In a more recent work, Gevers
and Stokman [51] describe a method for selection and fusion of different color
invariants, with an application to image feature detection.

Person reidentification. The challenge in person re-identification resulted
in several approaches to the problem, relying on different cues. Usually color
was not the only cue used. Gheissari, Sebastian and Hartley [24] combine several
ideas to achieve impressive performance. They use color and structural infor-
mation extracted locally around key-points to generate a discriminative and
robust signature. Furthermore, they demonstrate that using spatio-temporal
alignment of the object considered contributes significantly to performance. In
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a follow-up work by Wang et al. [58], improved performance is demonstrated
using co-occurrence matrices of quantized appearance features and quantized
shape features which correspond to object parts. In order to overcome illumi-
nation changes, Javed, Shafique and Shah [31] model explicitly the brightness
transfer function between pairs of different cameras. One of the disadvantages
using this approach is that a training phase is necessary to learn the brightness
transfer function. Moreover, this training phase has to be repeated each time the
illumination conditions change. The use of discriminative learning techniques
for person re-identification is seen recently more and more often. Gray and Tao
[27] used AdaBoost to select the most discriminative cues out of a large pool of
color and texture features. Lin and Davis [36] learn pairwise appearance-based
classifiers to separate pairs of people, using a joint color and height histogram
as a feature vector. We refer in more detail and provide additional examples of
the related work in Chapter 2.

1.2 Our Approach

Returning to describing colors in an invariant way, our approach considers the
distribution of observed colors in the object we try to describe. We fix the
colorspace in which we work - for example the rg colorspace, and observe the
resulting distribution of object pixel values in this colorspace. Because of the
nature of our objects - people - the distributions we will observe will generally
be multimodal with two significant modes or clusters. These modes/clusters
correspond to different natural parts in the object - usually legs and torso.
Figure 1.2 demonstrates this observation. In each of the eight examples in the
figure, one may see two clear clusters of the color distribution in the rg and
log-chromaticity? color spaces we used. We colored one cluster in red and the
other in blue. The red modes arise from pixels associated with the torsos, and
the blue modes arise from observations generated by the legs. We will refer to
these modes/clusters as ”color clouds” in this work.

Our intuition, validated in this work, is that the shapes and relative configu-
rations between the ”color clouds” are invariant under a wide range of imaging
conditions. In addition to being invariant, we hope that these shapes and rela-
tive configurations of ”color clouds” will also be discriminative. Assuming this
is true, we use shape context [5] as a non-parametric descriptor of this ”color
clouds” based signature.

We remark that Matas [41, 42] argued that the relation between color patches
in multicolored object is an important discriminative and invariant cue for recog-
nition. Unlike Matas [41], who considered a problem of recognizing an arbitrary

2rg color space is defined by r =
defined by & =In &, & =In Z.

R _ G .. .
EroiB 9= Eroin log-chromaticity color space is
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Figure 1.2: Images of persons captured from four different surveillance
cameras. Below each image the distributions of pixel values in rg and log
chromaticity color spaces are shown. Pixels coded in red originate from the
upper part (usually shirt) and those in blue from the lower part.

multicolored object, we focus on a specific type of objects having a specific
nature of color distribution in them. This allows us to effectively incorporate
spatial information by giving a well defined meaning to clusters in color space
(the upper /lower parts). Moreover, we encode the object’s color content differ-
ently. Matas builds a graph based representation of object’s chromatic content,
the color adjacency graph (CAG), whose nodes correspond to clusters in color



space and the edges represent colors spatial adjacencies. Hence, whereas Matas
disregards the color distribution shape and relies on its mean value, we exploit
all (or a sampled subset) of cluster points, extracting a somewhat richer descrip-
tion of color distributions. The choice of rg color space by Matas was motivated
by invariance to illumination intensity and viewing geometry while changes in
illumination color were not accounted for. Berwick and Lee [6] showed that
log-chromaticity color space is more suitable than the rg for representing colors,
assuming the diagonal model of illumination change. We adopt this finding in
our work.

1.2.1 Contributions

Our approach differs from previous works in several important aspects:

1. The idea of using the intra-distribution structure as an invariant descrip-
tor, is novel. The distributions encountered in our application usually
do indeed contain discriminative structure, as a result of their multi-
modal nature (due to different clothing for lower and upper parts). This
is in contrast with works which considered the distribution as a whole
52, 22, 19, 7].

2. We use non-parametric shape descriptors to describe the intra-distribution
structure.

3. We apply the approach to the problem of person re-identification and
demonstrate that color as a single cue does indeed have good discrimi-
native properties, in spite of the required high invariance due to largely
varying imaging conditions.

Additional contributions of this work are the experimental validation of our
approach on publicly available datasets and our own privately collected dataset.
Unlike most of the currently available evaluation datasets, which are designated
with either indoors or outdoors person re-identification scenarios, our dataset
contains images taken from two indoor and two outdoor surveillance cameras.

1.3 Thesis Outline

The outline of this work is as follows. In Chapter 2 we cover most of the
relevant literature related to object recognition and identification. In Chapter 3
we explain the considerations behind the design of a color invariant signature for
person re-identification. We refer to the diagonal model of illumination change
and its impact on the selection of color space. In Chapter 4 we discuss the use of
standard invariants for the task of person re-identification. Chapter 5 elaborates



on the additional processing envelope around the signature extraction. Results
and discussion follow in Chapters 6 and 7.



Chapter 2

Related Work

2.1 Object Recognition

Object recognition is one of the most challenging and broadly studied areas in
the field of computer vision, referring to either classification or identification.
Classification stands for assigning a certain class label, chosen from a pool of
class labels, to a given object. The pool of class labels may comprise of two
or more classes. In the former case the problem is called binary classification
problem and in the later case it is called multiclass classification problem. Face
detection is a well known binary classification problem when the first class refers
to the human faces and the second class refers to anything besides the human
faces. Handwritten digits recognition is an example of a multiclass classification
problem when the classes are the handwritten digits 0 up to 9. Unlike classi-
fication, the identification task is about recognizing the identity of an object.
For example - face recognition, as opposed to face detection, is recognizing the
identity of the object in hand, given that it is a human face. Ullman claimed [55]
that the task of identification is easier to perform by an artificial system than
the classification task, while exactly the opposite holds for biological systems.

Three major principles are being widely used by most of the recognition
systems, either on their own or in various combinations [55]. The first prin-
ciple uses invariant properties, the second exploits part decomposition and the
third principle is alignment. We will now review each one of them and present
representative papers.

2.1.1 Invariant Properties and Feature Spaces

It is almost impossible to recognize an object under arbitrary viewing conditions
and thereof some regularities in the object views are usually assumed. This
approach assumes that several properties of the object views are preserved under



the most commonly encountered transformations that the object may undergo.
These properties are usually referred to as invariant properties or invariant
features. Typically a feature is a real number computed using the information
extracted from a single image!. In most cases a single feature is not enough
for capturing the invariant properties of the object, thus a set of features is
used. In case of n features an object’s view is mapped to a single point in
n-dimensional feature space R™. It is important to ensure that this mapping
can be easily computed using the information extracted from the object’s view,
otherwise it may turn to be as complicated as the recognition task itself. When
choosing the feature space for object representation one has to bear in mind
the tradeoff between its invariant and discriminative properties. For example,
mapping all objects into a constant value will result in perfect invariance but
no discriminative capabilities whatsoever. Rather than storing different views
for each object in a database, their representations in the feature space are
stored, forming subspaces in the R™. Depending on the problem domain these
subspaces may have similar or different structures. A query image is classified
by assigning its representation to one of the subspaces in the features space.

Invariant features can be based on global appearance of the object, or on
multiple local descriptors. The work by Lamdan and Wolfson [35] is an early
example for global invariant feature. The authors use geometric hashing for
representing object’s structure in a viewpoint invariant manner and present
an application of this method for efficient recognition of a 3D object from its
2D views. Apart from being invariant to a viewpoint, geometric hashing is
also invariant to partial occlusions. Color histogram [52] is another example
of global invariant which is invariant to scale and rotation but is not invariant
to occlusions. Kliot and Rivlin [33] presented a method for efficient trademark
logos retrieval based on matching shape contours. The method uses global
geometric invariants in combination with local invariant signatures and is robust
to various viewpoint transformations and missing shape parts.

Local descriptors have the advantage of being more robust to occlusions. In
recent years many invariant local descriptors have been proposed and evaluated.
A summary of these efforts has been presented in [44]. The SIFT descriptor [38]
has emerged as one of the most reliable descriptors. Scale invariant locations
(keypoints) are detected on the image by analyzing its scale space and gradient
based descriptors are extracted around these keypoints. These descriptors are
invariant to rotation, scale and illumination intensity changes. Recognition is
done by matching SIFT descriptors extracted from a query image to descriptors
stored in the database and because of the large amount of local descriptors
involved, the matching process is robust to occlusions and background clutter.

INotice that in general features are not restricted to be derived from a single image.
Sometimes they are computed using several views or learned models.
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More recently the SURF [4] descriptor has been proposed. SURF’s advantage
over SIFT is its computational efficiency in part due to the use of integral image
[57].

Sometimes different types of invariant features are found to be useful under
various conditions while a single invariant is not sufficient for good accuracy.
Thus typically combinations of different descriptors are used.

2.1.2 Parts Decomposition

This approach assumes that the object can be decomposed into a set of parts or
components. The recognition process begins at the part level, detecting various
parts in the image. Then it proceeds with verifying the spatial relationships
between the parts and recognizing or rejecting the object as a result. The
parts/components can be generic ones like boxes and cylinders, or specific ones
like eyes, nose and mouth in the case of face detection. Representative works
employing this approach are [8, 12].

2.1.3 Alignment

Let M = {Mjy, ..., M, } be a set of n object models stored in a database. Given
an object image V, the goal is to correctly match it to one of the models.
While the image is usually in 2D, the models may be either in 2D or 3D. A
given image of an object may differ from all its previously seen images, thus
a set of transformations T that the object model may undergo is defined to
compensate for these differences. The set of allowable transformations depends
on the dimension of the models and the images as well as on the problem
domain. The alignment approach seeks to find the model M; € M and the
transformation 7; € T which compensate for the appearance differences between
the transformed model T;(M;) and the given object image V. The alignment
process is divided into two stages. At the first stage, hypotheses are generated
for possible alignment transformations between the model and the image and
at the second stage these hypotheses are verified. Each hypothesis is generated
using minimal amount of information, such as two pairs of corresponding points
in the case of 2D planar models. Pairs of corresponding points are located using
local features such as corners and holes, and only those correspondence pairs
resulting in a legal alignment transformation are used to form a hypothesis. In
the verification stage, the models’ edges are transformed to the image plane
and compared with the image edges. The best alignment is the one having
the highest number of matching edges. Classic papers using this approach are
[30, 37, 56].

11



2.2 Mainstream Approaches in Object Identifi-
cation

Local descriptors, e.g. SIFT, are very common in identifying a specific object
in still images or video. Sivic and Zisserman [50] use local descriptors for image
retrieval and object recognition in video. The authors learn a visual vocabulary
from a training video by extracting several types of local descriptors from its
frames and clustering them. This vocabulary is later used for indexing the con-
tent of each frame in the test videos. Object recognition is done by computing
the cross correlation between words frequency vectors of the query image and
the indexed video frames.

2.3 Person Re-Identification

Works on person re-identification differ in approaches they exploit and usually
use several approaches in combination. The invariant features approach is one of
the most commonly used. Hamdoun et al. [28] present an approach which uses
local descriptors. In this work the authors perform person re-identification by
matching interest points (SURF) accumulated through short video sequences.
In order to speed up the matching process the authors store the interest points
in a KD-tree and match the query and model sequences by counting the num-
ber of points which fall close enough to each other. Unlike from [28] where
the local invariant points are extracted using each frame independently, in [24]
the authors extract key-points which are invariant in spatio-temporal domain.
They use color and structural information around each key-point to generate a
discriminative and robust signature. Furthermore, they demonstrate that using
spatio-temporal alignment of the object considered contributes significantly to
performance. In a follow-up work by Wang et al. [58], improved performance
is demonstrated using co-occurrence matrices of quantized appearance features
and quantized shape features which correspond to object parts. Further im-
provement is reported by Zheng et al. [60] where the authors demonstrate that
utilizing group context information (information about the people around the
individual) greatly improves the performance.

Bak et al. [1] propose using parts decomposition for person re-identification.
In this works the authors divide the person’s body into five parts (the top, the
torso, legs, the left arm and the right arm) and train a detector for each part.
After detection, each part is represented using the region covariance descriptor
[54] while each pixel is represented by its coordinates, color and texture infor-
mation. The pyramid matching [25] is used to match the parts in query and
model images. Reported results are superior to those in [60].

In the recent work by Farenzena et al. [11] SDALF (Symmetry-Driven Ac-

12



cumulation of Local Features) approach was introduced. SDALF is a methodol-
ogy for constructing an invariant and discriminative signature using symmetry-
driven accumulation of local features. First, the person’s body is divided into
three parts (head, torso, legs) by computing its horizontal asymmetry axes.
Then, torso’s and legs’ vertical symmetry axes are estimated and used for
weighting the extracted features representing each part. The idea is to weight
the extracted features according to their distance from the symmetry axis in
order to minimize the effects of pose variation. Three types of visual cues are
utilized - color histogram, MSCR (Maximally Stable Color Regions) and RHSP
(Recurrent High-Structured Patches) - a novel texture descriptor. For each indi-
vidual, three descriptors are extracted using these cues. The similarity between
two individuals is computed using a weighted combination of distances between
the descriptors. Reported results on three public datasets constitute the current
state of the art.

All of the aforementioned works share the same general idea - feature set
representing the person and distance measure for signatures comparison are
chosen manually. When selecting the feature set one has to make sure that
the representation is both discriminative and invariant. As opposed to using
handcrafted features, Gray and Tao [27] proposed to use AdaBoost for selecting
the most discriminating ones out of a large pool of color and texture features.
An interesting insight emerged from this work - over 75 percent of the classifier
weight were devoted to color based features, with the highest weight given to
hue and saturation. This fact supports the assumption that color indeed is a
most powerful cue for person re-identification.

Several attempts were made to tackle the person re-identification as a multi-
class classification problem. In an early work by Nakajima et al. [46] several
classification schemes for recognizing the person and his pose are presented. The
authors train SVM classifiers using color-based and shape-based features and
combine them using either one-vs-all or pairwise strategy to form a real time
person recognition system. The features were extracted from video sequences of
a number of individuals taken in a constrained environment indoors. Moreover,
the evaluation dataset included only eight individuals which makes it difficult
to estimate the accuracy and scalability of the approach. The color-based fea-
tures used by the authors were color histograms extracted from the entire region
of person’s body detected using background subtraction. In order to gain in-
variance to illumination intensity the authors utilized the rg colorspace, which
indeed resulted in better recognition rates than those while using the stan-
dard RGB. Lin and Davis [36] learn appearance-based classifiers to separate
pairs of people. In order to enable scalability of the scheme to a large num-
ber of categories, pairwise dissimilarity profiles (function of spatial location) are
learned and integrated into a nearest-neighbor classification. Experiment on
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a real surveillance data, including 61 individuals, showed promising results in
recognition performance and scalability.

As mentioned already, perceived colors change significantly as a result of mul-
tiple cameras, illumination, geometry and pose, see Figure 2.1. In early works
by Porikli [48] and Javed et al. [31] the authors explicitly model the bright-
ness transfer function between different cameras to compensate for illumination
variations. However, the main drawback of this approach is the assumption of
being able to measure the cameras brightness response in advance. Most recent
works on person re-identification do not rely on being able to perform these
calibration steps, but rather design descriptors which are inherently invariant
to photometric changes. Color histogram is the most commonly used descriptor
for representing color distribution and hence many efforts were put to make
it more robust to illumination variations. Madden et al. [39] proposed to use
the histogram equalization technique [16], to reduce the effect of illumination
variations on histograms representing person’s appearance. After equalizing the
histograms of each RGB channel independently, the authors suggest to repre-
sent the target by its major colors clusters’ means, rather than by its joint RGB
histogram. In a follow up work [40] Madden et al. compare the effectiveness
of histogram equalization technique to several other methods i.e. histogram
stretching and illumination filtration and conclude that histogram equalization
has the best performance. The main drawback of histogram representation is
that colors spatial origin is lost. This may result in an incorrect match of two
persons, one wearing for example a red top and blue pants and the other one a
blue top and red pants. Park et al. [47] proposed partitioning of the detected
person’s silhouette into three parts (the head, the torso and the legs) and rep-
resenting the person’s appearance based on two histograms summarizing the
colors extracted separately from the torso and the legs. Yu et al. [59] proposed
to use a joint 4D histogram of color and spatial features. The spatial feature
they use is the novel path-length feature which is the length of the shortest path
from a reference point, chosen to be the top of the head, to the pixel. The
color features chosen by the authors were the color rank features. Given a set
of sampled pixels, the color rank features encode the relative value of a pixel in
each one of the R, G and B channels separately, ignoring their absolute values.
In [16] it is shown that this relative ranking is preserved under a wide range of
illumination changes. In a follow up work by Lin and Davis [36], the authors
replace the path-length feature with a much simpler feature - the normalized
height - which is a normalizing vertical coordinate of a pixel. Even though
this feature is simpler and more computationally efficient than the path-length
feature, the authors achieved better recognition performance. Truong Cong et
al. [53] evaluate the performance of three signatures, varying in the way they
exploit spatial information, for the task of re-identifying a person between a pair
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Figure 2.1: Images of the same person captured by two different cameras
under various illumination conditions. Notice the change in colors.

of cameras installed on a train. The authors compare an RGB histogram with
an RGB-path-length joint histogram and a spatiogram [7] combined with sev-
eral illumination normalization techniques including the histogram equalization
described earlier. Their conclusion is that spatial information and illumination
normalization techniques, especially histogram equalization, indeed contribute
to the re-identification performance.

2.4 Color Invariance

Although color is a powerful cue for recognizing the identity of the object, differ-
ences in illumination cause measurements of object colors to be biased towards
the color of the light source. Fortunately, humans have the ability of color con-
stancy: they perceive the same color of an object despite large differences in
illumination. Much efforts have been invested in developing automatic color
constancy algorithms, which use illuminant estimation procedures, see [29] for
an overview. In these procedures, the illuminant is estimated given the image
data and appropriate corrections are made to this data to make it illumination
invariant. Contrary to the above are the color invariant approaches where color
constancy is achieved by transforming the pixels data to explicitly derived color
spaces. Assuming a certain model for image formation process, invariant prop-
erties are mathematically proved for these color spaces. In [13] by Finlayson et
al. the image is summarized using three angles computed between three color
channels of the image (stretched out as vectors). This description is illumi-
nation invariant but not discriminative enough to deal with large number of
objects. In early work on color-based recognition by Swain and Ballard [52],
color histograms were used as the discriminating feature between different ob-
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jects. The approach worked well as long as illumination stayed fixed, but when
illumination changed, its performance degraded drastically. It was suggested
to preprocess the image using color constancy methods to gain some illumina-
tion invariance. But involving color constancy algorithms significantly reduces
the simplicity and efficacy of the approach, and no single algorithm was found
to perform well enough. Funt and Finlayson [19] used indexing of color ratios
computed from adjacent pixels instead of indexing the color values themselves,
and achieved much better illumination invariance.

Color invariants preserving the original image structure are sometimes called
invariant color spaces since each pixel RGB value independently undergoes an
algebraic transformation mapping it to different color space while preserving the
original structure of the image. Gevers and Smeulders [22] derived several such
color invariants, using physics-based modeling of the image acquisition process.
Different invariants were designed to handle different types of variabilities in the
imaging conditions. For example, the rgb color space is invariant to illumination
intensity and to changes in the illuminant-object-camera geometry, but is not
invariant to illumination color changes. It was recognized that no single color
space was able to achieve invariance to all the encountered imaging conditions.
Berwick and Lee [6] suggested using log-chromaticity color space to compute a
signature which is invariant to illumination color, assuming a diagonal model
of illumination change [14]. This signature was used for image retrieval and
detection of specularites in objects’ images. Finlayson and Hordley [17] used
the log-chromaticity color space to derive a single color coordinate, a function
of RGB values, depending on surface reflection only. Histograms based on this
single invariant coordinate demonstrated superior results in color based object
recognition comparing to chromaticity histograms.

Most of the above mentioned works applied color invariants to recognize
objects such as branded products imaged under constrained conditions, see Fig-
ure 2.2. Several attempts were made to use them in less constrained environ-
ment [23, 21, 51]. Typically these works use features based on object’s global
appearance e.g. histograms of color invariants. Matas et al. [42], on the other
hand, introduce a local color invariant feature for image retrieval and object
recognition. First, image neighborhoods having a multimodal color distribution
are detected using the mean shift algorithm [9]. From each color mode several
color invariants are computed and are used jointly to describe the neighborhood.
Concatenated vector of the invariants extracted from color distribution modes
in the neighborhood is referred to as a Multimodal Neighborhood Signature
(MNS) of this neighborhood. Thus, an image or an object in the image are
represented as a set of signatures, and the recognition task is carried out by
matching test image signatures to those of stored models. The authors decided
on which color invariants to use assuming the diagonal model of illumination
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Figure 2.2: Example of a dataset used for color invariants evaluation in [22].
Left: A set of reference images stored in the database. Right: Corresponding
images from the query set.

change. Impressive results in recognizing objects in videos shot both indoors
and outdoors support the choice of the diagonal model for coping with such
diverse illumination conditions.

In this work we evaluate the use of color invariants for person re-identification
both indoors and outdoors, and introduce our own invariant color based signa-
ture for person re-identification.
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Chapter 3

Color Invariant Signature

3.1 Motivation

In this chapter we describe the color based invariant signature for person re-
identification. First we review the diagonal model for illumination change and
discuss the invariant properties of several chromaticity colorspaces. Then we
introduce the signature describing the distribution of colors in person’s cloth-
ing and prove its invariance under illumination changes assuming the diagonal
model.

Figure 1.2 shows different images of two people taken from different surveil-
lance cameras. Below each image we show the corresponding distribution of
object colors, in g and log chromaticity® color spaces. We mark the observa-
tions generated by the upper part of the object in red, while the observations
generated by the lower part of the object are marked in blue. One may note
the following:

1. All the distributions have multimodal structure in them. Our coloring of
observations emphasizes this structure. Generally we may see two modes
in the distribution - we refer to these as ”color clouds” or clusters.

2. The structure of the ”color clouds” is sufficiently preserved for the same
person.

3. For different people, the structures of the color clouds are different when
we consider also the spatial origin of the clouds (notice that red and blue
switched places).

These observations motivated us to consider a signature based on the shape
of the ”color clouds” which constitute the color distribution of an object. As

ISee next section for rg and log chromaticity colors spaces definitions.
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noted previously, in our surveillance application distributions will indeed contain
multimodal shape.

Why do we expect the intra-distribution structure to be invariant under wide
imaging conditions 7 We list here a few intuitive arguments:

e The number of modes corresponds to the number of different colors ob-
served in the object, and this is a strong invariant.

e Relative positioning of modes - if one part of clothing is more ”"red” than
another, then under most encountered transformations - it will stay more
"red” than the other part. This was validated in practice for a wide
range of illuminants and imaging devices, assuming the diagonal model of
illumination change [16].

e If one piece of clothing is much more uniform in color than another (lead-
ing to a more condensed mode or color cloud), then likewise under most
encountered transformations, it will stay more condensed than the other
mode.

e If we think of a ”color cloud” as elliptic, then its orientation will not
change significantly. This is due to the distribution of actual values in the
diagonal model that are encountered in practice [2].

These arguments are very intuitive and may be considered more of a specu-
lation. Thus, we will now present more rigorous considerations involved in de-
signing the signature. In section 3.2 we elaborate on choosing the most suitable
invariant color space under the assumption of the diagonal model of illumination
change. In section 3.3 we introduce the signature which captures the shape of
the ”color clouds” for person re-identification.

3.2 Illumination Invariance

3.2.1 Diagonal Model

The majority of works on color invariants [22, 19, 13, 17, 6] assume that the
image acquisition process can be described using the following model:

o= [ BOSNQAN  (b=1.2.3) (3.1)
where Qr(A) is a function of wavelength A, characterizing the proportion of
color signal absorbed by the sensor k. The color signal is basically a product

of the illuminant energy function E()\), measuring the amount of energy the
illumination source emits at each wavelength A, and surface reflection function
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S()), characterizing the surface reflecting properties. Integration is performed
over the visible spectrum w (400-700nm). pj are the responses of three color
sensors of the given imaging device. Most commonly these are the well known
RGB color channels.

A common goal is to determine the reflectance S(A) of a point in the scene
given its image, namely a pixel value comprising of three sensor responses py.
Suppose that we know the sensor spectral response functions Qx(\). But given
a sensor response py, there are many combinations of possible functions S(X)
and F()\) that could account for it, resulting in a severely underconstrained
problem. Assuming, as usually done, that these functions are not continuous
but are sampled at a discrete set of points, Eq. 3.1 becomes

pr=>_ BA)SA)Qe(M\)AXN  (k=1,2,3) (3:2)
=1

where n and A\ are the number of sample points and a sampling interval,
respectively. Each surface is characterized by a discrete reflectance function
S(Ai),i = 1,..,n. Assuming we have m distinctly colored surfaces, denote
S; () areflectance at wavelength \; by a surface j when j = 1,...,m. Hence, the
number of reflectance parameters is nm. Assuming that the illumination, F()\;),
is constant through the imaged scene, we have n illumination parameters. Thus,
the total number of unknowns i.e. illumination and reflectance parameters is
n(m+1) and the number of measurements i.e. sensor responses is 3m. Typically
n is much larger than 3, thus the problem is still underconstrained.

In many practical applications it is important to be able to compare images
of points in the scene independently to the illumination, rather than determin-
ing the reflectance S(A) of these points explicitly. To solve this, one needs
to determine a mapping that transforms RGB responses to an object imaged
under some reference illumination ¢ to corresponding responses under another
illumination o. The most widely used mapping type is a linear transformation.
Even more specifically, the majority of applications adopt the diagonal model
of illumination change which has been proved by Finlayson et al. [14] to suf-
fice for illumination variations encountered in practice. The diagonal model is
a simple relation between pixel values of object imaged under some reference
illumination ¢ and another illumination o, expressed as a scaling of each color
channel independently. The assumption under which the diagonal model holds
is that the sensors of imaging device are sufficiently narrow-band, otherwise
a special sharpening transformation [15] may be applied to make them more
narrow-band. If camera’s sensor response functions were completely narrow-
band i.e. sensitive to a single wavelength, the diagonal model would model the
illumination variation with perfect accuracy. But since in practice such sensors
do not exist, the diagonal model provides an approximation which is precise to
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the extant that the sensors are narrow-band. A simple diagonal model may be
written as a multiplication of RGB vector by a diagonal matrix D,

Re a 0 0\ [R°
Gl=[o g8 o]|c]. (3.3)
Be 0 0 v \B°

Despite its simplicity, good results were reported while using the diagonal model
for illumination change indoors and outdoors [14, 22, 42]. Throughout this work
we will adopt the diagonal model for illumination change. Thus from now on,
unless stated otherwise, the term ”illumination invariance” will refer to ”illu-
mination invariance under the assumption of diagonal model for illumination
change”. Section 8.1 presents experimental results validating the model under
various changes in illumination conditions both indoors and outdoors.

We can easily notice that the original RGB color space is not invariant to
applying the diagonal model, unless D is an identity. We will now review two
chromaticity color spaces introduced in [22, 6], the normalized rgb and the log-
chromaticity spaces, and describe their invariant properties.

3.2.2 Normalized Color Space (rgb)

The normalized color space is defined as:

R G B

" R+G+B’g R+G+B’b R+G+B (3.4)

Assuming that the diagonal matrix D in Eq. 3.3 is of the form D = s, i.e. all
three channels are scaled by the same factor s, the pixel rgb coordinates remain

unchanged:
c sR° o

r SRTFSCET B r

(& — S — o
9 - 5R"+sg‘o’+sB" =19 (35)
be sRoJr::GOJrsB" b?

Hence, the rgb color space is invariant to changes in the illuminant intensity.
However, assuming D is of the form D = diag(a, 83,7), i.e. each channel is

scaled differently, the transformed rgb coordinates are r¢ = Wm,gc =

Wg:-wﬂ’ and b° = WM” meaning that the rgb color space is
not invariant to changes in illuminant color. Due to the equality b = 1 —

r — g, the b coordinate is redundant and therefore is typically disregarded.
Figure 3.1 demonstrates the shifts in pixel rg coordinates as a result of four
different changes in the illuminant color. We can see that the coordinates 'shift’
depends on the illumination parameters and on the pixel value.
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Figure 3.1: ’Color flows’ in rg color space for four instances of «, 3,
parameters. Arrows describe changes in the coordinates due to illumination
change. The shift of each pixel depends both on the pixel value and the
parameters.

3.2.3 Log-Chromaticity Color Space (log)

The log-chromaticity color space is defined as:

R B

g G=hg (3.6)

512111 G

Applying the diagonal transformation, Eq. 3.3, on a pixel (R°, G°, B°)T yields
a shift in the log coordinates:

R° B°
(65, 65) = (n 5o In ) = (60,€8) + (n I ) (3.7)

IR
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Figure 3.2: ’Color flows’ in log color space for four instances of a, 3,y
parameters. Arrows describe changes in the coordinates due to illumination
change. All arrows are parallel and have the same length meaning that the

shift is dependent on the parameters and not on the pixel values.

The shift in coordinate values is determined by the actual values in D and is
independent of the pixel values, meaning that the log color space is invariant
to illumination intensity and color up to translation. Figure 3.2 demonstrates
the shifts in pixel log coordinates as a result of four different changes in the

illuminant color.

3.2.4 Signature Invariance

As previously mentioned we are basing our signature on the shape of the mul-
timodal distribution of color measurements taken from two parts of person’s
clothing - the legs and the torso. We suggest to represent this shape by a set
of vectors in color space connecting the points originating in one part, e.g. legs,
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Figure 3.3: Pixels pairs in rg color space. (a)- p1,p2 under illumination o.
(b)-p1, p2 under illumination ¢, after applying the diagonal transformation D.

to the points of second part, e.g. torso. We will now analyze the invariant
properties of such vectors induced by each one of the color spaces (rg and log).

rg Color Space

We will start our examination with the rg color space which is not invariant to
illumination color change, as shown in section 3.2.2. Let p$ = (r¢,¢%), p§ =
(rg,93) denote a pair of pixels sampled from two distinctly colored patches,
which may represent the upper and lower parts of person’s clothing imaged
under some arbitrary illumination conditions o. Figure 3.3(a) depicts the pixels
pair as two points in rg color space. Let L° denote the vector connecting these
two points, i.e. L° = p§ — p$. Similarly, let p§ = (r§, g), p§ = (15, g5) denote a
pair of pixels imaging the same patches under different illumination conditions
c. The vector L€ is connecting p§ and p§, i.e. L¢ = p§ — p§, see Figure 3.3(b).
We assume that Eq. 3.3 models the transformation between the illumination o
and the illumination c.

We measure the variation in ”color cloud” shape using the rotation and
scaling of the vectors set. Thus, we represent these vectors in polar coordinates,

L=(1,0)=(y/(ra —71)2 + (g2 — g91)?,arctan(22=2)). Let (A, Al) denote the

T2—

24



x 10

@O o N ® ©
<

frequency

N
frequency

w

0
2o s 0 08 1 w2 0O 20 40 60 8 100 120 140 160 180
C. 0
Iogm(l n°) 16°-6°|

(a) (b)

Figure 3.4: Dif f(L,L') distributions as a result of different factors. Red -
varying the illumination according to the diagonal model while keeping the
same surface reflectance (L = L¢, L' = Lf). Blue - varying the surface
reflectance while keeping the same illumination (L = L§, L’ = L$). Please note
that the red distributions have sharp peaks near 0 while the blue distributions
are much smoother. (a)- log(Al) distributions. (b)-A# distributions in degrees.

difference between the vectors L° and L€:

Dif f(L°, L°) = (AL, Af)

l° c o
= (5,07~ )
C __ nC)\2 Cc __ 4C)\2 Cc __ 4C o __ 0
_ ( \/(TQ 7”1) + (g2 gl) , arctan(gi g;l:) _ arctan(gi g(l)) )
V(g =)+ (g5 — 97)? Te =71 TS — 7]

Figure 3.4 depicts the empirical distribution of A and Al over some of the
commonly encountered diagonal transformations for illumination published by
Barnard [2] and by Gehler et al. [20]. Af measures the degree by which the
vector L° is rotated as a result of applying the diagonal transformation and Al
measures the scaling factor by which L’s magnitude is multiplied.

Two distributions are depicted on each graph. The red one describes vari-
ations in vectors connecting pairs of pixels imaged under two different illumi-
nations while the blue one describes the differences in vectors connecting two
different pairs of pixels under the same illumination. Although L’s orientation
and scale are not completely preserved as a result of applying diagonal transfor-
mations, they are sufficiently preserved for basing the invariant properties upon
them.
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log Color Space

Vector orientation and scale invariance under a diagonal transformation can be
rigorously proved in case of [og color space. Similarly to rg color space we define
two pairs of points p{ = (£1°,6°), p§ = (§7°,€3°) and pf = (£1°,6°), p§ =
( %C, %c) in log color space referring to pairs of pixels sampled from two colored
patches under illumination o and ¢ respectively. Likewise, we define the vectors
L° and L€ connecting these pairs of points. We will now see that these vectors

are identical assuming the diagonal model Eq. 3.3:

L =p5 —pi
= (& -¢ 8 -
—(lngglné,lngg ngg)

0 0 Bo Bo
e e e
—(lngg—lngg—klng—lng
—(lngg—lnc;g,lngg— ngg)

o o o o
(€’ -a"&" -&"

-1

= )

B B? y ¥
n==2-In=—Lt+4+In<Lt—In—-
e et

=p3—p]=L°

This proves that the vectors L in log color space are invariant to anisotropic
scaling caused by the illumination change.

Relying on the presented analysis we conclude that log color space is more
suitable than rg for describing the shape of multimodal color distributions.
Moreover, a work by Berwick and Lee [6] fully supports this choice of color
space. The authors presented an object recognition approach based on describ-
ing the object in terms of its color distribution. The distributions are represented
as binary masks and compared using cross correlation. Reported experiments
confirmed that an object’s signature in log color space is much more robust to
variations in imaging conditions than its signature in rg color, see Figure 3.5.
The main difference from our work is that Berwick and Lee encode the color
distribution shape of the whole object while we encode the relation between
distribution shapes corresponding to different object parts.
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Figure 3.5: Colored objects and their chromaticity signatures. (a) - columns
from left to right - reference image, rg signature, log signature. (b) - columns
from left to right - query image, rg signature, log signature. The query image
was taken under different illumination and from different angle. Notice the
greater similarity between log rather that rg signatures.

3.3 Using Shape Context

In [5] Belongie et al. introduced an alignment method for shape matching. They
define a novel local descriptor which incorporates global shape information,
called Shape Context (SC), and find correspondences between points on two
shapes using this descriptor. Given a set of correspondences a proper alignment
transformation is obtained. This method was successfully applied for matching
sampled contours of binarized letters and therefore proved itself useful for shape
based object recognition.

For a set of points (without loss of generality think of them as points on
a plane), the shape context descriptor at a given reference point is a log-polar
histogram centered at this point, counting the number of the remaining points
falling in each bin, see Figure 3.6. Such a histogram captures the spatial distri-
bution of the remaining points with respect to the reference point. In this work
we use the shape context descriptor to describe intra-distribution structures in
color space.

Assume that we are given a set of color observations O = {x1,...,zn}
(in some specific color space) that were extracted from an object. We will
differentiate between two cases:

1. The observations are labeled with binary spatial information: each obser-
vation x; is labeled with [; = 1 if it came from the upper part of the object,
and with [; = 0 if it came from the lower part of the object. ”Upper” and
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Figure 3.6: Shape Context descriptor. (a) Log-polar histogram bins overlaid
on top of the data points (5 bins for log(r) and 12 bins for #). (b) SC
descriptor of the reference point (the center of the log-polar histogram). The
darker the color the higher is the bin count.

”lower” have a well-define meaning we will describe later on.
2. The observations are given without any spatial information.

We will extract two different signatures corresponding to these two cases. In
the first case, let Oy = {z;|l; = 1} denote those observations generated from
the upper part of the object. Let Op, = {z;|l; = 0} be the actual observations
generated by the lower part of the object. Denote by sc(z, O) the shape context
descriptor of the points in the set O with respect to the reference point x. The
parts-based shape context signature is

PARTS — SC(OL, OU) = {SC(X7 OU)|X S OL} (38)

In other words, we encode the distribution of upper-part colors, with respect
to colors appearing in the lower part of the object. This signature captures the
shape of the upper-part color cloud, the shape of the lower-part color cloud and
the relative positioning of the two color clouds.

In the second case in which we have no spatial information at all, we define

SC(0) = {sc(z,0)|z € O} (3.9)

where O is the set of observations we have. We note that this is the standard
use of shape context for shape descriptions (e.g. [5]). However, in our work the
set O is made of points in color-space, whereas usually points in O are spatial
points (for example, contours of binarized letters).
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In chapter 5 we will explain how we obtained the spatial information required
for extracting the PARTS-SC signatures.

We note that the shape context descriptor includes a normalization of the
radial distances between the reference point and the set of other points. To
achieve scale invariance, all radial distances are divided by the mean distance
between all point pairs in the shape. We included this normalization too and
thus obtained invariance to contrast or dynamic range of observed colors.

Figure 3.7 shows several examples of parts-based shape context. The first
row shows different views of several people from the database. Below each
image we have the observations x; color-coded according to their label [;, with
red coding observations from the upper part of the image (I; = 1 or z; € Oyp).
We show the log-polar quantization of the color space, centered on one of the
blue points (the closest to the center of mass of the blue cloud). The third
row of the figure shows the shape context descriptor for this specific blue point.
The actual PARTS-SC signature is the collection of all such descriptors for all
the blue points of a given image. Looking at the second row, please note that
the structure of color clouds corresponding to two images of the same person,
are quite similar. In comparison with Figure 1.2 we may see here increased
similarity due to the normalization described above.

In section 3.2.4 we have discussed the invariant properties of log and rg
colorspaces and came to the conclusion that the log colorspace is more suitable
for describing the shapes of color distributions assuming the diagonal model.
We would like to remind that the log color space is not invariant to translation,
which results under the diagonal model assumption, but due to the inherent
translation invariant nature of the shape context descriptor, this disadvantage
vanishes.

We would like to stress that the PARTS-SC signature encodes the relation
between colors in the target rather than the absolute color values. Looking at
figure 3.8, please note that the fourth and the fifth columns from the left, depict
two persons dressed completely differently but having very similar PARTS-SC
signatures. We will show that, as expected, combining PARTS-SC with signa-
ture encoding the absolute color values will result in an enhanced descriptor.
Looking at the third and fourth columns of figure 3.8 reveals that the PARTS-
SC signature is not necessarily invariant to all illumination changes. Notice the
different angle between the red and the blue color clouds resulting in different
signatures extracted for the same person imaged under two different illumina-
tions. The reason for this difference is that the diagonal model is not always
capable of precisely describing the illumination change.
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Figure 3.7: Parts-based shape context examples. Row 1 - Pairs of images
demonstrate three people imaged in two different cameras. Row 2 -
observations x; color-coded by spatial origin. We added the log-polar
quantization of colorspace used in the shape context descriptor. Row 3 - shape
context descriptor for a single specific point (the darker the color, the higher
the value).

3.4 Comparing Signatures

A signature S extracted from a given image is a set of shape context descriptors
we will generically denote by S = {sc;}. If we are using PARTS-SC' then i runs
only on the indices of observations with lower spatial origin. If we are using the
SC signature, then ¢ runs over all observations.

We now describe how to compute the distance between two signatures S =
{s1,...,sn} and S" = {s,...,sy}. (As explained in section 5.1, we always
have the same number N of descriptors in each signature). Let C;; be the
Chi-squared distance between s; and s; Recall that each descriptor s;, s; is a
histogram over the log-polar bins we placed on colorspace. The matrix C with
entries C;; describes the cost matrix of matching shape context descriptors
from the first signature S with those from the second signature S’. We define
the distance between the two signatures as the minimal cost of matching their
elements:

d(S,S’) = The minimal cost of matching all elements in

S with all elements in S’ using the cost matrix C.
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Figure 3.8: Parts-based shape context examples. Row 1 - Pairs of images
demonstrate three people imaged in two different cameras. Row 2 -
observations x; color-coded by spatial origin. We added the log-polar
quantization of colorspace used in the shape context descriptor. Row 3 - shape
context descriptor for a single specific point (the darker the color, the higher
the value).

We compute the minimal cost by using Rubner’s EMD code? [49]. Figure
3.9 shows the actual optimal matching between two signatures. The first per-
son’s observations are marked with a + sign, and o marks the second person’s
observations.

3.5 Discussion

Encoding the red points distribution with respect to different blue points de-
scribes the red distribution shape seen from various locations of the blue distri-
bution. Thus, the multiplicity of such reference points ensures that the shape
of the blue distribution is encoded as well. Obviously, the more reference points
are used, the more precise is the description of the blue distribution shape.
Nevertheless, in case of a simple distribution shape, many reference points will
result in redundant descriptors. Moreover, a large number of reference points,
N, will negatively affect the running time of the procedure computing the dis-
tance between signatures. Recall that the computation of minimum cost perfect
matching is of complexity O(N?). In chapter 6 we show the impact of N on the

2The EMD code is available at http://ai.stanford.edu/~rubner/

31



Matching same person seen from different cameras (d=0.45934) Matching different persons (d=1)

=t | -
8 ° oy
3 o ¥
S 0.2 ¥
I 00, %
+ o gﬁgo
* o

(o

s & @5
Bo g%m@@gé%w © -04
8
o

log(B/G)
log(B/G)

*A *0‘5
log(R/G)

&

=
log(RIG)

(a) (b)

Figure 3.9: Matching pairs of clusters. Notice that only part of the matches is
shown for viewing convenience. Red/Blue '+’ represent upper/lower parts of
the first person and Red/Blue 0o’ represent upper/lower parts of the second
person. Matched person images are depicted on the left upper corner of the

graph. (a) The results of matching images of the same person captured by
different cameras. The cost of the matching is d = 0.46. (b) The results of
matching images of the different persons. The cost of the matching is d = 1.

re-identification accuracy evaluated on the VIPeR dataset.
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Chapter 4

Using Standard Invariants

In this chapter we will summarize some of the most commonly used color based
signatures for object identification. The majority of signatures encode the dis-
tribution of absolute color values either in the original color space (RGB) or in
one of the invariant color spaces [22]. The distribution may be encoded using a
histogram, a collection of sampled values or a parametrized model e.g. Gaussian
Mixture Model. Some signatures encode ratios of color values, to describe the
object color in illumination invariant way. Examples of such signatures may
be found in [19] and the mIm2m3 signature in [22]. While these signatures
are extracted from pairs of neighboring pixels and are most typically used on
regions borders, the PARTS-SC signature describes the relation between colors
of two remote regions.

4.1 Absolute Color Signatures

4.1.1 Histograms

Color histogram is the most widely used technique for color distribution descrip-
tion, since first introduced by Swain and Ballard [52]. In their work the authors
suggested to use histogram intersection as a similarity measure between the his-
tograms. Given two normalized color histograms h; and ho, each containing n
bins, a histogram intersection similarity measure between them is defined as:

H(hy,ho) =Y min (hy (k), ha(k)) (4.1)
k=1

Since the histograms are normalized i.e. sum of all their elements equals 1,
the histogram intersection similarity measure may be transformed to a distance
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measure in the [0..1] range:

n

dpr(h,hy) =1 =) min (b (k), ho(k)) (4.2)

k=1

The main advantage of a histogram intersection is its high speed. The main
disadvantage though is that it is a bin wise metric, and as such is sensitive to
the fixed histogram quantization. Cross bin metrics such as the EMD (Earth
Mover’s Distance) [49] may be used to overcome this downside, but on the
expense of a significant reduction in speed.

We have used a pair of color histograms in a log color space to describe
each part of the person clothing - the upper and the lower parts. We used
the histogram intersection method for measuring the distance between a pair
of histograms corresponding to each part. The overall distance between repre-
sentations is computed by summing the lower part distance and the upper part
distance.

4.1.2 Sampling and EMD

Another way of describing the color distribution in a target is by uniformly
sampling N pixels inside its silhouette boundaries and using the collection of N
pixel values as a descriptor. We have evaluated this approach as well, represent-
ing the target’s upper and lower parts as a collection of N points in log color
space. We have used EMD to measure the distance between the collections of
points, while the collection itself represents the signature and the cost matrix is
calculated using the FEuclidean distance in the log color space.

4.1.3 Gaussian Mixture Model

An alternative way for modeling the color distributions is a Gaussian Mixture
Model (GMM), a widely used parametric technique for modeling data distri-
butions. For example in [32] the authors used GMM for representing the color
distribution in person’s clothing for person re-identification. Since we assume
that the color distribution has roughly two modes - the clothes upper and lower
parts - we may use two unimodal Gaussians rather than the more general GMM.
We fit one Gaussian to each one of the upper and the lower parts of the tar-
get. Each Gaussian is represented by the mean p and the covariance matrix 3.
Given a pair of d-dimensional Gaussians g1 = (u1,%1) and g2 = (2, X2), the
distance between them is calculated using the Kullback-Leibler divergence [34]:

|34

drr(91]lg2) = %[W‘(Ez_lﬁl) + (2 — 1) 85 (2 — 1) — lOQ(F) —d] (4.3)
2|
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For symmetrizing the distance measure we will use the following distance:

d(g1,92) = dxr.(91]l92) + drr(g2l|91) (4.4)

Given a pair of Gaussians describing the person’s upper/lower parts appearance,
the distance between the overall appearance descriptions is simply the sum of
differences of the parts. We have evaluated this approach in the 2D log color
space.

4.2 Color Invariants
Besides the chromaticity color spaces discussed in the previous chapter (rg and

log), several other color spaces were proposed by Gevers and Smeulders [22], for
example:

e clc2c3: ¢ = arctan m7 co = arctan m7 c3 = arctan W

. _ (R=G)* _ (R=B)? _

o 11213: I = 2(R—G)2+(1~z—B)2+(G—B)2712 = (=G F(R=BPIG=B)7 13 =
(G=B)

(R=G)+(R=B)*+(G-D)?

e 0l02: 07 = M,OQ =

B _ R£G
2 2 4

We have evaluated the PARTS-SC performance in these color spaces, on
the calibration boards of Barnard [2], and compared them to the performance
obtained when using a regular histograms, as suggested in [22]. The results are
described in Experiment 1 in chapter 6. The results show that the PARTS-
SC' signature performs better than the histogram based signature in all tested
color spaces, suggesting that signature based on relations between colors are
sometimes more discriminative than those based on the color absolute values.

4.3 Covariance Descriptor

The region covariance descriptor for object recognition was first introduced in
[64]. Each pixel in the image is represented by a point in feature space. Possible
features are the spatial coordinates of the pixel, its color and gradients, just to
name a few. A region R in the image consisting of n pixels is described using
the covariance matrix of the corresponding feature points {zj},_,

1
n—1

> (o= )z — )" (4.5)

k=1

Cr=
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where p is a mean value of z;. An image is described by a set of covariance
descriptors corresponding to image regions. Comparison between covariance
descriptors is done using a metric for covariance matrices [18]

d
deoy(C1,Ca) = | Y In* Xi(Cy, C) (4.6)
i=1

where \;(C1,C2) are the generalized eigenvalues of C; and Cy computed
from \;Cru; = Cou; where u; # 0 are the generalized eigenvectors.

The region covariance descriptor has proved to be useful for texture clas-
sification and specific object recognition. It was also successfully applied for
person re-identification in a parts based approach [1] and in combination with
invariant color spaces [43].

We have evaluated a signature based on the region covariance descriptor.
The features we use to describe each pixel are its color in the original RGB
colorspace and its vertical spatial coordinate in respect to the bounding box:

zi = [R(2i,yi), G(2i,yi), B(w4, i), Yi) (4.7)

where z;,y; are the pixel coordinates and R(-,-), G(-,-) and B(-,-) are its RGB
color values. We found that adding x; coordinate to the feature vector reduces
the accuracy. A probable explanation may be the symmetry of color distribution
with respect to the vertical axis which is typically present in clothing we wear.
Another conclusion was that using feature space based on color invariants rather
than the original RGB values resulted in a reduced performance.

We have also found that using only those pixels belonging to the most dom-
inant color of each part when computing the covariance descriptor improves the
accuracy of the method. Therefore we find the largest segment of each part
using Mean Shift clustering [9] and use only pixels belonging to this segment.
The covariance descriptor signature provides us with an additional aspect of the
appearance of person’s clothing. It captures the texture missed by the signa-
tures describing the absolute colors and the relation between colors. Therefore
combining this signature with the other two is expected to enrich the descrip-
tion.
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Chapter 5

Signature Extraction

We now outline the additional processing envelope around the signature i.e.
steps applied from the moment a surveillance video or image is obtained until the
signature is extracted. First we describe how we obtain the spatial information
required for the PARTS-SC signature, and then how we exploit multiple frames
acquired for each person.

5.1 Patches Extraction and Sampling

Bounding boxes and silhouettes of the people in our experiments were extracted
from the surveillance videos semi-automatically, and resized to a fixed template
size. A fully automatic procedure for obtaining these bounding boxes and sil-
houettes may be based on a combination of pedestrian detectors [10, 61] and
background subtraction. A robust solution for this part is not straightforward
and is out of the scope of this work. We remark that our semi-automatic extrac-
tion of the silhouettes was not perfect and indeed does not have to be perfect.

Once the silhouette of a person is obtained, we extract two patches created
by the silhouette intersection with each one of the fixed masks shown in Figure
5.1. These masks were defined in order to minimize effects of mixing colors from
different clothing articles, or partial inclusion of head or feet into the patches.
The patch intersecting with the upper mask generates the observations in Oy
(those color-coded red) and the patch which intersects the lower mask generates
the blue-colored observations.

For computational efficiency we do not use all the observations, but a random
sample of NV = 85 observations from each part. This sample size was empirically
chosen to optimize the tradeoff between signature expressibility, robustness and
computational efficiency.
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(a) (b) () (d)

Figure 5.1: (a) - The bounding box of the detected person. (b) - Detected
person silhouette. (c¢) - Two masks for differentiating upper part and lower
part. (d) - The upper and lower patches from which red-coded and blue-coded
observations were sampled.

5.2 Re-Identification from Multiple Frames

Every person viewed by each camera is represented by a number of images
(frames). Let I . = {I} .}/, denote the collection of K images representing
person number p captured by camera number c. We define the distance between
two person/camera pairs, (p1,c1) and (pe2,c2) as a median distance between
images representing those pairs
. ) j KiK.

D(IP1701 ) IP2762) = mww"{{d(fél,cl ’ I;Z,CZ)}z‘:ll j:21 (5'1)
Distance between images, d(-,-), is the distance between signatures extracted
from them. Using median distance provides robustness to descriptor failures.
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Chapter 6

Results

6.1 Experiments

We present experimental validation of our approach on four databases. The
first is a controlled database publicly provided by Barnard [2]. In that database
colored patches were imaged under different illuminations in controlled exper-
iments. We compiled the second database by extracting images from actual
surveillance videos collected in an uncontrolled environment. It contains im-
ages of 31 people taken from 4 cameras under varying illumination conditions.
Then we compare our approach to those published by others using two publicly
available datasets - the VIPeR [26] and BOSS [53].

In our experiments, the criteria we use to measure recognition performance
is similar to [24, 58, 53, 27, 11]. We report the results using cumulative match
characteristic (CMC) [45]. The CMC is a curve plotting the probability of
the correct match to be in the first n top ranked matches, for every n. This
evaluation technique is motivated by the surveillance scenario where a query
target, represented by sequence of images captured by a particular camera, is
input to the system. The system then has to return matching targets (from all
the videos of other people in all cameras) ranked in descending order of their
similarity to the query.

All experiments are carried out using the log color space and a fixed set
of parameters for all our signatures. We have used 120 bins for shape context
descriptor (6 bins for log(r) and 20 bins for ). When building the 2D joint
histogram in log color space we have used a uniform partitioning of the space
into 10 bins. We have found that for person re-identification purposes, the most
informative region in the log color space is the [—1..1] x [—1..1] square, thus we
partition this region into 10 bins. Values outside this range are counted by the
closest bordering bin of the histogram.
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We compare the performance of several approaches:

1.

HI - the target signature is a histogram over log colorspace. Signatures
are compared using histogram intersection [52] as a distance measure as
described in section 4.1.1.

. EMD - the target signature is the actual observations in log colorspace.

Two signatures are compared using the Earth Mover’s Distance (EMD)
[49] between them. The cost matrix C;; is computed as Euclidean distance
between points p; and p; in log colorspace.

SC - the target signature is the SC signature without using spatial infor-
mation regarding the origins of the observations.

PARTS-SC - the target signature is the PARTS-SC signature (using
spatial information regarding the origins of the observations).

Cov - the target signature is the covariance descriptor. Signatures are
compared using the metric for covariance matrices defined in section 4.3.

GMM - the target signature is a Gaussian describing the color distribu-
tion in log colorspace. Signatures are compared using the KL divergence
as described in section 4.1.3.

Comb - the target signature is a combination of three signatures - the HI,
PARTS-SC and Cov. Signatures are compared using the average distance
between the component signatures:

1
Dcomy(S1, S2) = g(DHI(hlah2)+DPART57$C(SCbSC2)+DCOU(01;C2))
(6.1)

Regarding the HI and EMD methods, we evaluate each of them in two
variations. One is as described above, and the other uses the parts division of
the target as follows: a separate signature is extracted for the lower part and for
the upper part, and distances between corresponding signatures are added. For

Cov,

GMM and Comb signatures we evaluate only the parts based variation.

Overall, we evaluate nine possible approaches - three approaches are evaluated

in two variations and three approaches are evaluated using only one variation.

6.1.1 Experiment 1

In this experiment we evaluated the invariance of SC based signature to se-
vere illumination changes. The database (provided by Barnard [2]) contains 11
images of a color calibration board. In all the images the viewing position is pre-

served. The illumination changes significantly (see Figure 6.1(a) for example).
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Figure 6.1: Experiment 1. (a) - Barnard calibration boards under two different
illuminations. (b) - Comparison of three approaches for re-identification with
one/two parts variation.

We defined each column on the calibration board images as a target. For exam-
ple, (P1, P2),(Ps, Py),(P{, Py) and (P4, P;) on Figure 6.1(a) are different targets.
Therefore we have 5 x 11 = 55 targets in the database. For a given query (spe-
cific column under a specific illumination) we removed from the database all its
other images except one. The images of the different columns were all included.
We then ranked all these 45 objects (44 incorrect matches and one correct) by
their distance from the query object. Figure 6.1(b) shows the matching rate
for our three methods and two variations ( parts-based and single component)
of each. As can be seen, PARTS-SC signature has the best performance with
80% of queries resulting in top ranked correct match. EMD (2 parts) is second
with approximately 57% of the queries resulting in top ranked correct match
and 92% in the ten top ranked. For each method the parts-based approach
outperforms the single component approach. The HI method under-performs
significantly with respect to the SC and EMD methods.

We have evaluated the PARTS-SC signature performance on several color
spaces besides the log color space. Figure 6.2(a) shows the performance on
the RGB, rg, clc2¢3, 111213 and 0lo2 color spaces. Figure 6.2(b) shows the
performance for the same color spaces using the HI signature. We can see that
the performance of both PARTS-SC and HI signatures is better when used with
the log color space than with alternative color spaces.
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Figure 6.2: Experiment 1.(a) - Comparison of PARTS-SC and SC
re-identification performance for 5 different color spaces. (b) - Comparison of
HI (with one/two parts variation) re-identification performance for 5 different

color spaces.

6.1.2 Experiment 2

The database in this experiment contains images of 31 different individuals
captured across four different cameras - a low resolution outdoor surveillance
camera, two indoor surveillance cameras and a personal high quality camera.
Please see Figure 1.1 for an impression of the variations in appearance. Every
person in each view is represented by four to ten images extracted from the
videos. The distance between two pairs of person/camera is defined in section
5.2.

Figure 6.3(a) shows the matching rate for the methods used in Experiment
1 and the GMM method. Again parts-based approaches perform better than
the corresponding single component approaches. The parts based EMD, HI and
PARTS-SC approaches perform relatively similarly. For each one of the three
parts based approaches about 87% of queries result in a correct match within
the first ten targets. We can see that the GMM signature performance is lower
than the first three parts based signatures. Figure 6.3(b) shows the matching
rate for the PARTS-SC, HI and Cov methods and for their combination, the
Comb method. The Cov method has the best performance out of the first
three methods, and the combined method significantly improves the overall
performance. Figure 6.4 shows the five top ranked candidates for a number of
queries, using the PARTS-SC HI and Cov methods. Different methods give
different ranks to the candidates emphasizing the difference in aspects captured
by each one of them. Each horizontal section in figure 6.4 features those queries
resulting in a top ranked correct match using one of the methods while other
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Figure 6.3: Experiment 2. (a) - Comparison of the three approaches for
re-identification with one/two parts variation. (b) - Comparison of two parts
variation of PARTS-SC and HI methods with Cov method and their
combination, the Comb method.

methods fail. The first, second and the third horizontal section show those
queries resulting in a top ranked correct match using the PARTS-SC HI and Cov
methods respectively. As expected, the combined method Comb is significantly
better than any of its components, since it benefits from aspects captured by all
of the three. Figure 6.5 shows five top ranked candidates returned by the Comb
method for twelve exemplar queries generated by each one of the four cameras.

6.2 Comparison With The State Of The Art

6.2.1 VIPeR Dataset

VIPeR! is an evaluation dataset for viewpoint invariant person recognition in-
troduced by Gray et al. [26]. The dataset contains 632 image pairs of pedestrians
taken from arbitrary viewpoints under varying illumination conditions. All the
images are normalized to a fixed size of 128x48 pixels, see examples in figure
6.6.

VIPeR is considered the most challenging dataset for person re-identification
due to significant changes in illumination and pose, relatively low resolution
and very limited information for modeling the pedestrian appearance. The au-
thors have also published performance evaluation of several baseline approaches
including joint histograms, concatenated histograms and hand localized his-
tograms introduced in [47], just to name a few. For evaluation, pedestrians in

1VIPeR dataset is available at http://vision.soe.ucsc.edu/?q=node/178
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the dataset were split into training and testing sets using random partitions.
Each set had 316 pedestrian image pairs, while each pair order (which image in
the pair is the gallery and which one is the probe image) was randomly chosen.

In a follow up work by Gray and Tao [27] the ELF (Ensemble of Localized
Features) approach was proposed, suggesting to use feature selection to auto-
matically choose the most discriminating features out of a large pool of color
and texture features. ELF by far outperformed the baseline methods reported
in [26]. The recently published SDALF (Symmetry-Driven Accumulation of
Local Features) approach [11] made a step further, improving the ELF perfor-
mance. We follow the methodology described in [26, 11] while evaluating the
performance of our approach on VIPeR. In order to make the comparison to
SDALF as close as possible we have averaged the results over the exact same
10 partition sets of pedestrians used for evaluation of SDALFZ2.

Figure 6.7 shows the performance of our color based signatures and the
baseline approaches reported in [26]. Our PARTS-SC and HI approaches by far
outperform the best baseline approach, hand-localized histogram, even though
they utilize roughly the same information - upper and lower parts color. Figure
6.8 shows the performance of the PARTS-SC, HI and the Cov approaches and
their combination - the Comb signature. Afterwards the Comb approach is
compared to the ELF and SDALF. Comb outperforms SDALF with 23% of the
queries resulting in the the top ranked correct match, and 58% in the ten top
ranked versus 50% by SDALF. Error bars on the Comb CMC curve indicate the
standard deviation from the mean computed over the 10 partition sets.

Figure 6.9(a) depicts several examples of the top ranked matches returned
by the Comb signature, and Figure 6.9(b) depicts several examples where the
correct match was obtained in the first ten candidate. For viewing convenience
only the top 10 candidate out of 316 were displayed.

Since PARTS-SC and EMD methods use sampled data, we checked how
the sample size affects the accuracy of these methods. Figure 6.10 shows the
normalized area under the CMC curve obtained using four different sample
sizes. Based on these results, we have chosen the sample size of 85 for our
experiments. At first glance it might seem that sample size impact on the
accuracy is not very strong because of relatively small differences (0.01 order of
magnitude). Note though that 0.01 difference in the normalized area under the
CMC curve may result in addition of 316*0.01=3.16 units to the effective area,
significantly improving the performance.

2Evaluation partition sets are available at http://www.lorisbazzani.info/code-
datasets/sdalf-descriptor/
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6.2.2 BOSS Dataset

The BOSS project dataset® contains video sequences shot by onboard cameras
in a suburban train. We used these video sequences for capturing images of
35 passengers viewed from two cameras. Indoors and outdoors illumination
changes, caused by a moving train, induce high variations on passengers ap-
pearance between the cameras. Figure 6.11 shows several examples.

Truong Cong et al. [53] have used the BOSS dataset for evaluation of three
color signatures, differently exploiting the color and spatial information. The
evaluated signatures were - RGB histogram, RGB-path-length joint histogram
and a spatiogram [7]. Each signature was combined with several illumination
normalization techniques. We have evaluated our signatures using the same
methodology as in [53], Figure 6.12 shows our results. The Comb signature
returns a correct top ranked match in 77% of the queries and 97% of the queries
result in the correct match appearing in two top ranked results. According
to experiments reported in [53], the spatiogram signature outperformed the
other two, thus we used it for comparison with our Comb signature. Figure
6.13 shows the comparison of Comb with the spatiogram signature. The best
method slightly outperforms Comb, but because of a small number of persons
involved (35), it is hard to draw a reliable conclusion based on this experiment.

3BOSS project dataset is available at http://www.celtic-boss.org/
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Figure 6.4: Experiment 2. Five top ranked candidate matches returned by
PARTS-SC (fig. a) HI (fig. b) and Cov (fig. ¢) methods for twelve different
queries. For each one of the figures (a)-(c), the leftmost column shows the
query image and to the right of each query, five top ranked matches are
displayed. Highlighted images represent a correct match.
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Figure 6.5: Experiment 2. Five top ranked candidate matches returned by
Comb method for twelve queries from each one of the four cameras (a)-(d) .
For each one of the figures (a)-(d), the leftmost column shows the query image
and to the right of each query, five top ranked matches are displayed.
Highlighted images represent a correct match. In the bottom rows of figures
(a)-(c) there are examples of a queries which do not have any correct match in
the five top ranked candidates.

47

Technion - Computer Science Department - M.Sc. Thesis MSC-2012-03 - 2012



Figure 6.6: Examples of pedestrian image pairs from the VIPeR dataset. Note
the strong variations in illumination and pose.
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Figure 6.7: VIPeR dataset. (a) - Comparison of the three approaches for
re-identification with one/two parts variation and the GMM approach. (b) -
Comparison to the best baseline approach reported in [26].
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Figure 6.8: VIPeR dataset. (a) - Comparison of two parts variation of
PARTS-SC and HI methods with Cov method and their combination, the
Comb method. (b) - Comparison of the Comb method with the ELF and
SDALF methods.
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Figure 6.9: VIPeR dataset. Examples of matches using the Comb signature.

For each one of the figures (a) and (b), the leftmost column shows the probe

image and to the right of it the ten top ranked matches out of the 316 gallery

images are displayed. Highlighted images represent a correct match. The last

row in column (b) is an example of a query which does not have any correct
match in the ten top ranked.
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Figure 6.10: VIPeR dataset. Accuracy as a function of the sample size. Four
different sample sizes were used - 50,70,85 and 100. The best results are
obtained for sample size of 85.

Figure 6.11: Examples of passenger images in the BOSS dataset. Each row
shows images viewed by different camera. Note the difference in the viewing
directions of the cameras and the different illumination conditions.
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Chapter 7

Discussion

7.1 Major Contributions

In this work we have evaluated and compared several methods for person re-
identification using color. We conclude that color is a powerful cue for person re-
identification, when used properly. Adding quite limited information regarding
the color observation spatial source (upper/lower part) contributes significantly
to the performance. Our main contribution is an invariant signature exploiting
a structure of color distributions, using different parts of the object. We have
proved the signature’s invariant properties under the assumption of a diagonal
model for illumination change and demonstrated its discriminative nature in
various experiments. We have introduced Comb, a state-of-the-art signature
for person re-identification, and evaluated its performance on publicly available
datasets.

7.2 Future Work

We have shown that the PARTS-SC signature is perfectly invariant to illumina-
tion change under the assumption of a diagonal model for illumination change.
In practice the diagonal model does not hold perfectly, but preprocessing meth-
ods such as sensor sharpening (see chapter 8.1) may improve the accuracy of
the model for a specific camera. One possible way to improve the PARTS-SC
signature invariance would be to allow camera calibration in form of deriving
its sharpening transform and working with the transformed sensors.

Our Comb signature is actually built of three different signatures each cap-
turing a different aspect of the target. The distance measure between two Comb
signatures, Eq. 6.1, equally weights the distances between the component sig-
natures. In our experiments we did not try to optimize the distance measure
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over the weighting parameters. Thus, their learning may lead to accuracy im-
provement.

Throughout this work we have treated the person re-identification problem
as a ranking problem. We did not address the confidence measure returned by
each one of the signatures. A possible extension of our work would be analyzing
the distance measures returned by each signature and converting them into a
measure of confidence. Given a query, the returned measure of confidence for
each candidate could be used by a human operator as an indicator whether or
not it is worthwhile searching the candidates list further or not.

Generally speaking, the problem of person re-identification is still far from
being solved and offers much space for improvements either on the description
side or the classification schemes side.
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Chapter 8

Appendix

8.1 Diagonal Model Validation

The purpose of this section is to analyze the power of the diagonal model used
for modeling the illumination changes. Finlayson et al. [15] have shown that
under the assumption of narrow-band sensors, i.e. the spectral response func-
tion of imaging device sensors are close enough to the Dirac delta function, the
illumination change can be modeled almost perfectly using the diagonal trans-
formation. The authors have proved that when sensors spectral distribution is
not narrow-band, it is still possible to make it more narrow-band by applying
a linear transformation T on the sensor responses, a process they call spectral
sharpening. The matrix T transforms the sensor responses to a new basis in
which the diagonal model holds more precisely. Several methods for comput-
ing T were suggested in [15]. The most suitable method for practical purposes
is the database sharpening method. The idea behind this approach is to es-
timate 7', using a database of reflectance observations obtained under various
illuminations.

Let us assume that the sensor responses p° = (R°, G°, B°) and p¢ = (R¢, G¢, B°),
corresponding to a surface imaged under two different illuminations o and c re-
spectively, are related by a general linear transformation M, i.e. p¢ = p°M.
Let A; and A; denote n x 3 matrices of sensor responses to n surfaces under
illuminants ¢ and j respectively. Thus the optimal M;; is obtained through a
least-square solution for A;M;; = A;. Given a database of IV images, each de-
picting n colored surfaces, the average mapping error of the image pairs in the
database is obtained by:

mZZII&Mw — Ajllp (8.1)

i j#i
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where ||-||z is a Frobenius matrix norm. This is the lowest possible mapping
error, under the assumption of a linear transformation between the sensor re-
sponses. The linear transformation Tj; diagonalizing M;; (M;; = TijDz-jTi;l),
is in fact the sensors sharpening transformation [15] learned from a pair of il-
luminations ¢ and j. Speaking practically, sharpening transformation depends
on the camera sensors and as such has to be camera dependent and not to be
tailored towards a specific pair of illuminations. Several methods for obtaining
such a general sharpening transformation can be found in [3]. We will not delve
into these procedures, but rather assume that such a transformation 7" is given
to us. The sensor responses of each one of the N images in the database are
transformed to a new basis, A, = A;T, ¢ = 1..N. For a pair of images i, j, a
diagonal mapping from A’ to A; is obtained by computing the optimal, in the
least-square sense, D;; from A} = A’D;;. Finally, the average mapping error
for the image pairs in the database is obtained by:

1 _
T LY Arp, T - A, 52
i g

Here, for each pair of images, instead of using the ad hoc linear transformation
M;j, a general sharpening transformation is used together with a more limited
ad hoc diagonal transformation. Thus, at best the obtained mapping error will
be the same as in Eq. 8.1, but usually it will be higher. We can, therefore,
use Eq. 8.1 as a lower bound on Eq. 8.2. Assuming a simple diagonal model,
without sharpening whatsoever, the average mapping error for the image pairs
in the database is computed using Eq. 8.2 (replacing T' by the 3 x 3 identity
matrix):

N L Dy - 4l 3

i jF£i

In our experiment we use a database of images taken under different illu-
minations indoors and outdoors introduced by Gehler et al. [20]. A Macbeth
colorcheckers board (color calibration board) is shot in each one of these images,
figure 8.2 shows some examples. We use the top three rows of the calibration
board tiles as a set of surfaces and randomly split them into two subsets. Using
the first subset of tiles we obtain the diagonal mapping D;; and the linear map-
ping M;; for each image pair (i, j). We evaluate the average diagonal mapping
error and the average linear mapping error using Eq. 8.3 and Eq. 8.1 respec-
tively, and call them error measures. We would like to estimate how significant
the average error is in comparison with the average distance between different
surfaces. To this end, we use the second subset of tiles for evaluating the av-
erage distance between different surfaces mapped using the diagonal and linear
transformations obtained from the first subset, and call them distance measures.
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Figure 8.1: Error and distance measures of the diagonal and the linear
mappings. We differentiate between three cases: 1. Both images are taken
indoors. 2. Both images are taken outdoors. 3. No constraints on the scene

type.

The lower the ratio between the error measure and the distance measure, the
better discriminating abilities are. We differentiate between three cases in our
experiments - using images taken only indoors, only outdoors or all of the im-
ages without any constraints. Figure 8.1 depicts error and distance measures
for the three cases. As expected, the error measures corresponding to the diag-
onal mapping are higher than those corresponding to the linear mapping. The
difference in the error measures is not that high, thus had we used sharpen-
ing transformation the error would not be reduced significantly. Similarly, the
distance measures corresponding to the diagonal mapping are lower than those
corresponding to the linear mapping. Looking at the results we can conclude
that the discriminating power of the linear model is higher than that of the
diagonal model, based on a smaller ratio between the error and the distance
measures. But the difference is not very significant, suggesting that the diago-
nal model is indeed a very good compromise between simplicity and accuracy.
Another conclusion is that the diagonal model is more suitable for modeling the
illumination variations outdoors than indoors since the ratio between error and
distance measures for the outdoor images is smaller than that for the indoor
images.

As shown in section 3.2.3, log color space is invariant to changes in the illu-
mination conditions assuming the diagonal model up to translation. Translation
vector (log%, log%) depends only on the parameters of the diagonal model. We
have extracted the diagonal model parameters (a,,v) for pairs of different
illuminations, while we make a distinction between four cases:
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Figure 8.2: (a-d) Examples of images from database by Gehler et al. [20]. (e-f)
Distribution of translation vectors due to illumination change. (a),(b) Images
of indoors scenes. (c),(d) Images of outdoors scenes. (e) - Both scenes are
imaged under either outdoor or indoor illumination. (f) - One scene is imaged
under outdoor illumination and one is imaged under indoor illumination. Note
the large differences in illumination conditions.

e Both illuminations are outdoors.

e Both illuminations are indoors.
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e The first illumination is indoors and the second is outdoors.
e The first illumination is outdoors and the second is indoors.

Figure 8.2 depicts the distribution of translation vectors for these cases. No-
tice that in the first case the vectors are distributed more densely around the
zero vector, while in the second case the distribution has higher variance, indi-
cating on a higher variance in illumination indoors than outdoors. As expected,
in the third and fourth case vector distributions reveal the tendency of colors
to become colder (more blue) and warmer (more red) respectively.
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Mpnn SC -5 Myav vwTAY 2IWN .0Y2a DN DPONN Y DY NYaNNN MmN
Yasn anma mmMpy nuvann annn PARTS-SC -0 ,n»anan moyTiNipa vonwvny
N My8NNI MNP MIVN PNV INPNA DINNY log-chromaticity =N AnNIN1 0792
Sy OHVINN TITYN PHR NPRY YA PPN IR T, NNNX 93 PARTS-SC »nmn

MNVNN N P ORI PNNN

PMNONY qUN1A ,NMI NOTaN N1 PARTS-SC -0 nionnbw 1N NyXay 0ol
MIVND YOI ,N0NN XPON OYAN P DN IR NIRNND N NP TN DPOINIMPND
YRN NADIN TIY ON LIV NNR TIMT MNIAN P’ 9030 MY OYaN Nan mbdya
MOYW 99010 NPT .97 MWY NIAND MY NIVNN DY DVONINN DYasn M
MPono v GMM -  JEMD ,nnanoon )irya 0»0nnann oyasn INn Hv
1N NP ©VN OWVIAN DR TIM log-chromaticity ~N YA¥ 2NN NNINVDNNY
YPON MY NNND NNINVDNIT VYNNIV .FPIWNN MDY NYNAN )M PYTN N»nan
PYTN NN T9VN DPONA VYRV DRI NDNNM POV PONN L, 0TRD DY Wviadn

JPIO21DN NNINVLOND RNV

D09 D NMAN NINNND N NP ,NNVDPY NN ¥IADN 2019 DY DI 2IWN PPIRD
52 AN YN Mvpnwn nIvonn on PARTS-SC -0 nmonn . msavm
covariance descriptor 2 NDYNNVYN  .NMODPL TTIPY MONON PN 1PN ( INYPI)
INY DIONND AN .DXTHIAA DYIAX HY DPTY DY AMOOPLN TP [54]
NOWYY DNDNA LFPOONN DY FPOIND NPANINND NV TINIPM *Npnn RGB -n N0
700N Y932 NRID ,DWINAD NYNS TPPOND NPANIBN NOPTNNIPN NODINY 1PN
PARTS- 080y mmoonnn nvidvn NNX Y5 7I9IND ¥iadn NN DY 1PN
SY PTIA IR DY NNV VPODR NINNN covariance descriptor -1 NIavEn , SC



JININY MPI2VAN NN VY vy DINNA MNYNIN MTIAyN DNN NNY , [24] -2
NNYA VIAON M09 DY PNOVINMD NYNIAND ,TI932 0”79 93D 7PSVINIDN VI INRD
S5y DDDIANN DPOMPN DNNN GDIND NININND NIVNN .OI»I90 P2 PNDON WP
DNYY NN DIANHNN .NI0NN 22X DY M Py MTMPIY 2200 NNVDPLY yaN
NONT .NI9%) NN OWINAN NN J9VN TI9A PYN YD NN DPONY NIVNN NN
DaNNN OV [24] Y T L[27] T2 NIXND 11 M0 NNY YA NYNNYNRY DAy
(feature selection) 19mN TSN DWVHNYN 1 NTIAYD ,WYRIND 1ITNIN DIOINIMPN
NMODPVLY YN YODIAN DIPAND HD1D MVNRNN DN NN DPINN DXIINND NPNIAY
TN ANPY NN R NTIAYN DAPNNY NIMIYHD IRNIN DY DIVNI YHYA DNY OO
NN OWHTH T NINAN .YAN YODIAN P 1DNNN TONND 1IN DININNDIN NN 75

2NN PONNA yasn YY Nan mawnn

722 PN [52] ¥ax Sy DDIANN MIVHY NMXNY INPA V193N NNTIN NN ININVDNN
MYNIN DN PMNIDN 1PN ,1INAN N9ID NYYI NPNWN NP VIO NVIVE NINY
NN NNNNA OMPYN DY 2NN XTD .ODDPAN DY YANIN YT AT NNIRN MPYY
DY NN Mand Pand N [29] (color constancy) yass N9 MIMMONI WHNWND
NADIND MVLIY DN WM I3 1D .[22] NINN MYAVND YVINIMNMPN ININD DODPAN

.59, 7] "oNTS ,MnANvDAY *anm YN

D7 MNYNNN 2172 .NNONNN DY DIWHNN 2Dy MY MANPI YN VPPN DY NN
93 5NN WD (0N 1 o TR) B 1Y G R -5 15 05omin 0avrn ono vidv
PON YOI NN JWINN NIANN LOINON STINN 29 DY .INRNNI D210 DPNYA ,0M1a)
MNND VPR DY NPOIVPADN MNONN JYPNN MWD - 0PIy DN DYDY 1ON
2N .O2INNN NLYHNN DR IINY INNAN NRD NIRNND DY NPSIVPADN MNINM
DINPNN 90NV 9932 VAN NN YVINON DTN DY MNNYNN TINND NOWNN 2IPINNI
VYO N9 NPNPOONND 72 NNT MDY .DMOYIN 990NN OP MNXNIWHN DY
NLYNN PIMANND DR NINNIN NIVN ANV NN DY NIRN ONIND DVPPIN MNNN
YNIN NNN VPPIIND NNNN PYIAN DYV OMPYN IR OINNND DD TV ON .wNoana
DPANDN 11D .O0NYINN 2DTY DY TINRYD MPNNINADIT0 MYNNNI ONYN NNINRNN
99511 JWPN YD HY 1DTY 1PAY T TPNDVIONN PNNNOVITVN - DIDN NON PNNNODITVI
NN DIV TYNI PN ONUIONRN DTINN .DINNRD DIYIPNN 109Y2 NON N Mapa
STINN MOLYY DN NNE NTAY .[14] NPMINOSD NPYIO NINRNA DMIPY INNY DIRNN
T 9T NN VAN O ,[42] NTIAY DNIND MR MM MTAY DAY T30 1920

2 NTaya

NNY DNWYD 2NDIOND DTN NNIN NNN 0NN X, RGB p07 1000 yasn ann
YIS AN ,NNNTY JPPON N IRDND NPOVINRIMPN NYDIND 1N DD YA 2NN DIV
22YNN DIRNN YIAND POMOIMPN IR TR INRND DAY SONIMPN 1gh 910N
VIDYW TIN DVWTND OYNPRN DOPN 09yn NN NN NN yax anand RGB n
MNON OND2 J9IND PINNIDITIVN NMNX DX Y DOP9 YO . PIDON 7PNV
MY 1T NN [6] log-chromaticity “n Yasn anm ,NNTY .DINKD DO
noyNa NP nomn RGB -1 anna nvyann ndn muyTiNIpa a8pmnn Sops 9o



9851

NYAY 990 7772 .INVAN MNISN NDID 29PN TPMYNVYN 1YY NON MNINKRD OV
0NN DNVNI MDIINON MNINN S¥ DXND 90N NID INWID DNNNI NNVIN MNONN
00NN O»PN Mndynn Sv (field of view) NI MTY MaNp DNyY .0
DVIN DY NPOON NN DNMINON MYNINI TY DY DNINNN NNVIAN YOID
937 99N ") MmN (background subtraction) ypan MOMN MNIMON MO
NN MM DYYA 0NN TONI NRDMND IOR NYo¥ (pedestrian detector)
NNN2 NNNINY NN TR0 Sy 0T MY NN (person re-identification) DwIN Hv
NRNNND NAVYNI 7PYIN .NYIL NINN NNONNA NNDINY INNN RPN NYIT MNONNN
TIND TN DTRD IMN NIN TIRND MINY MNONNN 1ND2INY MNNNNY )91 TN
NN 2MANID DIPHN ,NTNIRNN PNIND DMIPY 0TI MDON .NM”IVNN DNX NNV
YNV DN NN TPIONT DNVIN VIO 1D WD .INONND DN’ OTRN DY DNNNM
,T2 O Q0N D29 M 1ND DMIVNYI DIANND DY MODIANN MPNIOVI YHRNWNON
IN TTI2 DINNN 90N T DYMIND TIND NI NP DR Y8 ¥ Pa DYY Y PHRnY 1on»

DR IRT

NN YN TAR TYNY NN DTRD IRID DX INND W O DY IR NNSD N DY
LDOVIN DY 29 99010 P DXTAND AWOND MDY T8N DIPINN ININD DMPVN MINY Imint
IR MIN MOWNN PON .DVN 90N MYTIIN YN PNINSY MY 190N W
MY NN YY QOIN ORI DIPHN MON»NN 1PN DNPI9N P2 I PN WP
Sy DXINNDN DIVANNT 21T .DTRN DY IRIND NNND DNV D2IPANNI MYNNYND MNY
aNIN N2 MTAY ¥ . TPOONN NNIND DYNNYN 0) ONYD) 01 THAN DY NNMOVDPLMN YaNN
(feature selection) DaNHN NN DWYHNYN MINNI DN WNIND ITNN DIPINNDN
21> DTRD NI DY WK TNV 91T GOIN TINHD NP2 DXNVN DXIMIRNN NPNIAD
oINYY .0»O301 PPOYN ) ADAD T NNON ,NINTY ,DPYN DY DDIAN IN 200D N
DXTPN TONNI N DY 29D RN MMNNY bag of features -n NwHa ViKY Nvy) O
YPNAD DTN D1 DVIND DY ININD NN DIRNNDN 025NN OI”INN SY N1 1)
MTIPI NNNN DVNNYHN MTIAYNN PN . TN2IW NIMN MDD Dyn NHYONND ININND
DPOIPN DN DY qOIND DTND IR IR o IRNm (SIFT, SURF) mas yay
VA DYNNYN 210 INNY T DN MYNIN )0 132 J9IN2 MOTA 0) My
DYDY TN PN JOYN NNNTI ,0IVA DD ININD PNND P2 PN NPPIVN DV

SVM nnnTs 0 Tpn 7D PONN MYNTN 9N» MANNI NTNY MNIDI DVNINYN
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