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Abstract

We present a multispectral photometric stereo method

for capturing geometry of deforming surfaces. A novel pho-

tometric calibration technique allows calibration of scenes

containing multiple piecewise constant chromaticities. This

method estimates per-pixel photometric properties, then

uses a RANSAC-based approach to estimate the dominant

chromaticities in the scene. A likelihood term is devel-

oped linking surface normal, image intensity and photo-

metric properties, which allows estimating the number of

chromaticities present in a scene to be framed as a model

estimation problem. The Bayesian Information Criterion is

applied to automatically estimate the number of chromatic-

ities present during calibration. A two-camera stereo sys-

tem provides low resolution geometry, allowing the likeli-

hood term to be used in segmenting new images into re-

gions of constant chromaticity. This segmentation is car-

ried out in a Markov Random Field framework and allows

the correct photometric properties to be used at each pixel

to estimate a dense normal map. Results are shown on

several challenging real-world sequences, demonstrating

state-of-the-art results using only two cameras and three

light sources. Quantitative evaluation is provided against

synthetic ground truth data.

1. Introduction

Capture of deforming surfaces is becoming increasingly

important for a variety of applications in graphics, medical

imaging, and analysis of deployable structures. Practical

methods of acquiring high resolution geometry in both the

spatial and the temporal domains are required. In this paper

we propose a system that is capable of this and has only

modest equipment and computational requirements.

The proposed approach is based upon color (or multi-

spectral) photometric stereo which uses three different col-

ored lights to capture three lighting directions in a single

RGB image. This allows photometric stereo to be carried

out on each frame of a video sequence, generating high res-

olution geometry at the same frame rate as the input video.

One major weakness of standard multispectral photometric

stereo is its assumption that the observed scene is of con-

stant chromaticity. Generalization to scenes with varying

chromaticity has only been dealt with before by either re-

sorting to time multiplexing [7, 16], to regularization of the

normal field [14] or to the use of a depth camera to provide

extra information [3]. In this paper we propose a similar ap-

proach to that of [3] but using a more principled framework

and without the need of a depth camera.

1.1. Prior work

Multispectral photometric stereo was first demonstrated

over 15 years ago by several groups [8, 19, 26]. More re-

cently it has been used in a variety of applications [6, 11,

15, 17]. Johnson and Adelson [15] simplify calibration by

imaging an indenter with known reflective properties but

this is not applicable to general scene capture. Calibration is

carried out by Klaudiny et al. [17] first by estimating light-

ing directions using a specular sphere and then cycling one

of the light sources through each of the three colors to es-

timate an average calibration for the whole scene. A more

robust approach is proposed by Hernandez and Vogiatzis

in [11] in which a sequence of rigid body motions of the tar-

get object allows approximate geometry to be reconstructed

using structure from motion. This provides a set of image

normal pairs which allow for estimation of lighting direc-

tions and surface reflectance.

The assumption of constant chromaticity made by multi-

spectral photometric stereo can be relaxed by the addition of

time multiplexing, as shown by DeDecker et al. [7] and Kim

et al. [16]. These systems allow for reconstruction of scenes

with varying chromaticities but at the expense of requiring

at least two frames of input to produce one frame of geom-

etry, halving the temporal resolution of their results. Janko

et al. [14] avoid the need for time multiplexing by track-

ing texture on the surface and optimizing both surface chro-

maticity and normal direction over a complete sequence. To

make this tractable, regularization is required on the normal

field which can smooth over the fine detail that photomet-

ric stereo is otherwise capable of capturing. Current state-

of-the-art photometric reconstructions are achieved through
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Figure 1. Reconstruction overview. (a) Input image. (b) Low-resolution geometry recovered from two-view stereo. (c) The normal map

estimated using a constant chromaticity assumption contains large errors. (d) The normal map estimated using the proposed approach

removes these errors. (e) Final high quality geometry obtained by combining stereo reconstruction with normal map.

purely time multiplexing. Ma et al. [21] use a combination

of structured light and time-multiplexed spherical illumina-

tion patterns to achieve high quality results at the expense

of a complex equipment setup.

Other methods for dynamic geometry capture produce

results with very different characteristics. Multiview stereo

is a well studied field with current systems, such as Fu-

rukawa and Ponce’s PMVS software [10], capable of recon-

structing a wide variety of scenes. Faces and other objects

which exhibit little texture have traditionally been challeng-

ing to reconstruct using multiview stereo, but recently both

Bradley et al. [5] and Beeler et al. [4] have demonstrated ac-

curate results. Reconstruction can be facilitated by adding

texture to the target surface by either projecting light pat-

terns, [27], or by applying makeup, [9]. Phase shift struc-

tured light gives similar quality results as demonstrated by

Weise et al. [25].

Whilst multiview stereo and structured light systems are

capable of providing accurate global geometry they are gen-

erally limited in the resolution of features they are able to re-

construct. The idea of using other cues which contain high

frequency information to augment the output from multi-

view stereo is not new, for example Ikeuchi [13] demon-

strated the fusion of multiview and photometric stereo in

1987. More recently Beeler et al. [4] used a qualitative

method based on shading to improve their reconstructions.

Several systems [1, 2, 17, 21] have demonstrated the ef-

fectiveness of using photometric stereo to provide accurate

high frequency information with which to complement a

low frequency reconstruction obtained by stereo or struc-

tured light. One recent example is the work of Vlasic et

al. [24], showing detailed capture of high resolution , water-

tight models of human bodies. The light sphere setup, con-

sisting of several hundred controllable LEDs, used in this

work is however prohibitively complex for some applica-

tions, and the time-multiplexed photometric stereo requires

at least three input frames for each reconstruction.

1.2. Contributions

The theoretical contributions of this paper are firstly to

present a novel calibration technique for multispectral pho-

tometric stereo that can be applied to objects with multi-

ple piecewise constant chromaticities. Secondly we demon-

strate how to automatically estimate the number of chro-

maticities present during this calibration. Furthermore we

show how given an approximate normal map we can esti-

mate the correct photometric properties to use at each pixel

of a new image allowing for dense normal map extraction.

The practical contribution of this paper is to demonstrate

that state-of-the-art results can be achieved with a modest

hardware setup consisting of two cameras and three passive

light sources. Time multiplexing is avoided and no markers

are added to the target. Qualitative results are demonstrated

on challenging real world sequences and a quantitative anal-

ysis is carried out on synthetic data.

2. System overview

The proposed system uses two complementary ap-

proaches to capture the geometry of deforming surfaces.

Two cameras allow multiview stereo to reconstruct a low-

resolution depth map. This is then augmented using nor-

mals obtained from multispectral photometric stereo.

The stereo reconstruction uses the algorithm of Beeler et

al. [4]. The combination of low frequency depth informa-

tion and high frequency normal information is carried out

using the technique of Nehab et al. [22]. The novelty of the

system lies in the photometric reconstruction as detailed in

the following sections.

3. Photometric reconstruction

3.1. Multiple chromaticities

Given an image of a surface of constant chromaticity, il-

luminated by three spectrally and spatially separated light

sources, it is well known that it is possible to estimate a sur-

face normal at each pixel [8]. Given a surface with N > 1
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Figure 2. Evaluating segmentation hypotheses. Given a normal

map (blue) and a hypothesized segmentation (magenta) an image

estimate can be formed (red). The segmentation producing the

estimate that best matches the input image (black) is chosen.

regions of different chromaticity this is no longer possible

as a change in pixel color could be caused by either a change

in surface normal or a change in surface chromaticity. To re-

solve this ambiguity an input image can be segmented into

regions of constant chromaticity before normal estimation is

carried out. To perform this segmentation we use the low-

resolution stereo depth map to compute a smoothed normal

direction at each pixel. For each of the N chromaticities in

the scene the smoothed normal at any pixel will predict a

different color as shown in figure 2 for the simple case of

N = 2. A good segmentation can be found by ensuring that

an image generated from the smoothed normals matches the

observed image as closely as possible. In carrying out a seg-

mentation we wish to enforce two constraints:

1. The likelihood of generating the observed image from

the smoothed normal map is maximized.

2. Chromaticity is locally constant.

In section 3.2 we develop an expression for the likeli-

hood term necessary to enforce the first constraint and in

section 3.3 we show how a Markov Random Field (MRF)

can be used to carry out the segmentation whilst enforcing

the second constraint.

3.2. Likelihood term

We assume a Lambertian reflectance model and ensure

that there is no ambient lighting. Under these conditions,

given three distant point light sources illuminating a surface

with unit normal n and albedo α, it has been shown, [8],

that the observed intensity of the surface is given by

c = αVLn =
[

v0 v1 v2

] [

l0 l1 l2

]⊤
αn, (1)

where c, li and vi are all column vectors of length three. c

denotes the RGB image intensity, li defines the direction of

light i and vi is the combined response of surface and sensor

to light i. The matrix V models the combination of the

surface’s chromaticity, the lights’ spectral distributions and

the camera sensors’ spectral sensitivities. It is this matrix

that varies for regions of different chromaticity. The albedo

of the surface α is a value between zero and one which is

equal to the proportion of incoming light reflected by the

surface.

We assume that each channel of the image is corrupted

by additive white Gaussian noise with variance σ2 at each

pixel independently, making c normally distributed with

p (c|n,V, α) = N
(

c|αVLn, σ2
I
)

. (2)

Given an observed image value c and an estimate of V and

L the maximum likelihood estimate of n is then given by

n =
(VL)

−1
c

∣

∣

∣(VL)
−1

c

∣

∣

∣

. (3)

The likelihood of observing an image and normal pair (c,n)
given a chromaticity defined by the matrix V can be found

using Bayes’ rule as

p (c,n|V) = p (c|n,V) p (n|V) . (4)

A uniform prior is assumed for the surface normals p (n|V).
We cannot express p (c|n,V) without taking the surface’s

albedo α into account. Since this is unknown we marginal-

ize it out, giving

p (c|n,V) =

∫

p (c|n,V, α) p (α|n,V) dα. (5)

We set the prior p (α|n,V) to be uniform in the range

zero to one. Using (2) this gives

p (c|n,V) =

1
∫

0

N
(

c|αVLn, σ2
I
)

dα. (6)

By choosing a coordinate system such that the first axis of

this new coordinate system is parallel to the line VLn this

can be written as

p (c|n,V) =

1
∫

0

N



cr|





|αVLn|
0
0



 , σ2
I



 dα, (7)

where cr =
[

cr0 cr1 cr2
]⊤

is c in the new rotated co-

ordinate system. Removing all terms that do not depend on

α from the integral and using b = |VLn| for compactness

this can be integrated to give

N
(

d|0, σ2
)

2b

(

Erf

(

cr0

σ
√
2

)

− Erf

(

cr0 − b

σ
√
2

))

, (8)



where

d2 = c2r0 + c2r1 (9)

and Erf() is the error function. In the original coordinate

system cr0 and d are given by

cr0 =
c
⊺
VLn

|VLn| (10)

and

d = |c− cr0VLn| . (11)

Intuitively cr0 corresponds to the distance along the line

VLn and d to the displacement perpendicular to this line

due to noise. The term containing the two error functions

is approximately constant between 0 and |VLn| due to our

uniform prior upon α and as such, for practical purposes,

can be treated as a constant.

3.3. Segmentation

To perform the segmentation of a new scene into dif-

ferent chromaticities we construct a Markov Random Field

(MRF) in which each node corresponds to a pixel in the

input image and is connected to the node of each of the

pixel’s neighbors in a 4-neighborhood. Each node will be

assigned a label a ∈ 1, . . . , N corresponding to one of the

N chromaticities in the scene. The constraint that chro-

maticity should be locally constant is enforced using the

Potts model for the pairwise terms in which no cost is as-

signed to neighboring pixels sharing a label and a cost γ is

assigned for differing labels. The unary terms are given by

the likelihood derived in the previous section. Given a set

of N matrices, Va∈1,...,N , the unary term for a pixel taking

label a is given by P (c|n,Va) where the n is taken from

the smoothed normal map estimated from the stereo depth

map and c is an image intensity taken from a smoothed ver-

sion of the input image. Smoothing is necessary to remove

high frequency variation due to fine geometric detail which

the stereo algorithm cannot recover.

To ensure that the segmentation boundaries follow re-

gion boundaries closely, an edge map of the image is com-

puted and Potts costs for edges in the graph that cross an

edge in the edge map are set to γ
100

.

Once the MRF has been built, it is solved using the tree

reweighted message passing algorithm of Kolmogorov [18]

and normals are estimated independently at each pixel using

(3) with the relevant Va. This dense normal map is then

combined with the low-resolution stereo depth map using

the method of Nehab et al. [22].

4. Calibration

This section describes the calibration procedure used to

estimate the parameters required for reconstruction. These

can be split into two groups, the photometric parameters, N

Algorithm 1 Complete calibration procedure

Require: Ir, Ig, Ib, L, σ, stereo depth map

1: Estimate per pixel V as in section 4.1.

2: for N = 1 : Nmax do

3: for τ = τmin : τmax do

4: Estimate Va∈1,...,N using RANSAC (section 4.2)

5: Segment image as in section 3.3

6: Calculate BIC using (13) and this segmentation

7: end for

8: end for

9: return N , Va∈1,...,N

and Va∈1,...,N , which need to be estimated for each scene

individually and the lighting direction matrix L, the image

noise σ and the camera intrinsic and extrinsic parameters,

which only need to be estimated once. In order for the pho-

tometric parameters to be estimated the scene must be held

still for long enough to acquire three images under different

lighting. We did not find this to be a problem in practice.

Estimation of the intrinsic and extrinsic camera param-

eters is carried out using the standard technique of rotat-

ing and translating a checkerboard pattern in the field of

view [28]. Estimation of L is also carried out using a stan-

dard method; rotating the same checkerboard pattern with

only one light on at a time provides a set of (c,n) pairs from

which L can be estimated using least squares, as in [12].

To estimate σ several images of a static scene under con-

stant lighting are acquired and σ2 is estimated as the aver-

age variance of the pixels across the images. The procedure

for estimating N and Va∈1,...,N can be broken down into

three parts detailed in the following sections:

1. Estimation of V at each pixel individually.

2. Estimation of the N dominant chromaticities,

Va∈1,...,N , where N is given.

3. Selection of N as a model order selection problem.

The complete procedure is outlined in Algorithm 1.

4.1. Per pixel calibration

To estimate V at every pixel we propose the following

method. Three images are acquired, Ir, Ig and Ib, with

each light being switched on in one of the images. It is

assumed that scene geometry is constant across the three

images. A stereo reconstruction is also performed to give a

low-resolution normal map. Given this normal map and the

previously computed lighting directions, each of the three

images allows for an estimate of one column of the V ma-

trix to be made at each pixel. For example, using Ir when

only the first (red) light is on (1) reduces to

c = α
[

v0 v1 v2

] [

l0 0 0
]⊤

n = αv0l0
⊤
n. (12)



Since c, n and l0 are known, this allows all elements of v0

to be calculated up to the scaling factor α, which is con-

stant across all columns in V. To account for the fact that

the stereo normal map does not recover high frequency ge-

ometry, each of the three images are smoothed before this

process is carried out.

This procedure actually recovers αV at each pixel, not

V. As can be seen from (3) the scale of V is unimportant

during reconstruction, so we scale each V matrix so that

the largest c value it can predict given a valid normal has a

value not greater than 255. We ensure that saturation does

not occur in practice by adjusting the camera’s exposure and

gain settings.

4.2. Calibrating for multiple chromaticities

Once an individual calibration matrix has been estimated

for each pixel, we wish to find both N , the number of chro-

maticities present in the scene, and Va∈1,...,N which are the

photometric properties of the N dominant chromaticities in

the scene. Initially assuming that N is known, we wish to

choose Va∈1,...,N to explain the scene as well as possible.

To do this we use a RANSAC-based approach similar to that

of [11]. One of the calculated V matrices is chosen at ran-

dom as a hypothesis and the number of pixels in the calibra-

tion scene that support it is observed. To measure support

for a hypothesis an image under full multispectral lighting

Irgb is synthesized according to Irgb = Ir + Ig + Ib. Using

the pixel intensities c from this synthesized image and the

previously computed normals, the likelihood of this (c,n)
pair given the hypothesized V matrix can be calculated us-

ing (8). If the likelihood is above a threshold value τ the

pixel supports the hypothesized matrix, otherwise it does

not.

This is repeated a fixed number of times retaining the hy-

pothesis with the most support each time. The final calibra-

tion matrix is then found by averaging V over all the pixels

that supported the final hypothesis. Once the first calibra-

tion matrix has been chosen, all pixels that supported it are

removed and the process is repeated to find the next most

dominant chromaticity in the scene. This is repeated until

N calibration matrices have been recovered.

4.3. Estimation of the number of chromaticities N

The above procedure assumes that N is already known,

however this is not the case. Selection of N can be viewed

as a model selection problem in which the increase in the

model’s ability to explain the input image by increasing N

is traded off against the added complexity of the model.

We wish to use an information theoretic model selection

method, and to reduce the chance of overfitting we use

the Bayesian Information Criterion (BIC) [23]. Once the

RANSAC stage has been carried out to estimate Va∈1,...,N ,

an MRF can be solved as it would be during reconstruction

so that the correct Va can be used at each pixel in the im-

age. Assuming pixel-wise independence the likelihood of

the complete image is the product of the pixel likelihoods

and hence the BIC score can be calculated using

BIC = −2

n
∑

i=1

lnP (ci,ni|Vai
) +mN lnn, (13)

where n is the number of pixels in the image, and m is the

number of additional model parameters when increasing N

by one, nine in this case. The value of N that produces

the lowest BIC score is chosen. In practice this process is

repeated for five values of the threshold τ for each N and

the lowest BIC score over all N and τ is used.

5. Experiments

5.1. Constant chromaticity calibration

While focusing on multichromatic scenes, the proposed

calibration method is applicable to scenes of uniform chro-

maticity. To demonstrate this we reconstructed three differ-

ent faces using both our method and that of [11]. Recovered

results were very similar with an average difference in nor-

mal of 0.54◦ . An example reconstruction is given in the top

row of figure 4.

5.2. Multichromatic scenes

To demonstrate our approach on a multichromatic scene

a challenging sequence involving a green and white cush-

ion was processed. Calibration was performed and resulted

in N = 3 being selected (two chromaticities on the cushion

and another for the hands holding it). If only one chromatic-

ity is assumed for the entire scene, the hand is recovered in-

correctly, see figure 3(a), whilst using the proposed method

the normals and therefore geometry are correctly estimated,

see figure 3(b).

Throughout the 300 frame sequence segmentation is suf-

ficiently accurate to give qualitatively good results. For

some frames such as that in figure 3(c) segmentation fails

due to strong shadowing, here failing to segment the fingers

correctly. The resulting geometry produced, see figure 3(e),

exhibits artifacts, but this failure is a rare occurrence.

The resulting reconstructions are best viewed dynami-

cally in the supporting video, but several stills have been

provided in figure 4 for illustration.

The stereo results shown in the second column contain

little detail but give correct overall geometry. The sec-

ond and third columns show results comparable to those

achieved by purely photometric systems such as [11] which

look convincing when viewed from close to the original

viewing direction, but contain low frequency deformations

that become apparent when rendered from novel view-

points. Our combined results in the final two columns



(a) (b) (c) (d) (e)

Figure 3. Reconstruction detail: Reconstruction assuming (a) a single chromaticity, and (b) assuming 3 chromaticities. Note the

improvement of the reconstructed hand shape. Failure case: (c) Input image, (d) failed segmentation, (e) resulting reconstruction.

demonstrate that this low frequency deformation has been

removed while retaining high frequency detail.

The image size for these sequences is 1600 × 1200 and

the mean running time of the complete algorithm is 16 sec-

onds per frame, the two most time consuming parts being

the stereo reconstruction in CUDA (4 seconds) and the nor-

mal field integration (9 seconds) in single-threaded C++.

The mean segmentation time is approximately 2 seconds.

5.3. Quantitative analysis

In order to demonstrate the accuracy of our approach

against ground truth data, a set of experiments on synthetic

images was carried out. A publicly available high resolu-

tion model captured in [20] was rendered in OpenGL. The

diffuse albedo recorded by [20] was applied to half of the

model and the other half was rendered using three different

solid colors. A uniform white specular albedo was present

over the entire model. An example input image is shown in

figure 5(a).

Initially no noise was added to the images and recon-

struction was carried out. The errors between ground truth

normals and recovered normals are shown in figure 5(c). In

areas of uniform chromaticity errors are due to specular re-

flections or region boundaries while in the unmodified half

there is a varying level of error introduced by the varying

chromaticity.

Calibration was also carried out using the method of [11]

with resulting normal errors shown in figure 5(b). This ap-

proach estimates the correct calibration for the unmodified

portion of the model, producing similar results to the pro-

posed method in this region, but it cannot deal with the mul-

tiple chromaticities in the scene.

If the recovered normal field is integrated then there is

a large discrepancy between recovered depth and ground

truth values as shown in figure 5(e) due to a slight bias in

the normal estimation. Combining the depth map estimated

using stereo with the normal maps greatly reduces this error

as shown in figure 5(f).

To simulate image noise we added Gaussian noise with a

standard deviation of 6 independently to each color channel

of each pixel and repeated the above experiments. Numeri-

cal results for depth and normal errors are given in table 1.

1 2 3 4 5 6 7 8 9 10
0

1500

3000

4500

6000

N

 

 

Synthetic data negative log likelihood
Synthetic data BIC
Real data negative log likelihood
Real data BIC

Figure 6. Model selection. Plots of negative log likelihood and

resulting BIC value as N , the number of colors in the scene, is in-

creased. (Blue) for synthetic face data with four major chromatic-

ities (red) for real cushion data for which there are three major

chromaticities. In both cases the plots are the average values from

100 runs and dashed lines show negative log likelihood while solid

lines show the BIC value.

5.4. Estimation of the number of chromaticities N

In all of the above experiments N was estimated using

model selection with the BIC criterion. Here we present re-

sults demonstrating the stability of our approach to estimat-

ing N . Figure 6 shows plots of the negative log likelihoods

used in (13) and the corresponding BIC values for the syn-

thetic face (figure 5), which has four major chromaticities,

and the real cushion (figure 3) which has three major chro-

maticities. It can be seen that in each case the correct N

is chosen. Also in both cases the rates of reduction of log

likelihood decreases rapidly beyond the correct N value.

5.5. Current limitations

The proposed approach makes two major assumptions

about the scene, firstly that it contains a small number of

distinct chromaticities and secondly that it is well approxi-

mated by a Lambertian reflectance model. Reconstructions

of scenes which break these assumptions will contain arti-

facts. Also reconstruction of dark surfaces is noisy due to

the low amount of reflected light.



Figure 4. Reconstructions of real sequences. From left to right in each row: Input image, stereo reconstruction, integrated normal field,

novel view of integrated normal field, final result once stereo information included, same novel view of final result. While integrating the

normal field gives reasonable results when viewed frontally, low frequency deformations are visible when viewed from novel angles. These

deformations are removed in the final result using low frequency information from stereo. The top row uses N = 1, the middle row N = 2

and the final row N = 3 chromaticities in the scene, which are found automatically using model selection.

Stereo only Normals only Normals only Stereo + normals

Calibration by [11] New calibration New calibration

No Normal error (◦). Mean (std dev) 11.8 (10.3) 22.6 (23.2) 3.97 (5.23) 3.26 (4.07)

noise Depth error (mm). Mean (std dev) 0.39 (1.18) 10.3 (10.9) 6.83 (5.49) 0.37 (1.23)

Noise Normal error (◦). Mean (std dev) 11.9 (10.4) 25.2 (24.1) 9.06 (6.06) 8.37 (5.62)

σ = 6 Depth error (mm). Mean (std dev) 0.40 (1.21) 10.3 (10.9) 6.86 (5.51) 0.38 (1.27)
Table 1. Errors on ground truth data. Assuming constant chromaticity as in [11] leads to large errors. Whilst the stereo data provides

accurate depths, the geometry is over-smoothed, making normal estimation inaccurate. The proposed reconstruction method accurately

estimates normal directions, but the addition of the stereo data is still necessary to remove low frequency bias in depth results.

6. Conclusions

We have presented a system for applying multispectral

photometric stereo to scenes containing multiple chromatic-

ities by making use of multiview stereo reconstruction. A

novel calibration technique was demonstrated that allows

photometric properties to be estimated at each pixel in a

calibration scene. It was shown that automatic estimation

of the number of chromaticities in such a scene can be car-

ried out using a model selection approach. Given such a

calibration we are able to segment new images into regions

of constant chromaticity and produce dense normal maps.
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