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Abstract 

The human visual system encodes the chromatic signals conveyed 

by the three types of retinal cone photoreceptors in an opponent 

fashion. This color opponency has been shown to constitute an 

efficient encoding by spectral decorrelation of the receptor signals. 

We analyze the spatial and chromatic structure of natural scenes by 

decomposing the spectral images into a set of linear basis functions 

such that they constitute a representation with minimal redun

dancy. Independent component analysis finds the basis functions 

that transforms the spatiochromatic data such that the outputs 

(activations) are statistically as independent as possible, i.e. least 

redundant. The resulting basis functions show strong opponency 

along an achromatic direction (luminance edges), along a blue

yellow direction, and along a red-blue direction. Furthermore, the 

resulting activations have very sparse distributions, suggesting that 

the use of color opponency in the human visual system achieves a 

highly efficient representation of colors. Our findings suggest that 

color opponency is a result of the properties of natural spectra and 

not solely a consequence of the overlapping cone spectral sensitiv

ities. 

1 Statistical structure of natural scenes 

Efficient encoding of visual sensory information is an important task for informa

tion processing systems and its study may provide insights into coding principles 

of biological visual systems. An important goal of sensory information processing 
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is to transform the input signals such that the redundancy between the inputs is 

reduced. In natural scenes, the image intensity is highly predictable from neighbor

ing measurements and an efficient representation preserves the information while 

the neuronal output is minimized. Recently, several methods have been proposed 

for finding efficient codes for achromatic images of natural scenes [1, 2, 3, 4]. While 

luminance dominates the structure of the visual world, color vision provides impor

tant additional information about our environment. Therefore, we are interested 

in efficient, i.e. redundancy reducing representations for the chromatic structure of 

natural scenes. 

2 Learning efficient representation for chromatic image 

Our goal was to find efficient representations of the chromatic sensory information 

such that its spatial and chromatic redundancy is reduced significantly. The method 

we used for finding statistically efficient representations is independent component 

analysis (ICA). ICA is a way of finding a linear non-orthogonal co-ordinate system 

in multivariate data that minimizes mutual information among the axial projections 

of the data. The directions of the axes of this co-ordinate system (basis functions) 

are determined by both second and higher-order statistics of the original data, com

pared to Principal Component Analysis (PCA) which is used solely in second order 

statistics and has orthogonal basis functions. The goal of ICA is to perform a 

linear transform which makes the resulting source outputs as statistically indepen

dent from each other as possible [5]. ICA assumes an unknown source vector s 

with mutually independent components Si. A small patch of the observed image is 

stretched into a vector x that can be represented as a linear combination of sources 

components Si such that 

x=As, (1) 

where A is a scalar square matrix and the columns of A are the basis functions. 

Since A and s are unknown the goal of ICA is to adapt the basis functions by esti

mating s so that the individual components Si are statistically independent and this 

adaptation process minimizes the mutual information between the components Si. 

A learning algorithm can be derived using the information maximization principle 

[5] or the maximum likelihood estimation (MLE) method which can be shown to be 

equivalent in this case. In our experiments, we used the infomax learning rule with 

natural gradient extension and the learning algorithm for the basis functions is 

(2) 

where I is the identity matrix, rp(s) = - 8p~(W3s and sT denotes the matrix trans

pose of s . .6.A is the change of the basis functions that is added to A. The change 

in .6.A will converge to zero once the adaptation process is complete. Note that 

rp(s) requires a density model for p(Si). We used a parametric exponential power 

density P(Si) ex exp( -ISilqi) and simultaneously updated its shape by inferring the 

value qi to match the distribution of the estimated sources [6]. This is accomplished 

by finding the maximum posteriori value of qi given the observed data. The ICA 

algorithm can thus characterize a wide class of statistical distributions including 

uniform, Gaussian, Laplacian, and other so-called sub- and super-Gaussian densi

ties. In other words, our experiments do not constrain the coefficients to have a 
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Figure 1: Linear decomposition of an observed spectral image patch into its basis 

functions. 

sparse distribution, unlike some previous methods [1, 2]. The algorithm converged 

to a solution of maximal independence and the distributions of the coefficients were 

approximated by exponential power densities. 

We investigated samples of spectral images of natural scenes as illustrated in Fig

ure 1. We analyzed a set of hyperspectral images [7] with a size of 256 x 256 pixels. 

Each pixel is represented by radiance values for 31 wavebands of 10 nm width, 

sampled in 10 nm steps between 400 and 700 nm. The pixel size corresponds to 

0.056xO.056 deg of visual angle. The images were recorded around Bristol, either 

outdoors, or inside the glass houses of Bristol Botanical Gardens. We chose eight 

of these images which had been obtained outdoors under apparently different illu

mination conditions. The vector of 31 spectral radiance values of each pixel was 

converted to a vector of 3 cone excitation values whose components were the inner 

products of the radiance vector with the vectors of L-, M-, and S-cone sensitivity 

values [8], respectively. From the entire image data set, 7x7 pixel image patches 

were chosen randomly, yielding 7x7x3 = 147 dimensional vectors. The learning 

process was done in 500 steps, each using a set of spectra of 40000 image patches, 

5000 chosen randomly from each of the eight images. A set of basis functions for 

7x7 pixel patches was obtained, with each pixel containing the logarithms of the 

excitations of the three human cone photo receptors that represented the receptor 

signals in the human retina [8, 9]. To visualize the learned basis functions, we 



used the method by Ruderman et al. [9] and plotted for each basis function a 7 x 7 

pixel matrix, with the color of each pixel indicating the combination of L, M, and 

S cone responses as follows. The values for each patch were normalized to values 

between a and 255, with a cone excitation corresponding to a value of 128. Thus, 

the R, G, and B components of each pixel represent the relative excitations of L, 

M, and S cones, respectively. To further illustrate the chromatic properties of the 

basis functions, we convert the L, M, S vector of each pixel to its projection onto 

the isoluminant plane of a cone-opponent color space similar to the color spaces of 

MacLeod and Boynton[lO] and Derrington et al[l1]. In our plots, the horizontal 

axis corresponds to the response of an L cone versus M cone opponent mechanism, 

the vertical axis corresponds to S cone modulation. For each pixel of the basis 

functions, a point is plotted at its corresponding location in that color space. The 

color of the points are the same as used for the pixels in the top part of the fig

ure. Thus, although only the projection onto the isoluminant plane is shown, the 

third dimension (i.e., luminance) can be inferred by the brightness of the points. 

Figure 2a shows the learned leA basis functions in a pseudo color representation. 

Figure 2b shows the color space coordinates of the chromaticities of the pixels in 

each basis function. The peA basis functions and their corresponding color space 

coordinates are shown in Figure 2c and 2d respectively. Both representations are 

in order of decreasing L2-norm. The peA results show a global spatial represen

tation and their opponent basis functions lie mostly along the coordinate axes of 

the cone-opponent color space. In addition, there are functions that imply mixtures 

of non-opponent colors. In contrast to peA basis functions, the leA basis func

tions are localized and oriented. When ordered by decreasing L2-norm, achromatic 

basis functions tend to appear before chromatic basis functions. This reflects the 

fact that in the natural environment, luminance variations are generally larger than 

chromatic variations [7]. The achromatic basis functions are localized and oriented, 

similar to those found in the analysis of grayscale natural images [1, 2]. Most ofthe 

chromatic basis functions, particularly those with strong contributions, are color 

opponent, i.e., the chromaticities of their pixels lie roughly along a line through the 

origin of our color space. Most chromatic basis functions with relatively high con

tributions are modulated between light blue and dark yellow, in the plane defined 

by luminance and S-cone modulation. Those with lower L2-norm are highly local

ized, but still are mostly oriented. There are other chromatic basis functions with 

tilted orientations, corresponding to blue versus orange colors. The chromaticities 

of these basis functions occupy mainly the second and fourth quadrant. The basis 

functions with lowest contributions are less strictly aligned in color space, but still 

tend to be color opponent, mostly along a bluish-green/orange direction. There are 

no basis functions with chromaticities along the horizontal axis, corresponding to 

pure L versus M cone opponency, like peA basis functions in Figure 2d [9]. The 

tilted orientations of the opponency axes most likely reflects the distribution of the 

chromaticities in our images. In natural images, L-M and S coordinates in our 

color space are negatively correlated [12]. leA finds the directions that correspond 

to maximally decorrelated signals, i.e. extracts statistical structure of the inputs. 

peA did not yield basis functions in these directions, probably because it is limited 

by the orthogonality constraint. While it is known that chromatic properties of 

neurons in the lateral geniculate nucleus (LGN) of primates correspond to varia

tions along the axes of cone-opponency ('cardinal axes') [11], cortical neurons show 

sensitivities for intermediate directions [13]. Since the results of peA and leA, 



respectively, match these differences qualitatively, we suspect that opponent coding 

along the 'cardinal directions' of cone opponency is used by the visual system to 

transmit reliably visual information to the cortex, where the information is recoded 

in order to better reflect the statistical structure of the environment [14]. 

3 Discussion 

This result shows that the independence criterion alone is sufficient to learn efficient 

image codes. Although no sparseness constraint was used, the obtained coefficients 

are extremely sparse, i.e. the data x are encoded in the sources s in such a way 

that the coefficients of s are mostly around zero; there is only a small percentage 

of informative values (non-zero coefficients). From an information coding perspec

tive this assumes that we can encode and decode the chromatic image patches with 

only a small percentage of the basis functions. In contrast, Gaussian densities are 

not sparsely distributed and a large portion of the basis functions is required to 

represent the chromatic images. The normalized kurtosis value is one measure of 

sparseness and the average kurtosis value was 19.7 for leA, and 6.6 for peA. In

terestingly the basis functions in Figure2a produced only sparse coefficients except 

for basis function 7 (green basis function) that resulted in a nearly uniform dis

tribution, suggesting that this basis function is active almost all the time. The 

reason may be that a green color component is present in almost all image patches 

of the natural scenes. We repeated the experiment with different leA methods and 

obtained similar results. The basis functions obtained with the exponential power 

distributions or the simple Laplacian prior were statistically most efficient. In this 

sense, the basis functions that produce sparse distributions are statistically efficient 

codes. To quantitatively measure the encoding difference we compared the coding 

efficiency between leA and peA using Shannon's theorem to obtain a lower bound 

on the number of bits required to encode a spatiochromatic pattern [4]. The aver

age number of bits required to encode 40000 patches randomly selected from the 8 

images in Figure 1 with a fixed noise coding precision of O'x = 0.059 was 1.73 bits 

for leA and 4.46 bits for peA. Note that the encoding difference for achromatic 

image patches using leA and peA is about 20% in favor of leA [4]. The encod

ing difference in the chromatic case is significantly higher (> 100%) and suggests 

that there is a large amount of chromatic redundancy in the natural scenes. To 

verify our findings, we computed the average pairwise mutual information f in the 

original data (Ix = 0.1522), the peA representation (IPCA = 0.0123) and the leA 

representation (fICA = 0.0093). leA was able to further reduce the redundancy 

between its components, and its basis functions therefore represent more efficient 

codes. 

In general, the leA results support the argument that basis functions for efficient 

coding of chromatic natural images are non-orthogonal. In order to determine 

whether the color opponency is merely a result of correlation in the receptor sig

nals due to the strong overlap of the photoreceptor sensitivities [15], we repeated 

the analysis, this time assuming hypothetical receptor sensitivities which do not 

overlap, but sample roughly in the same regions as the L-, M-, and S- cones. We 

used rectangular sensitivities with absorptions between 420 and 480 nm ("S"), 490 

and 550 nm ("M"), and 560 and 620 nm ("L"), respectively. The resulting basis 

functions were as strongly color opponent as for the case of overlapping cone sensi

tivities. This suggests that the correlations of radiance values in natural spectra are 
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Figure 2: (a) 147 total lCA spatiochromatic structure of basis functions (7 by 7 

pixels and 3 colors) are shown in order of decreasing L2-norm, from top to bottom 

and left to right . The R, G, and B values of the color of each pixel correspond to 

the relative excitation of L-, M-, and S-cones, respectively. (b) Chromaticities of 

the lCA basis functions, plotted in cone-opponent color space coordinates. Each 

dot represents the coordinate of a pixel of the respective basis function, projected 

onto the isoluminant plane. Luminance can be inferred from the brightness of the 

dot. Horizontal axes: L- versus M-cone variation. Vertical axes: S-cone varia

tion. (c) 147 PCA spatiochromatic basis functions and (d) Corresponding PCA 

chromaticities. 



sufficiently high to require a color opponent code in order to represent the chromatic 

structure efficiently. In summary, our findings strongly suggest color opponency is 

not a mere consequence of the overlapping cone spectral sensitivities but moreover 

an attempt to represent the intrinsic spatiochromatic structure of natural scenes in 

a statistically efficient manner. 
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