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Color Plane Interpolation Using
Alternating Projections
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Abstract—Most commercial digital cameras use color filter
arrays to sample red, green, and blue colors according to a specific
pattern. At the location of each pixel only one color sample is
taken, and the values of the other colors must be interpolated using
neighboring samples. This color plane interpolation is known
as demosaicing; it is one of the important tasks in a digital
camera pipeline. If demosaicing is not performed appropriately,
images suffer from highly visible color artifacts. In this paper
we present a new demosaicing technique that uses inter-channel
correlation effectively in an alternating-projections scheme. We
have compared this technique with six state-of-the-art demosaicing
techniques, and it outperforms all of them, both visually and
in terms of mean square error.

Index Terms—Bayer pattern, color filter array, demosaicing,
POCS.

I. INTRODUCTION

SINGLE-CHIP digital cameras use color filter arrays to
sample different spectral components, such as red, green,

and blue. At the location of each pixel only one color sample
is taken, and the other colors must be interpolated from
neighboring samples. This color plane interpolation is known
asdemosaicing, and it is one of the important tasks in a digital
camera pipeline. If demosaicing is not performed appropriately,
images suffer from highly-visible color artifacts. The most
commonly used color pattern is the “Bayer” pattern [1]. As
seen in Fig. 1, in a Bayer pattern, green samples are obtained
on a quincunx lattice (checkerboard pattern), and red and blue
samples are obtained on rectangular lattices. The density of the
red and blue samples is one-half that of the green ones.

Demosaicing methods can be grouped into two distinct
classes. The first class applies well-known interpolation
techniques to each color channel separately. These techniques
include nearest-neighbor replication, bilinear interpolation,
and cubic spline interpolation. Although these single-channel
algorithms can provide satisfactory results in smooth regions
of an image, they usually fail in high-frequency regions,
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Fig. 1. Bayer pattern.

especially along edges. For natural images better performance
is possible than is achieved by these techniques because of
the high cross-correlation between color channels. The second
class of algorithms exploits this inter-channel correlation, and
has significantly better performance than the first class. One
approach in this class issmooth hue transition[2]–[4]. Smooth
hue transition algorithms are based on the assumption that hue
does not change abruptly between neighboring pixel locations.
As a first step, these algorithms interpolate the luminance
(green)1 channel, which is usually done using bilinear interpo-
lation. The chrominance channels (red and blue) are estimated
from the bilinearly interpolated “red hue” (red-to-green ratio)
and “blue hue” (blue-to-green ratio). To be more explicit, the
interpolated “red hue” and “blue hue” values are multiplied by
the green value to determine the missing red and blue values at
a particular pixel location. Instead of interpolating the hue, it is
also possible to interpolate the logarithm of the hue [3], [4].

Another approach that exploits inter-channel correlation
is edge-directed interpolation[5]–[9]. The main difference
between this approach and the previous one is that the bilinear
interpolation of the green channel is replaced by adaptive
interpolation to prevent interpolating across edges. In [5],
first-order horizontal and vertical gradients are computed
at each missing green location on the Bayer pattern. If the
horizontal gradient is greater and the vertical gradient is less
than a predetermined threshold, suggesting a possible edge
in the horizontal direction, interpolation is performed along
the vertical direction. If the vertical gradient is larger and the
horizontal gradient is less than the threshold, interpolation is
performed only in the horizontal direction. When the horizontal
and vertical gradients are nearly equal, (that is, both gradients

1Strictly speaking, the luminance response of the human visual system is dif-
ferent from the response to green light, but it is common to refer to the green
channel as the luminance channel since its frequency is close to the peak of the
human luminance frequency response.
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Fig. 2. Images used in the experiments. (These images are referred asImage 1to Image 20in the paper, enumerated from left-to-right, and top-to-bottom.).

TABLE I
INTER-CHANNEL CORRELATION IN DIFFERENTSUBBANDS

are less than or greater than the threshold), the green value is
obtained by averaging its four neighbors. Interpolation of the
red and blue channels can be done by either interpolating color
ratios (as in smooth hue transition) or by interpolating the color
differences instead of the color ratios.

A different version of this approach was proposed by Laroche
and Prescott [6]. There the chrominance channels are used in-
stead of the luminance channel to determine the gradients. In
order to determine the horizontal and vertical gradients at a blue
(red) sample, second-order derivatives of blue (red) values are
computed in the corresponding direction. The red and blue chan-

nels are interpolated as for the smooth hue transition approach,
but this time the color differences are interpolated instead of the
color ratios.

Instead of interpolating color differences or color ratios,
it is also possible to use the inter-channel correlation as a
correction term in the interpolation [7]–[9]. In [9], Hamilton
and Adams used second-order derivatives of the chrominance
samples as correction terms in the green channel interpolation.
To determine the gradient at a blue (red) sample location, the
second-order derivative of blue (red) pixels values are added to
the first-order derivative of the green values. The second-order
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derivative of the blue (red) pixels is also added to the average
of the green values in the minimum gradient direction. The red
and blue channels are interpolated similarly with second-order
green derivatives used as the correction terms.

Kimmel later combined thesmooth hue transitionandedge-
directed interpolationapproaches in an iterative scheme [10].
In his algorithm, first-order derivatives of the green channel
information are used to compute edge indicators in eight
possible directions. Hue values are interpolated using these
edge indicators, and missing color intensities are determined
according to the interpolated hues. The color channels are
then updated iteratively to obey the color-ratio rule. He also
proposed an inverse diffusion process to enhance the images
further.

There are also more complicated demosaicing approaches. In
[11], Changet al.applied interpolation using a threshold-based
variable number of gradients. In that approach, a set of gradients
is computed in the 5 5 neighborhood of the pixel under con-
sideration. A threshold is determined for those gradients, and
the missing value is computed using the pixels corresponding
to the gradients that pass the threshold. A similar algorithm was
proposed in [12], where the green channel is used to determine
the patternat a particular pixel, and then a missing red (blue)
pixel value is estimated as a weighted average of the neigh-
boring pixels according to the pattern. In addition, there are pat-
tern recognition [13], restoration-based [14]–[16], and sampling
theory point of view [17], [18] approaches.

In this paper, we present a very effective means of using
inter-channel correlation in demosaicing. The algorithm defines
constraint sets based on the observed color samples and prior
knowledge about the correlation between the channels. It re-
constructs the color channels by projecting the initial estimates
onto these constraint sets. We have compared our algorithm with
the various other techniques that we have outlined above, and it
outperforms them both visually and in terms of its mean square
error. Section II presents the motivation and details of this al-
gorithm. Its experimental performance and comparisons with
other techniques are given in Section III. A complexity analysis
is provided in Section IV.

II. DEMOSAICING USING ALTERNATING PROJECTIONS

There are two observations that are important for the demo-
saicing problem. The first is that for natural images there is
a high correlation between the red, green, and blue channels.
All three channels are very likely to have the same texture and
edge locations. The second observation is that digital cameras
use a color filter array (CFA) in which the luminance (green)
channel is sampled at a higher rate than the chrominance (red
and blue) channels. Therefore, the green channel is less likely
to be aliased, and details are preserved better in the green
channel than in the red and blue channels. In demosaicing, it
is the interpolation of the red and blue channels that is the
limiting factor in performance. Color artifacts, which become
severe in high-frequency regions such as edges, are caused
primarily by aliasing in the red and blue channels. Although
this fact is acknowledged by the authors of most demosaicing

(a)

(b)

(c)

Fig. 3. CFA sampling of the images. (a) Frequency support of an image. (b)
Spectrum of the sampled green channel. (c) Spectrum of the sampled red and
blue channels.

algorithms, inter-channel correlation has not been used effec-
tively to retrieve the aliased high-frequency information in the
red and blue channels. This paper proposes a new demosaicing
algorithm that does remove aliasing in these channels using an
alternating-projections scheme. It defines constraint sets using
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TABLE II
CORRELATION BETWEEN ORIGINAL IMAGES AND BILINEARLY INTERPOLATEDOBSERVATIONS IN DIFFERENTSUBBANDS

both the inter-channel correlation and the observed data, and
reconstructs the red and blue channels by projecting initial
estimates onto these constraint sets.

Section II-A quantifies the degree of cross-correlation
between the color channels. Section II-B illustrates the aliasing
that results from CFA sampling and motivates a detail-retrieving
interpolation scheme. Section II-C derives the constraint sets
used by the proposed demosaicing scheme. Section II-D
presents the details of the implementation and Section II-E
describes some extensions.

A. Inter-Channel Correlation

In natural images the color channels are highly mutually
correlated. Since all three channels are very likely to have the
same edge content, we expect this inter-channel correlation
to be even higher when it is measured between the high-fre-
quency components. (The reason for investigating correlation
in the high-frequency components will become evident in
Section II-B.) In order to illustrate this we decomposed the
three color channels of 20 natural images (Fig. 2) into sub-
bands. We used two-dimensional separable filters constructed
from a low-pass filter and a high-pass
filter to decompose each image into
its four subbands: (LL) both rows and columns are low-pass
filtered, (LH) rows are low-pass filtered, columns are high-pass
filtered, (HL) rows are high-pass filtered, columns are low-pass
filtered, (HH) both rows and columns are high-pass filtered.
The inter-channel correlation coefficients for each of these four
subbands was computed using the formula

(1)

where are integers denoting the spatial coordinates,
and are the samples of two different color

channels within a subband, and and are the means of
and , respectively. The summation is done

over all possible in a subband. The correlation coeffi-
cients between the red and green, and blue and green channels
are tabulated in Table I. As seen in that table, the correlation co-
efficients for the high-frequency subbands (, , ) are
larger than 0.9 for all images, and the highest correlation co-
efficient for a particular image is among these subbands. The
low-frequency subbands are also highly correlated (their
correlation coefficients are greater than 0.8 for most of the im-
ages.), but they are not as highly correlated as the high frequency
subbands.

Section II-B examines the effects of CFA sampling on these
subbands. In particular, we show that the high-frequency sub-
bands of the red and blue channels are the most affected.

B. Color Plane Sampling

As seen in Fig. 1, in a Bayer pattern the green channel, sam-
pled with a quincunx lattice, is less likely to be aliased than the
red and blue channels, which are sampled with less dense rect-
angular lattices. This can easily be illustrated in the frequency
domain. Fig. 3(a) depicts the Fourier spectrum of an image with

being the maximum observable frequency. When this image
is captured with a digital camera, the color planes are sampled
according to a CFA, which is generally the Bayer pattern. As
illustrated in Fig. 3(b) and (c), while there is no aliasing in the
green channel, the red and blue channels are aliased.

This can also be confirmed for the images in Fig. 2. In
Table II, the correlation coefficients between the original
channels and the bilinearly-interpolated (from the CFA sam-
ples) channels are displayed for all subbands. Two important
things can be observed in that table. First, the high-frequency
( , , ) subbands are degraded the most. Second this
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degradation is more severe in the red and blue channels than in
the green channel, especially in the and subbands.

In Section II-A, we showed that the color channels are
highly mutually correlated, especially in the high-frequency
subbands. In this section, we illustrated the fact that the
high-frequency subbands of the red and blue channels are
affected the most in CFA sampling. These two observations
imply that the high-frequency information of the green channel
can be used to help estimate the high-frequency components
of the red and blue channels. One way to achieve this is with
a set-theoretic reconstruction.

C. Constraint Sets

Set-theoretic reconstruction techniques produce solutions
that are consistent with the information arising from observed
data or prior knowledge about the solution. Each piece of
information is associated with a constraint set in the solution
space, and the intersection of these sets represents the space
of acceptable solutions [19]. For the demosaicing problem,
we define two types of constraint sets, one coming from the
observed data, and the other based on the prior knowledge of
the inter-channel correlation.

The first constraint set comes from the observed color sam-
ples. The interpolated color channels must be consistent with
the color samples captured by the digital camera. We denote

as this observed data, which has red, green, and blue
samples placed according to the CFA used. are ordered
pairs of integers denoting the pixel locations. By defining,

, and as the set of pixel locations, , that have the
samples of red, green, and blue channels, respectively, we can
write the “observation” constraint set as follows:

(2)

where is a generic symbol for the interpolated color channels,
which can be for the red channel, for the green channel,
and for the blue channel.

The second constraint set is a result of the Sections II-A and
B. In Section II-A, it was shown that color channels have very
similar detail (high-frequency) subbands. This information
would not be enough to define constraint sets if all channels lost
the same amount of information in sampling. However, Sec-
tion II-B pointed out that the red and blue channels lose more
information (details) than the green channel when captured
with a color filter array. Therefore, we can define constraint sets
on the red and blue channels that force their high-frequency
components to be similar to the high-frequency components of
the green channel. This proves to be a very effective constraint
set, since the main source of color artifacts in a demosaiced
image is the inconsistency of the channels, especially, along
the edges.

Before formulating this constraint set, we need to provide
some information about the filter bank structure that is used
to decompose the channels. Referring to Fig. 4, the filter bank

Fig. 4. Analysis and synthesis filterbanks for one-level decomposition.

Fig. 5. Convergence for one-level decomposition.

Fig. 6. Analysis and synthesis filterbanks for two-level decomposition.

Fig. 7. Convergence for two-level decomposition.

performs an undecimated wavelet transform, with and
denoting low-pass and high-pass filters, respectively.

These analysis filters ( and ) constitute a perfect



1002 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 9, SEPTEMBER 2002

Fig. 8. Fine tuning of green channel is done from observed red and blue samples.

reconstruction filter bank with the synthesis filters and
. The perfect reconstruction condition can be written as

(3)

By denoting and as the impulse responses of
and , respectively, we can write the four subbands of a
two-dimensional signal as follows:

(4)

(5)

(6)

(7)

where is the approximation subband, and ,
, are the horizontal, vertical, and diagonal detail

subbands, respectively.
Now we can define the “detail” constraint set that forces

the details (high-frequency components) of the red and blue
channels to be similar to the details of the green channel as
shown in (8) at the bottom of the page, where is a
positive threshold that quantifies the “closeness” of the detail
subbands to each other. If the color channels are highly corre-
lated, then the threshold should be small; if the correlation is not
high, then the threshold should be larger. Although
is a function of image coordinates in general, it is also pos-
sible to use a predetermined fixed value for it. One choice is
to set to zero for all , which is result of the
high-correlation assumption. Later in the paper, we also discuss
how to choose a nonuniform threshold.

D. Alternating Projections Algorithm

This section presents an alternating-projections algorithm to
reconstruct the red and blue channels. We first derive the projec-

tion operators corresponding to the “observation” and “detail”
constraint sets given in the Section II-C. Convergence issues and
enhancement of the green channel are then addressed. Finally,
the complete algorithm is presented.

1) Projection Operators:The first constraint set that is used
in the reconstruction is the “observation” constraint set given in
(2). Referring to that equation, we can write the projection
onto the “observation” constraint set as follows:

otherwise
(9)

where is the color channel, which can be the red , green
, or blue channel.

The other constraint set is the “detail” constraint set given in
(8). In order to write the projection onto this constraint set, we
first need to define the filtering operations in the synthesis stage
of the filter bank. Letting and denote the impulse
responses corresponding to and , we can write the
four filtering operations on a two-dimensional signal
as follows:

(10)

(11)

(12)

(13)

where , , , are the synthesis filtering operators. As
stated earlier, these form a perfect reconstruction filter bank with
the analysis filtering operators , , , and

(14)

for and
(8)
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TABLE III
MEAN SQUARE ERRORCOMPARISON OFDIFFERENTMETHODS

Now, we can write the projection of a color
channel onto the “detail” constraint set as
follows. Referring to (8), we define as the residual

(15)

When this residual is less than the threshold in
magnitude, the subband value is not changed.

Otherwise, it has to be changed so that the residual
is less in magnitude. This projection operator can
be written as

(16)
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where (see (17) at the bottom of the page). The “observation”
projection ensures that the interpolated channels are consistent
with the observed data; the “detail” projection reconstructs the
high-frequency information of the red and blue channels, and
imposes edge consistency between the channels. By alternately
applying these two projections onto the initial red and blue
channel estimates, we are able to enhance these channels.

2) Convergence:The Constraint sets given in (2) and (8) are
convex. (The proofs are provided in the Appendix.) Therefore,
an initial estimate converges to a solution in the feasibility set
by projecting it onto these constraint sets iteratively. We have
also verified it experimentally. Using the proposed algorithm,
we updated the chrominance (red and blue) channels iteratively
from the initial estimates. In each iteration, the chrominance
channels are updated by the “detail” projection, followed by the
“observation” projection. A typical convergence plot is given in
Fig. 5. As seen in that figure, the mean square error of the red
and blue channels converges in about five iterations. (That plot
is for Image 16in Fig. 2. The initial estimates for the red and
blue channels were obtained by bilinear interpolation. The green
channel was interpolated using a method that will be explained
in Section II-D3.)

Instead of performing a one-level subband decomposition, it
is also possible to decompose the signals further. As done with
undecimated wavelet transforms, the low-pass subbands
can be decomposed by using filters , and .
This filterbank structure is shown in Fig. 6 for a two-level
decomposition. Convergence for the two-level decomposition,
which is illustrated in Fig. 7 is faster than for the one-level
decomposition.

3) Updating the Green Channel:The algorithm we have
discussed so far reconstructs the high-frequency information
of the red and blue channels. The performance of this re-
construction directly depends on the accuracy of the green
channel interpolation. The edge-directed interpolation methods
discussed in Section I provide satisfactory performance in gen-
eral, but it is still possible to obtain better results using a
method similar to the red–blue interpolation we have pre-
sented. Referring to Fig. 8, we can update the green channel
as follows.

1) Interpolate the green channel to get an initial estimate.
Either bilinear or edge-directed interpolation methods
can be used for this step.

2) Use the observed samples of the blue channel to form a
downsampled version of the blue channel. Note that all
pixels of this downsampled image are observed data.

3) Use the interpolated green samples at the corresponding
(blue) locations to form a downsampled version of the
green channel. Note that the pixels of this downsampled
image are all interpolated values.

4) Decompose these blue and green downsampled channels
into their subbands, as was done in Section II-C.

5) Replace the high-frequency ( , , ) subbands
of the green channel with those of the blue channel. (Note
that this corresponds to setting the threshold
to zero.)

6) Reconstruct the downsampled green channel, and insert
the pixels in their corresponding locations in the initial
green channel estimate.

7) Repeat the same procedure for the pixels at the red
samples.

With this scheme, significant improvement over bilinear in-
terpolation and other adaptive algorithms can be achieved in
the green channel. We used the edge-directed interpolation
procedure proposed in [9] to obtain the initial green channel
estimates. The results are discussed in Section III.

4) Complete Algorithm:The pseudo-code of the complete
algorithm is as follows.

1) Initial interpolation: Interpolate the red, green, and blue
channels to obtain initial estimates. Bilinear or edge-
directed interpolation algorithms can be used for this
initial interpolation.

2) Update the green channel:Update the green channel
using the scheme explained in Section II-D3.

3) “Detail” projection: Decompose all three channels with
a filter bank. At each level of decomposition, there will
be four subbands. Update the detail (high-frequency)
subbands of the red and blue channels using (17) and
reconstruct these channels using (16).

4) “Observation” projection: Compare the samples of the
reconstructed red and blue channels with the original
(observed) samples. Insert the observed samples into
the reconstructed channels at their corresponding pixel
locations as given in (9).

5) Iteration: Go to Step 3, and repeat the procedure until a
stopping criterion is achieved.

(17)

(18)
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Fig. 9. Comparison of the methods forImage 4. (a) Crop from the originalImage 4. (b) Method in [2]. (c) Method in [5]. (d) Method in [6].

E. Extensions to the Algorithm

It is also possible to extend the proposed algorithm in several
different ways.

1) Correlation surface: The threshold in the
“detail” projection provides a way of controlling the

amountof the correlationbetween the channels that is used
by the algorithm. If the channels are totally uncorrelated
the threshold should be large enough to turn the “detail”
projection into an identity projection. If the channels are
highly correlated the threshold should be close to zero.
One problem, however, is that the correlation between
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Fig. 9. (Continued.) Comparison of the methods forImage 4. (e) Method in [9]. (f) Method in [10]. (g) Method in [11]. (h) Proposed (1-L, 8 iterations).

the channels is not necessarily uniform; there may be
both high-correlation and low-correlation regions within
the same image. This can be overcome by estimating the
correlation locally and adjusting the threshold
accordingly. One way to compute a local correlation
surface is to move a small window over the color

planes, compute the correlation between them, and assign
a correlation coefficient to the pixel at the center of
the window. By mapping the values on the correlation
surface to the threshold , the algorithm can be
made more effective for images that have nonuniform
correlation surfaces.
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Fig. 10. Comparison of the methods forImage 6. (a) Crop from the originalImage 6. (b) Method in [2]. (c) Method in [5]. (d) Method in [6].

Denoting as the correlation surface be-
tween channel —red or blue—and the green channel,
the proposed method computes the correlation surface
as shown in (18) at the bottom of page 1004, where

is a neighborhood about location , and
and are the means of channelsand in that

neighborhood. One choice for might be a 5 5

window. This formula will give a correlation surface with
values ranging between zero and one. This correlation
surface is then passed to a function that will return a
large value when is small and a small value
when is large. The choice of such a function
requires further research and experimentation, and we
leave it as an open problem.
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Fig. 10. (Continued.) Comparison of the methods forImage 6. (e) Method in [9]. (f) Method in [10]. (g) Method in [11]. (h) Proposed (1-L, 8 iterations).

2) Smoothness projection:Other constraint sets can be in-
cluded in the algorithm easily. One such constraint is
a smoothness constraint. Smooth hue (color ratio) and
smooth color difference transitions are the basis of some
demosaicingalgorithmsthatwehavealreadycited [2]–[4].

An easy way to include a smoothness projection is to in-
terpolate the color ratio or difference to get an estimated
color value at a certain location , and constrain
the results to lie in a certain neighborhood of that estimate.
This is also an open area that should be investigated.
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Fig. 11. Comparison of the methods forImage 16. (a) Crop from the originalImage 16. (b) Method in [2]. (c) Method in [5]. (d) Method in [6].

III. EXPERIMENTAL RESULTS

In our experiments, we used the images shown in Fig. 2.
These images are film captures and digitized with photo scanner.
Full color channels are available, and the CFA is simulated by
sampling the channels. The sampled channels are used to test
the demosaicing algorithms.

We used bilinear interpolation for the red and blue chan-
nels, and the edge-directed interpolation method given in
[9] for the green channel to get the initial estimates. The
method proposed in Section II-D3 was used to refine the
initial estimate of the green channel. The following fil-
ters were used in the experiments: ;
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Fig. 11. (Continued.) Comparison of the methods forImage 16. (e) Method in [9]. (f) Method in [10]. (g) Method in [11]. (h) Proposed (1-L, 8 iterations).

; ; and
. The threshold was

set to zero for all . We did the experiments for both
one-level decomposition and two-level decomposition. The
number of iterations for one-level (1-L) and two-level (2-L)
decompositions was eight and four, respectively. The perfor-

mance in terms of mean squared error can be seen in Table III
for both our and various other demosaicing algorithms [2], [5],
[6], [9]–[11]. As seen in that table, the proposed algorithm has
the lowest mean squared error in almost all cases. Among these
algorithms, [9] and [11] have comparable performance in the
green channel for some images. (The ones whose performance
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was better than the proposed method are highlighted.) However,
their red and blue channel performance was worse in all cases,
which make them worse visually. Another successful method
was Kimmel’s method [10]. In that paper the red, green, and
blue channels were corrected iteratively to satisfy the color ratio
rule, and the number of iterations was set to three. However, we
found that algorithm to be prone to color artifacts, and iterating
three times made the results worse in such cases. Therefore, in
our implementation we did color correction only once.

We also provide some examples from the images used in
the experiments for visual comparison. Fig. 9–11 show cropped
segments from original images (Images4, 6, and 16 in Fig. 2),
and the corresponding reconstructed images from the demo-
saicing algorithms that were used in comparison. Close exami-
nation of those figures verifies the effectiveness of the proposed
algorithm.

IV. COMPLEXITY ANALYSIS

Let , , , and denote the lengths of the filters ,
, , and , respectively, and let and denote the width

and height of an image. Each channel is decomposed into
four subbands by convolving its rows and columns with filters

and . This requires approximately
multiplications and additions for each channel. Including
the reconstruction stage the total number of additions and
multiplications is for each
channel. Typically, three iterations is enough for updating
the red and blue channels, which will require a total of

operations for the red and
blue channels. As a result,
operations are required for the iteration stages. We also update
the initial estimate of the green channel as proposed in Sec-
tion II-D with a one-level decomposition, and one iteration.
This adds approximately
operations to the total count, which brings the total operation
count to . For the filters
used in the experiment, this number is . If four itera-
tions are done, the total complexity is . If a two-level
decomposition is performed, a single iteration should be suffi-
cient. Under this assumption using the filters in this paper, the
total complexity for a two-level decomposition is also
additions and multiplications.

V. CONCLUSION

In this paper we presented a demosaicing algorithm that
exploits inter-channel correlation in an alternating projections
scheme. Two constraint sets are defined based on the observed
data and the prior knowledge about the correlation of the chan-
nels, and initial estimates are projected onto these constraint
sets to reconstruct the channels. The proposed algorithm was
compared with well-known demosaicing algorithms, and it
showed an outstanding performance both visually and in terms
of mean square error at a reasonable computational complexity.

The question of uncorrelated color channels has also been
addressed, and a threshold selection procedure has been pro-

posed. However, in the experiments this was not needed, and
setting the threshold to zero worked very well. Threshold selec-
tion and inclusion of other constraint sets are left as future work.
It should also be noted the test images used are film captures
that were digitized with photo scanner. Therefore, they have dif-
ferent noise power spectrums compared to actual digital camera
captures, and more thorough performance analysis of the de-
mosaicing algorithm should be done for different capture and
digitization paths.

APPENDIX

CONVEXITY OF THE CONSTRAINT SETS

We outline the convexity proofs of the observation and detail
constraint sets that are given in (2) and (8), respectively.

A. Observation Constraint Set

Let and be any two points in the set
. That is,

(19)

and

(20)

For convexity, we need to show that all points of the line segment
connecting and remain in the set . Let

be this line
segment . Using (19) and (20), we get:

(21)

That is, .

B. Detail Constraint Set

Let and be any two points in the set
. Referring to (5)–(7) in the manuscript, we can write

(22)

and

(23)

where the subscripts and are chosen according to the value
of as in (5)–(7).

Again, we need to show that all points of the line segment
connecting and remain in the set , for
convexity.

Let for
. We will now show that is in . We

will omit the indices and in the notation to simplify the
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equations. See (24) at the bottom of the page. Add and subtract
inside the (24) and regroup the terms to get (see (25)

at the bottom of the page). Use the triangular inequality and the
inequalities given in (22) and (23) to get

(26)

Therefore, .
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