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Abstract-Many image display devices allow only a limited 
number of colors to be simultaneously displayed. Usually, this 
set of available colors, called a color palette, may be selected 
by a user from a wide variety of available colors. Such device 
restrictions make it particularly difficult to display natural color 
images since these images usually contain a wide range of colors 
which must then be quantized by a palette with limited size. 
This color quantization problem is considered in two parts: the 
selection of an optimal color palette and the optimal mapping 
of each pixel of the image to a color from the palette. 

This paper develops algorithms for the design of hierarchical 
tree structured color palettes incorporating performance cri- 
teria which reflect subjective evaluations of image quality. Tree 
structured color palettes greatly reduce the computational re- 
quirements of the palette design and pixel mapping tasks, while 
allowing colors to be properly allocated to densely populated 
areas of the color space. The algorithms produce higher quality 
displayed images and require less computations than previ- 
ously proposed methods. 

Error diffusion techniques are commonly used for displaying 
images which have been quantized to very few levels. This pa- 
per studies problems related to the application of error diffusion 
techniques to the display of color images. A modified error 
diffusion technique is proposed for resolving these problems. 
The new error diffusion technique is shown to be easily imple- 
mented using the tree structured color palettes developed ear- 
lier. 

I. INTRODUCTION 

IDEO monitors display color images by modulating V the intensity of the three primary colors (red, green, 
and blue) at each pixel at the image. In a digitized color 
image each primary color is usually quantized with 8 b of 
resolution in order to eliminate distinguishable quantiza- 
tion steps in luminance, color hue, and color saturation. 
Thus, full-color digital display systems use 24 b to spec- 
ify the color of each pixel on the screen. 

The cost of high-speed memory needed to support such 
a full-color display on a high-resolution monitor makes 
many applications impractical. An alternative approach, 

which is used by many currently available displays, is to 
provide a limited number of bits, such as 8,  for specifying 
the color at each pixel. Each of these 28 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 256 values is 
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then used as an index into a user defined table of colors. 
Each entry in the table contains a 24 b value which spec- 
ifies the color's red, green, and blue components. In this 
way, the user is allowed to select a small subset of colors, 
called a palette, from the full range of 224 = 16 777 216 
colors. The drawback of this scheme is that it restricts the 
number of colors which may be simultaneously displayed. 

This paper addresses the problem of displaying color 
images using a restricted palette. Since natural images 
typically contain a large number of distinguishable colors, 
displaying such images with a limited palette is difficult. 
The approach we take is structured around algorithms for 
performing two tasks. The first task, called color palette 
design, selects the best possible set of colors for a partic- 
ular image. The second task, called pixel mapping, as- 
sociates each pixel of the image with a color from this 
palette to yield the highest quality image. 

A number of approaches [ 11, [2] have been suggested 
for the design of color palettes which involve iterative re- 
finement of some initial palette. However, these algo- 
rithms suffer from the disadvantage of being computation- 
ally intensive. In many applications, the efficiency of 
algorithms for performing color palette design and pixel 
mapping is very important. This is particularly true in ap- 
plications involving large image data bases. In these ap- 
plications, images are in some common format which must 

be displayed on monitors with different limitations on 
color palette size. In such an environment, the color pal- 
ette design and the pixel mapping functions must be per- 
formed at the time an image is displayed. This makes 

computational efficiency of critical importance. 
Even if the color palette is transmitted with each image, 

standard image coding techniques require that the pixel 

mapping be performed locally at the time each image is 
displayed. This is because standard image coding tech- 
niques make use of the high correlation between the val- 

ues of the primary colors of neighboring pixels to reduce 
the transmission bit rate. The color palette indices of 
neighboring pixels are not highly correlated and, there- 
fore, cannot be coded with high efficiency. Thus, even if 
a color palette of correct size is provided with each stored 
image, the pixel mapping function must be performed 

after the image is retrieved from the data base and de- 
coded into a full-color format. 

The first problem we address is the problem of design- 

ing color palettes. In general, a color palette will accu- 
rately display a particular image if the true color of each 
pixel in the image can be well approximated by some color 

' 
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from the palette. Heckbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 ]  proposed a method for con- 

structing an initial color palette by assigning to each color 
from the palette an approximately equal number of pixels 

in the image. This method is; based on the construction of 
a binary tree in which each leaf contains an approximately 
equal number of similar pixel colors which can be de- 
scribed by a single quantization color. The tree is con- 
structed by recursively determining the leaf node with the 
largest number of pixels and splitting it into two new 
modes with equal numbers of pixels. To improve this ini- 
tial color palette, Heckbert proposed an iterative proce- 
dure, derived from the Linde-Buzo-Gray (LBG) algo- 
rithm [3] for quantizer deqign, which attempts to minimize 
the total squared error (TSE) between the original pixels 
and colors assigned from the palette. Later, Braudaway 

[l] proposed constructing an initial color palette by cen- 
tering colors at peaks in the color-value histogram. To 
avoid concentrating too many colors about one peak, the 
histogram values are reduced in a region surrounding each 
assigned color after the color is selected. Beginning with 
this initial palette, Braudaway also used the iterative LGB 
algorithm as suggested by Heckbert. An approach similar 
to that of Braudaway’s has also been used by Gentile et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] to study the effects of color transformations on the 
quality of quantized images. 

In both Heckbert’s and Braudaway’s methods, the ini- 
ita1 condition is chosen to allocate more quantization lev- 
els to regions of the color space with larger numbers of 
pixels. However, neither initial condition attempts to 
minimize the TSE or any other objective measure of er- 
ror. Therefore, the LGB algorithm is used to improve 
these initial color palettes by searching for a local mini- 
mum of the TSE. While the LBG algorithm reduces the 
initial TSE, it is greatly influenced by these initial pal- 
ettes. Consequently, the local minimum which is reached 
is unlikely to be close to the global minimum. In addition, 
the LBG algorithm is very computationally intensive 
since, at each iteration, it requires a search of the full 
color palette for each pixel. Also, the LBG algorithm de- 
stroys the tree structure of Heckbert’s initial palette. This 

is important since the tree structure could otherwise be 
used to reduce the computation required for palette 
searches. 

This paper describes a hierarchical approach to the de- 
sign of color palettes for natural images. The proposed 
algorithms attempt to produce color palettes which mini- 

mize an objective error criteria. Therefore, they result in 
high quality displayed images with minimum artifacts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA171, 
181. We use vector quantization (VQ) [9] as a basis for 
addressing the design of good color palettes. In this 
framework, the colors in the palette can be considered as 
codes in a codebook, and the pixel mapping as the image 

pixel coding. In addition, our approach emphasizes the 
use of color palettes with a binary tree structure. This tree 
structure has the advantage of substantially reducing the 
computation required both to design a palette and to quan- 
tize colors using a palette. We develop a basic binary 

splitting approach which creates tree structured color pal- 

ettes using a minimum TSE criteria. This allows for very 
efficient pixel mapping by making search times propor- 
tional to the tree depth. 

Empirical evidence indicates that the best color palettes 
are not necessarily ones which minimize TSE. This is be- 
cause the subjective error resulting from quantizing a pix- 
el’s color value cannot be treated independently of the 
quantization of spatially adjacent pixels. Standard VQ 
based algorithms do not address many of these subjective 

qualities because they generate a codebook based on the 
distribution of pixel colors without consideration of their 
spatial relationships. We develop two approaches to mod- 

ifying the basic binary splitting algorithm to account for 
these subjective qualities. The first approach computes a 
weighted TSE (WTSE) by applying a subjective weight- 
ing to the squared error at each pixel and uses an exten- 
sion of the basic binary splitting VQ algorithm to mini- 
mize this WTSE. The subjective weighting reflects 

variations in our ability to perceive small intensity changes 
as a function of the spatial intensity gradient at each pixel. 
The second approach modifies the order in which the bi- 

nary splitting algorithm splits nodes so as to reduce the 
correlation of quantization errors between adjacent pix- 
els. This approach is based on reducing the sizes of inte- 
riors of constant color areas in the displayed image. 

The second part of this paper addresses the problem of 
optimum pixel mapping once a color palette has been se- 
lected. Pixel mapping involves assigning a color from the 
palette to each pixel in the image in a way which produces 

the highest quality display. Although the TSE can be min- 
imized by assigning each pixel to the color that is closest 
to its original color, higher quality displays are often pro- 
duced by using dithering methods to assign colors. These 
methods attempt to match the local color averages of the 
displayed image to the local color averages of the original 
image. A variety of dithering techniques have been in- 
vestigated for displaying bilevel or halftoned images (i.e., 
a color palette containing only the colors black and white). 

Both Heckbert and Braudaway suggest the use of a dith- 
ering technique known as error diffusion [ 1 11 which was 
originally proposed for the display of bilevel images but 
is easily extended to multilevel quantization. Error diffu- 
sion can significantly improve the quality of many dis- 
played images when the palette size is small. However, 

when used in conjunction with an unstructured color pal- 
ette, error diffusion requires a search of the full color pal- 
ette for each pixel of the image and is therefore quite com- 
putationally intensive. 

We investigate a number of approaches for improving 
display quality given a fixed color palette. These methods 
produce more accurate average color at the cost of added 
noise and increased computation. By using error diffusion 
in conjunction with color palettes having a binary tree 
structure, we substantially reduce the computation re- 
quired to quantize an image. In addition, we propose a 
modified algorithm for performing the error diffusion. 
This algorithm avoids nonlinear oscillations which can 
occur due to the nonuniform quantization of the color 



ORCHARD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND BOUMAN: COLOR QUANTIZATION OF IMAGES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2619 

space. This results in better image reproduction with fewer 

artifacts. 
The paper is organized as follows. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 starts by 

defining the color space coordinate system in which the 
palette design algorithms operate. Section 11-A describes 
the basic binary splitting approach to the design of color 
palettes using a minimum TSE criteria. Sections 11-B and 
-C develop extensions to the basic binary splitting algo- 
rithm which account for subjective measures of image 
quality. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 describes both ordered dither methods 
and methods for efficiently implementing error diffusion 
techniques using color palettes having a binary tree struc- 
ture. Finally, Section IV reports on simulation results of 
the various techniques. 

11. COLOR PALETTE DESIGN 
We first define some notation. The image is assumed to 

be on a rectangular grid of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN pixels. The set of all grid 
points is denoted by S ,  and its members s E S may be 
explicitly written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = (i, j )  where i is the row index 
a n d j  is the column index. The color value of the pixel at 
grid point s is denoted x, = [r,, g,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb,]' where the com- 
ponents are the red, green, and blue tristimulus values for 

the pixel [13] and superscript t means transpose. 
For a typical monitor, there is a nonlinear relationship 

between the input value of the primary and its displayed 
intensity. For a particular primary such as red, this rela- 
tionship may be approximated by 

I ,  = ry 

where Z, is the intensity, r is the input to the display, and 
y = 2.3. More accurate models for this relationship gen- 
erally include constant, linear, and logarithmic terms [4]. 
In order to compensate for this nonlinear relationship be- 
tween input and luminance, it is common for video cam- 
eras and other image capture devices to predistort their 

output by the inverse relationship: 

r = I(". 

We shall refer to the predistorted primary color values as 
the gamma corrected colors. In effect, this is the coordi- 
nate system being used if one manipulates color image 
data and directly displays it without correction. It is im- 
portant to emphasize that the gamma corrected colors are 
not linear in intensity, and that the gamma correction, and 
therefore the resulting coordinate system, varies with 
changes in a display's parameters. However, the gamma 
corrected colors have the advantage that they may be di- 
rectly displayed without transformation, and that they are 
less susceptible to noise than the corresponding linear pri- 
mary intensities [ 131. 

Alternatively, standard coordinate systems have been 
defined for the representation of colors. Two such coor- 
dinate systems are the L*a*b* and the L*u*v* color 
spaces [ 121. These coordinate systems are nonlinearly re- 
lated to the primary intensities, and are chosen so that a 
fixed Euclidean distance represents a fixed perceptual dis- 

tance independent of position in the space. Gentile et al. 
have studied the application of the L*u*v* coordinate sys- 
tem to the problems of image quantization [4], halftoning 

[ 5 ] ,  and gamut mismatch [6]. This work indicates that 
these coordinate systems can substantially improve quan- 
tized image quality relative to standard coordinate sys- 

tems which are linearly related to primary luminances. 
Therefore, it is reasonable to expect that perceptually 
based coordinate systems such as L*u*v* could improve 
the quality of displayed images relative to gamma cor- 
rected coordinates. However, it will be assumed through- 
out this paper that the original image is specified in terms 

of gamma corrected coordinates, since this avoids the 
computational requirements of coordinate transformation 
methods. All the techniques developed can, of course, be 
applied using perceptually based color spaces. 

A .  Binary Tree Palette Design 

The objective of the palette design algorithm is to par- 
tition S into M disjoint sets or clusters where M is the 
predetermined palette size determined by hardware con- 
straints. The algorithm proposed here constrains the par- 
titioning of S to have the structure of a binary tree. Each 
node of the tree represents a subset of S ,  and the children 

of any node partition the members of the parent node into 
two sets. The set of image pixels corresponding to node 
n is denoted C,. For purposes of illustrating the opera- 
tions of the algorithm, we will number the nodes so that 
the root is 1 and the children of node n are 2n and 2n + 
1. Since the leaves of the tree form a partition of S ,  the 

pixels in S may be coded by representing all pixels in each 
leaf node with a single color in the palette. Only the mem- 
bers of the tree's leaf nodes need be stored when the al- 
gorithm is implemented. Each of the leaf node sets can be 
stored as a linked list. When a node is split, the linked 
list may be reorganized into two lists without relocating 
any of the image color data. 

The method for generating the binary tree is specified 
by the number of leaves, M ,  the method of splitting a 
node into its two children, and the order in which the 
nodes are split. The methods used for splitting nodes and 
determining which nodes to split both attempt to minimize 
the total squared difference between the actual and quan- 
tized image. The TSE is defined by 

TSE = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC (Ix, - qn(I2 
all leaves s E 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

where qn is the quantization value used to represent the 
colors in the set C,. In order to restrict the complexity of 
the algorithm, second-order statistical properties will be 

used to determine the order and manner in which nodes 
will be split. The three required cluster statistics are 

R, = X,X; 
scCn 

m, = C x, 
S€C" 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 3 matrix, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, is a 3 component 
vector. Since the mean value of a cluster is the point from 

which there is minimum squared deviation, the quanti- 
zation value of a cluster q, is assumed equal to the cluster 
mean: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

mn 

N n  
q, = -. 

We also define the cluster covariance as 

1 
R, = R, - - m,mi. 

Nn 

The splitting of a node into two nodes is equivalent to 
choosing two new quantization levels, q2, q2, + and as- 
sociating each member of the cluster with the closer quan- 
tization level. This, in turn, is equivalent to selecting a 
plane which best splits the cluster's colors. In the pro- 
posed algorithm, we determine the direction in which the 
cluster variation is greatest, and then split the cluster with 
a plane which is perpendicular to that direction and passes 
through the cluster mean. For a large cluster with Gauss- 
ian distribution it can be shown that this strategy is opti- 
mal. 

More specifically, we determine that unit vector e which 
maximizes the expression 

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA((x, - 4,)' el2 = e'R,,e. 

Since R is symmetric, the solution is the eigenvector e, 
corresponding to the largest or principal eigenvector X, of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. The total squared variation in the direction e, is there- 
fore 

S€C" 

Once the principal eigenvector has been determined, 
points in C, can be sorted into two sets C2, and C2, + I in 
the following way: 

C2, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{s E C,: eix, I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeiq,} 

C2n+l = {s E C,: etx, > eiq, } .  (3) 

Finally, the new statistics for each node may be calculated 
by first calculating R2,, m2,, and N2, for node 2n, and then 
applying the relations 

(4) 

The order in which nodes are split is chosen with the 
objective of producing the greatest reduction in TSE at 
each stage of the algorithm. Because this strategy does not 
look ahead to the results of further splits, it is not neces- 
sarily optimal; however, one would expect it to perform 
well in most practical situations. When a node is split its 
variance is mainly reduced along the direction of the prin- 
cipal eigenvector. Therefore, it is reasonable to assume 

that the reduction in TSE should be proportional to the 
total squared variation along the direction of the principal 
eigenvector e, of R,. For this reason, the principal eigen- 

value X, is used as a measure of the expected reduction in 
TSE if node n is split. Given this approximation, the best 
allocation of a single quantization level is to split the leaf 
with the largest principal eigenvector. 

The basic binary quantization algorithm may now be 
described. 

1) Set C1 = S. 
2) Calculate R I ,  m l ,  and NI. 
3) Do the following M - 1 times: 

3.1) Find the leaf n such that X, is largest. 
3.2) Use (3) to form the new nodes 2n and 2n + 1. 
3.3) Calculate R ,  m ,  and N for the new nodes using 

For typical image sizes (e.g., 512 x 512 pixels) the 
computation is dominated by steps which must be per- 
formed at each pixel of the image. These steps consist of 
the splitting of clusters using (3) and the computation of 
statistics using (4) and (1). Assuming an approximately 
balanced tree, each pixel of the image is involved in 
log2 M splits, each requiring 3 multiplications to compute 
(3). The initial computation of the matrix R I  requires 6 
multiplies per pixel due to the matrix's symmetry. As- 
suming approximately balanced splitting of each node, 3N 
log2 M multiplies are required to compute the remaining 
values of R,. The result is a total of 6N (log2 M + 1) 
multiplications and slightly fewer additions for the design 
of the color palette. Therefore, for M > 2, fewer multi- 
plications are required for the design of the complete color 

palette than a single iteration of the LBG procedure de- 
scribed in Section II-D. 

(4). 

B. Subjectively Weighted TSE Criteria 
In this section, we develop a framework for incorpo- 

rating subjective measures of quality through the use of a 
weighting function which accounts for local properties of 
the image. This weighting can be applied using the same 
framework of the basic splitting algorithm of Section II-A, 
with the substitution of a weighted total square error 
(WTSE) in place of the total mean square error. The 
WTSE is defined as 

WTSE = C Ws(x) I)x, - qn1I2 
allleaves SEC# 

n 

where Ws is a function of x in some neighborhood of s. 
Regions of the image which are subjectively more sensi- 
tive to errors in quantization are given a larger weight. By 
applying the same arguments used in deriving the basic 
splitting algorithm, we calculate the following forms for 
the new cluster statistics: 

R, = c WFxsxi 

m, = C wSx,  

s E c,, 

s E C,! 
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N,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc W, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sec" 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
qn = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. 

Nn 
(5) 

We first consider some properties that the weight W, 
should possess. For simplicity, W, will only depend on 
the gamma corrected luminance component y, of the im- 
age. In the NTSC system, y, is given by 

(6) 

If I, is the true luminance at position s, then ys is approx- 

imately given by y, = I:'?. Weber's law [I41 suggests 
that any measure of subjective image quality should be 
invariant to linear scaling of the color component inten- 
sities. However, this is not true of the TSE based on 
gamma corrected color components. Scaling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, by the 
constant cy results in y being scaled by c and the TSE 
being scaled by c2. Therefore, to ensure the invariance of 
the WTSE to scaling of I,, W, should have the property 
that 

y, = [0.300, 0.586, 0.115]xS. 

1 
W,(cx> = 2 WF(4. (7) 

This suggests that W, should be inversely proportional to 
a quadratic function of a local linear function. 

The most prominent artifact of a limited palette is false 
contouring. False contours result from mapping smoothly 
varying regions of an image to a small number of colors 
from the color map. Instead of displaying slow variations 
of color across the region, smaller regions of constant 
color are displayed with abrupt color changes across re- 
gion boundaries. These abrupt color changes are per- 

ceived as contours in the displayed image. 
A reasonable measure of the visibility of a false contour 

is the width of the uniformly quantized region. Since the 
luminance component has the greatest variation, we will 
use it to estimate the likely size of false contours. Fig. 1 
is a schematic representation of a one-dimensional slice 
through the luminance component of an image along the 
direction of the gradient. The two curves are the true lu- 
minance and the quantized luminance. Notice that the 
width of the uniformly quantized region A is equal to the 
quantization step size E divided by the gradient size. This 
suggests that for a region of the image with uniform quan- 
tization 

A= 
= (area) -. 

IIxs - qnI12 E2 
= (area) II VY, 1 1 2  12 II VY, 1 1 2  12 

In practice, the gradient of y, is not constant, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa more 
accurate estimate may be obtained by convolving the 
magnitude of the gradient with a smoothing kernel h,. The 
form of W, which is used is 

1 

ws = ( h  * (min { llVyll, 16) + 2) 

Fig. 1. This figure illustrates the relationship among the gradient of the 
image luminance (Vy), the size of quantization steps ( E ) ,  and the width of 
regions with fixed quantization value (A) .  

where y takes on values between 0 and 255, and h is a 
kernel which filters the gradient estimates. The effect of 
V y  is limited to the range between 2 and 16 since values 
below 2 are visually indistinguishable, and values greater 
than 16 correspond primarily to edges. Also, these limits 
allow fixed-point implementation of the algorithm by lim- 
iting the dynamic range. 

The increase in computation due to the use of the WTSE 
criteria comes from the additional multiplications re- 

quired by the appearance of W, in (5) and the computation 
of the weightings in (8). Equation (5) requires an addi- 
tional 1.5N (log2 M + 1) multiplications, increasing the 
complexity of the basic algorithm by 25 % . The major 
computational cost of calculating the weights is the com- 
putation of the gradient, the convolution with h ,  and the 
squaring of the weights. The division can be avoided by 
using power of two quantization. The computation re- 
quired for filtering depends on the filter size, and weights. 
The gradient calculation together with the implementation 
of a 5 x 5 filter of 1's and the squaring of the result re- 
quires 13N arithmetic operations including 1N multipli- 
cations. In practice, the calculation of these weights adds 
substantially to the total computation time. 

C. Erosion-Based Weighting 

Another method for improving the quality of the quan- 
tization is to develop an error criteria which depends di- 
rectly on the qualities of the quantized image. Such a 

method can be used to dynamically focus quantization 
values in regions of the quantized image which are prob- 
lematic. More specifically, if regions of the quantized im- 
age that may result in false contouring can be efficiently 
identified while the binary tree is being created, then the 
relevant clusters can be split to avoid artifacts. 

The visual effect of false contouring is caused by the 
highly correlated nature of the error which results from 
large regions being quantized with a single value. Even if 
the TSE (or WTSE) is small in such regions the errors 
will be visually significant because they will form well- 
defined patterns. However, regions of the image which 
are quantized with single values may be identified by 
searching the two-dimensional field of quantization code 
words for regions with large interiors. The interiors of 
each region formed by a fixed code word value may be 
measured using the technique of erosion from morpho- 
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logical filtering [15]. This is done by selecting a fixed 
pattern of lattice points and counting the number of times 
the pattern may be uniquely positioned completely within 
a region consisting of a single code word value. This op- 

eration is shown graphically in Fig. 2. If a square block 
of nine points is used as the eroding set, then this is equiv- 
alent to counting the number of pixels in a cluster for 
which all eight neighbors of that pixel belong to the same 
cluster. For this reason, the interior size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, of cluster n is 

a measure of the number of interior pixels in the cluster. 
After an initial allocation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMO code words, the weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U, may be used to bias the order in which clusters are split 
by more heavily weighting principal eigenvalues of clus- 
ters with large interiors. Instead of choosing the cluster 
with the largest eigenvalue A, the weighted eigenvalue 
w,A, is used. All experimental results use MO = (2/3)M. 
We have found that for palettes with 256 colors this value 
of MO allocates a sufficient number of colors to eliminate 
regions with large interiors. 

The binary quantization algorithm with erosion-based 
weighting may now be described. 

1) Set Cl = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. 
2) Calculate RI ,  m l ,  and NI .  
3) Do the following MO - 1 times. 

3.1) Find the leaf n such that A, is largest. 
3.2) Use (3) to form the new nodes 2n and 2n + 1. 
3.3) Calculate R, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, and N for the new nodes using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4) Calculate the interior weights U, for all leaf nodes. 

5 )  Do the following zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM - MO times. 

(4). 

5.1) Find the leaf n such that w, A, is largest. 
5.2) Use (3) to form the new nodes 2n and 2n + 1. 
5.3) Calculate R, m, and N for the new modes using 

5.4) Compute u2, and w2, + I for the two new leaves. 
(4). 

The calculation of the weights w, represent only a mod- 
est overhead in computation because they can be effi- 
ciently computed using only compare and logical opera- 
tions. Step 4 requires that an interior weight be computed 
for each region of the image. For a K point eroding set, 
the worst case number of comparisons required for step 4 
is N(K - 1). However, this is a conservative estimate 
since the search for differing quantization levels can be 
performed sequentially, and can be stopped when unlike 
quantization levels are found. Tests using a 9 point erod- 
ing set for quantizing a large sample of images have found 
that an average of 1.4N comparisons are needed for com- 
puting the interior weights. The total computation re- 
quired for all applications of step 5.4 is generally less than 
is required for step 4. This is because the splitting of a 
cluster only effects the interior points of the cluster being 

split. Therefore, the time required to recompute these two 
weights is proportional to the number of pixels in the clus- 
ter being split. Since the number of pixels contained in 
the last M / 3  of clusters split is generally much less than 
N, this represents a small amount of computation. 

.... ......... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. ............ .... ................... ......... - .... ...... 0.  ..... . .... . 
0.. 

0.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig, 2. Sample erosion with nine point block 

D. The LBG Algorithm 
The LBG algorithm [3], [9] is a method used in VQ for 

iteratively refining a codebook. The algorithm is quite 
general, and has also been applied to a wide variety of 
problems in pattern recognition and clustering [ 101. Since 
the problem of designing an optimal codebook is equiv- 
alent to finding a set of palette colors, (4,: 1 I n I M } ,  
which best approximate the set of image pixel colors, {x,: 
1 I n I N } , the LBG algorithm is directly applicable to 
the color quantization problem. In the case of minimum 
TSE palette design, the algorithm is defined as follows: 

1) Choose an initial color palette 

(4,: 1 I n I M } .  

2) Form M pixel clusters 

c, = {x,: IIX, - qmll I IIX, - qAI, 1 I k I MI.  

3) Recompute the color palette using q, = l /ICml 

4) Repeat 2 and 3 until no more changes occur or the 
decrease in TSE is less than a predetermined amount. 

Each step of the LBG algorithm causes the TSE to either 
decrease or remain the same. Therefore, the algorithm is 
guaranteed to converge to a minimum of the TSE. How- 
ever, this minimum is generally not the global minimum 
of the TSE. Therefore, the initial palette plays a key role 
in determining the local minimum in which the algorithm 

converges. In fact, the experimental results of Section IV 
indicate that the LBG algortihm will improve initial color 
palettes of poorly quantized images, but it will not sig- 
nificantly change palettes of well-quantized images. Con- 
sequently, we take the view that the LBG algorithm is 
best used as a postprocessing algorithm for improving 

suboptimal initial palettes. 
A significant disadvantage of the LBG algorithm is its 

computational cost. The forming of clusters in step 2 gen- 

erally requires NM distance calculations, and this step 
must be performed in each iteration. Therefore, one iter- 
ation of the LBG algorithm requires 3NM multiplications. 

Finally, we noted that binary tree structure of a palette is 
destroyed by the LBG algorithm. Without the tree struc- 
ture, pixel quantization requires a full search of the pal- 
ette, or NM distance calculations. However, pixel quan- 
tization with the tree structure requires only N log2 M inner 
products and compares. This is particularly important in 
the error diffusion applications discussed below. 

L C ,  xs. 
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111. PIXEL MAPPING 

Once a color palette has been selected, the TSE of the 
displayed image is minimized by mapping each pixel to 

the color from the palette which is closest to its original 
color. The pixel mapping techniques described in this sec- 
tion attempt to improve the quality of the displayed image 
by accepting a larger TSE so that the local average color 
of the displayed and original images may be matched. 
These techniques reduce error power at low spatial fre- 
quencies and increase error power at high spatial frequen- 
cies where error is less noticeable. This section discusses 
two types of pixel mapping techniques, ordered dither and 
error diffusion, which have been used widely for the half- 
toned display of grey-scale images. The application of 
these techniques to the display of color images with lim- 
ited color palettes raises difficulties which do not exist in 
the display of bilevel images. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Ordered Dither 

Ordered dithering is a method for improving the ap- 
pearance of a displayed image by adding a pseudorandom 

noise pattern d(k, I )  to blocks of pixels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,  before quantizing. 
Therefore, the image before quantization f is given by 

where d(k , l )  is a n-by-n matrix of dithering values. d(k,l) is 
chosen to have an average value of zero and an energy 
spectrum with minimum energy at low spatial frequen- 
cies. The amplitude of the noise pattern is chosen so that 
any area of constant color value is quantized into a variety 
of nearby color values, thereby breaking up regions of 
false contouring. This reduces the correlated error pat- 
terns that are characteristic of areas of false contouring. 

The application of ordered dithering to the display of 
color images is complicated by the nonuniform spread of 
colors in the palette. In image-specific color palettes, the 
distance between nearby colors varies significantly across 
the color space. Therefore, it may be impossible to deter- 
mine an amplitude which will sufficiently dither all areas 
of constant color value in the image without adding no- 
ticeable noise to other areas. One method of addressing 
this problem is to adjust the dithering to the distance and 
orientation between nearby colors in the palette. This can 

be done by first determining two candidate quantization 
colors, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq1 and q2, which are nearest to the actual pixel 
color. The noise pattern value for the pixel can then be 

scaled by the distance between quantization colors and 
rotated in color space by the orientation of the colors to 
form the dithered signal 

where d takes on scalar values on the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[- 1 /2, 
1 /2]. The dithered value can then be quantized to one of 

the two levels. 
This approach adjusts the dithering to the nonuniform 

spread of quantization colors; however, it has a number 

of disadvantages. In regions which change significantly 
enough to cause q1 and q2 to change, the dither noise will 
be modulated by the changing quantization colors. This 

x " ( ~ , j )  = d(imodn,jmodn) + x ( ~ , j )  

f ( ~ , j )  = ( q 2  - 91) d(rrnodn.jrnodn), + x ( l , j )  (9) 

will cause the spectrum of the dither noise to spread to 
low spatial frequencies. Because the dither is only added 
along the direction of the differing quantization values, 

the average error in directions orthogonal to that compo- 
nent will not be affected. The computational cost of 
searching for candidate quantization colors can be re- 
duced by restricting the search to colors which appear in 
a limited neighborhood of the pixel; however, this is still 
a substantial computational overhead, Finally, no ordered 
dithering method guarantees that after quantization the er- 
ror spectrum will continue to be concentrated at high spa- 
tial frequencies. 

B. Error Difusion 

The object of error diffusion is to quantize the image in 
such a way that the average value of the quantized image 

is the same as the average value of the true image [ 111, 
[16]. Fig. 3 illustrates the method. The pixels are chosen 
in some ordering (raster ordering is commonly used), and 

the residual quantization error is propagated forward to 
unquantized pixels. The error is propagated by computing 
an adjusted value of the pixel color zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, formed by summing 
the actual color with a weighted sum of previous errors. 
The equations for error diffusion are as follows: 

2, = x, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc hs-knk 
k < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 

4 s  = Q(-fJ 

n, = X, - q, (10) 

where s - k = (sl - k l ,  s2 - k2) and s < k means (sI = 
k l  and s2 < k2) or sI < k , .  We note that while these 

equations have a somewhat different form than those orig- 
inally presented by Floyd and Steinberg, they are equiv- 
alent. Since x,  is a vector, (10) describes a system of vec- 
tor equations where h, is a matrix for each value of s. For 
simplicity, the h is usually chosen to be diagonal. The 
two-dimensional Fourier transform of h is given by 

where 0 = (wl, w2) and - is the notation for inner product. 
Notice that the variable n, is the error generated by the 

quantizer, but it is not the difference between the actual 
and quantized image. The actual displayed image error 
and its relationship to the quantizer error is given by 

E, = x.7 - 4 s  

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, - (2, - n,) 

= n, - c hs-knk. 
k < s  

The two-dimensional Fourier transform then yields 

E(w)= (I - H(w))N(w) 

Therefore, we see that the spectral components of the dis- 
played error may be shaped by choosing the filter I - 
H(o) correctly. In general, this filter should have a high- 
pass characteristic since it is desirable to suppress the low- 
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Fig. 3. Block diagram of error diffusion filter. The quantization error is 
propagated forward to reduce the low frequency component of the error. 

frequency error components. Billotet-Hoffmann and 
Bryngdahl have suggested a simple filter kernel which we 
have used in all experimentation [ 161. 

The methods of color palette generation described in 
the previous sections all generate a color palette and a 
mapping from the image pixels to that palette. However, 
in general, palette design and pixel quantization can be 
performed separately. In the case of minimum TSE cod- 

ing using an unstructured color palette, quantization is 
performed by 

This is very computationally intensive since quantizing an 
image requires zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANM distance calculations, each of which 

requires three multiplies, three subtractions, and a com- 
parison. In the case of a palette with binary tree structure, 
an approximate minimum TSE coding, e&), can be per- 

formed with order N log M computation. This is done by 
storing the principal eigenvectors and cluster means of all 
the internal tree nodes during the tree construction. These 
values can then be used to uniquely descend through the 
tree using tne rule from (3). Notice that both types of 
quantization can be performed for colors outside the orig- 

inal image. This is important since error diffusion will 
require the quantization of colors not in the original im- 
age. However, this leads to a unique problem associated 
with the application of error diffusion to image specific 
palettes. 

The advantage of an image-dependent palette is that 
quantization values are densely spaced only in regions of 
the color space with significant numbers of pixels. This 
advantage can be quite significant because for typical im- 

ages a large amount of the color space is empty. The sit- 
uation may be visualized by considering a region of an 
image in which the color varies smoothly (such a region 
is more likely to exhibit the problems typical of a limited 
palette.) The image is then a smooth mapping from a two- 
dimensional surface into a three-dimensional space. The 
range of that mapping is, in general, a manifold with di- 
mension 5 2 .  In particular, the local dimension of the 
manifold is given by the rank of the matrix 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi a n d j  are temporarily considered to take values on 
the real line. Most often this matrix will have rank 2 since 
the color components are likely to vary with some degree 
of independence. However, the manifold will have di- 
mension 1 if two of the components are a function of the 
third. This can occur if the region has fixed hue and sat- 
uration and varies only in intensity. The most degenerate 
case is when the color of a region is fixed and the mani- 
fold is zero dimensional. 

When the color palette is designed, the majority of 
colors are allocated around these surfaces in the color 
space. Unfortunately, the sparse nature of these surfaces 
can cause problems when colors outside the set are quan- 
tized. Error diffusion accumulates errors made in the pixel 
coding until those errors are negated by errors of opposite 
polarity. However, if all the quantization levels fall to one 
side of the manifold then there will be no local colors to 

offset the accumulated error. This situation can occur if 
the manifold is a convex surface since the minimum TSE 
criteria will tend to allocate color on the concave side of 
the manifold. Ultimately, the error will become so great 
that either the color will become saturated to some ex- 
treme value or, more likely, a color from another mani- 
fold (region of the image) will be chosen. In this situation 
the assumption of independence between the input to the 
quantizer and the quantization error becomes invalid, and 
the nonlinear feedback structure of error diffusion can lead 
to an unstable condition in which large oscillations in 
quantization error occur between colors far from the orig- 
inal color. This, of course, creates noticeable artifacts in 
the resulting image. 

We would like to constrain the filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH in Fig. 3 to op- 
erate in a region in which the quantizer error n, is of the 

order of the distance between quantization colors within 
the manifold. A reasonable method for detecting when the 
filter is oscillating is to compare the error magnitude to 

the diameter of the cluster associated with the quantiza- 
tion color. This can be done by storing, along with the 
quantization color, the associated principal eigenvalue of 
the cluster. Since the principal eigenvalue of the cluster 
is proportional to the square of the cluster’s diameter along 
its longest axis, we can determine when oscillations occur 
by comparing the error magnitude to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh a  where a is a 
constant. When oscillations are detected, the filter can 
then be damped by opening the feedback loop, and the 
unadjusted pixel intensities x, can be quantized instead of 
the highly biased values 2,. This combined operation is 

simply performed by “clipping” the input of the filter to 
a magnitude of h a :  

n, if In,\* < ha2 

0 otherwise. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, = 

A diagram of the modified error diffusion process is shown 
in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 
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Fig. 4. Block diagram of modified error diffusion filter. The feedback is 
clipped if the magnitude of the error is significantly larger than the longest 
axis of the corresponding cluster formed in the palette design process. 

IV. RESULTS 

The previous sections have proposed a number of al- 
gorithms, each of which attempts to maximize perfor- 
mance by minimizing a measure of displayed image dis- 

tortion (e.g., TSE, WTSE, and region interior size). This 
section compares these algorithms by measuring their per- 
formance with respect to all of the quality measures which 
have been discussed. Besides providing a means for com- 
paring algorithms, the results of this section offer insights 

into the validity and significance of the various perfor- 
mance criteria which have been proposed. 

The algorithms were tested on a variety of images 

available on public image data bases, and four images 
were selected for comparisons. Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 shows mono- 
chrome versions of the four color images used. Images 1 
and 2 (Figs. 5(a) and (b)), known as Lena and Tiffany, 
respectively, are characterized by large smooth regions of 
light skin tones which are particularly difficult to quantize 
transparently. This is probably due to the combined ef- 
fects of a sensitive region of luminance/hue together with 
strong prior expectations on the part of the viewer. Image 
1 contains colors from a larger area of the color space than 
image 2, and it suffers from the most noticeable false con- 
touring of the four images used for comparisons. Image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 
(Fig. 5(c)), known as F16, is relatively easy to quantize 
transparently because its large saturated white back- 
ground contains colors concentrated in a small region of 
the color space. Image 4 (Fig. 5(d)), known as Peppers, 
contains colors from many disjoint regions of the color 
space and produces significantly higher TSE than the other 
images. 

Table I compares five color quantization algorithms 
with respect to three Performance criteria. The compari- 
sons are shown for Figs. 5(a) and (d), which are the most 
challenging images to quantize. The first algorithm, la- 

beled (8, 8 ,4) ,  uses an image-independent separable color 
map with 8 red, 8 green, and 4 blue quantization levels. 
The second algorithm, labeled HIST, is a generic histo- 

gram-based method similar to that used for the initial- 
ization step in [ 11. The final three algorithms, labeled BS, 
WBS, and EBBS, are the basic binary splitting algorithm 
of Section 11-A, the weighted binary splitting algorithm 
of Section 11-B, and the erosion-based binary splitting al- 
gorithm of Section 11-C. The WBS method uses a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 x 5 
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Monochrome versions of color images used in comparisons of al- 
gorithms. The images are referred to as (a) Lena: (b) Tiffany: (c) F16; (d) 

Peppers. 

moving average filter to smooth the gradient components, 
and the EBBS uses the nine point block of Fig. 2. Three 
criteria are used to judge algorithm performance: the RMS 

error given by RMSE = W N ,  the WRMS error given 
by WRMSE = J W T S E / N ,  and the average code word 
interior size (ACIS) compute with the nine point eroding 
block. 

Several observations can be made from Table I. It is 
clear that the algorithms generating image dependent color 

maps yield significantly better performance than the fixed 
(8, 8, 4) color map according to all performance criteria. 
The generic histogram algorithm, which is not developed 
from maximizing any performance criterion, is outper- 
formed by the three tree structured algorithms according 
to all criteria. It should be noted that the displayed images 

produced by the first two algorithms show noticeable false 
contouring and are clearly of lower subjective quality than 
those produced by the final three algorithms. The differ- 
ences between the tree structured algorithms are less ob- 
vious and, in many cases, can be identified only under 
close examination. 

It is not surprising that, for each of the three criteria, 
the algorithm giving the best performance is the one that 
was developed to maximize performance relative to that 
criteria. However, some insight into the significance of 
the three criteria can be gained by comparing the results 
of the three algorithms. The BS and EBBS algorithms dif- 

fer only in the selection of code words which are split by 
the last 25% of the node splitting operations. Although 
the EBBS gives a 2% increase in the RMSE by using the 

erosion-based criterion for selecting codewords to split, it 
achieves greater than 50% reduction in ACIS, thus sug- 
gesting that the RMSE criterion is a poor measure of false 
contouring in the displayed image. The EBBS algorithm 
performs roughly equal to the BS algorithm relative to the 
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TABLE I 
COLOR QUANTIZATION ALGORITHMS COMPARED ACCORDING TO RMSE, WRMSE, A N D  AVERAGE CODE 

WORD INTERIOR SIZE (ACIS) 

Image 1 Image 4 

Algorithms RMSE WRMSE ACIS RMSE WRMSE ACIS 

(8, 8. 4) 23.66 23.35 187 22.30 21.92 189 

HIST 7.87 7.36 28 11.39 10.22 31 

BS 5.96 5.28 5.7 8.26 7.28 6.0 

WBS 6.31 5.08 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.4 8.73 7.06 3.2 

EBBS 6. 10 5.27 2.3 8.43 7.27 1.5 

WRMSE criterion, reflecting the fact that code words with 
large interiors are often found in regions which are given 
high weights by (8). The relationship between the weight- 
ing function of Section It-B and the erosion-based weight- 
ing of Section 11-C is also reflected in the performance of 
the WBS algorithm. Although it does not directly attempt 
to reduce interior size, Table I shows that the WBS al- 
gorithm produces significantly smaller ACIS compared 
with the basic BS algorithm. Both the WBS and EBBS 
algorithms produce noticeably less false contouring than 
the BS algorithm. 

The LBG algorithm described in Section 11-D can be 
applied to improve the color maps generated by each of 
the algorithms considered in Table I, and Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 shows 
the RMSE that results at each iteration. Since the first two 
algorithms were not designed to minimize any error func- 
tion, the early LBG iterations offer significant reduction 
in RMSE for these algorithms and then quickly reach a 
local minimum in RMSE. Although the LBG iterations 
offer significant improvements to the subjective quality of 
these algorithms, the displayed images produced by the 

resulting local minima still exhibit very objectionable false 
contouring in the case of the fixed (8, 8 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) map and no- 
ticeable false contouring in the case of the palette gener- 
ated by the HIST algorithm. The last three algorithms start 
near local minima and realize small improvements from 
the LBG iterations. For these algorithms, the LBG itera- 
tions produce no noticeable change in the subjective qual- 
ity of the displayed images. Tests on all four images show 
that, although the LBG algorithm does reposition palette 
colors at each iteration, it reaches a local minimum before 
it can perform any major reallocation of colors in the color 
space. Because the general allocation of palette colors to 

regions in the color space remains the same before and 
after the LBG iterations, the quality of displayed images 
produced by the LBG algorithm is very dependent on the 

initial palette selected. 
Table I1 compares the computational complexity of the 

algorithms by showing their execution times on a Sun 
Sparcstation 1 and a rough measure of required multipli- 
cations. The execution times are averaged over the four 
images which were quantized. Since the three tree-struc- 

tured algorithms perform pixel mapping during the palette 
design process, the times shown for the first two algo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

----.... ...................................... 

10 
Iterations 

Fig. 6. RMS error versus the number of iterations of the LBG algorithm. 
Each plot corresponds to an initial color palette generated using one of the 
five quantization algorithms. 

TABLE I1 
COMPUTATIONAL COMPLEXITY OF COLOR QUANTIZATION ALGORITHMS. 

SPARCSTATION, A N D  COLUMN 2 LISTS THE REQUIRED NUMBER OF 

COLUMN 1 LISTS RUN TIMES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOR EACH ALGORITHM ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA SUN 

MULTIPLIES FOR A N  IMAGE WITH N PIXELS A N D  A PALETTE WITH M COLORS 

Algorithm Execution Time (s) Mult. Cont 

- (8, 8, 4) 4.0 
HIST 305.5 3NM 

BS 56.3 6N (log, M + 1) 
WBS 127.6 

6N (log, M + 1) EBBS 59.6 
1 iteration of LBG 32.1 3NM 

7.5N (log, M + 1) + N 

rithms also include both palette design time and pixel 
mapping time. The time listed for the LBG algorithm re- 
flects the execution time of a single iteration utilizing a 
recently proposed fast method for computing nearest 
neighbors [17]. The second column of Table I1 lists the 
number of multiplications used by each algorithm in terms 
of the number of pixels Nand the number of palette colors 

M. This computation count relates the complexity of the 
last three algorithms and the LBG algorithm by compar- 
ing the multiplications required for computing distances 
and autocorrelation matrix elements. However, this count 
does not measure the complexity of the first two algo- 
rithms since their computational complexity is dominated 
by operations other than multiplication. Since the multi- 
plicative complexity of the fast algorithm in [17] varies 
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significantly as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa function of the map, the multiplication 

counts given for the HIST and LBG algorithms reflect the 

complexity of the full search algorithm for computing 
nearcst neighbors instead of the algorithm used in the t i n -  

ing comparisons. 
The error diffusion methods for pixel mapping attempt 

to shape the error spectrum in order to minimize low-fre- 
quency error at the expense of higher RMS error. Fig. 7 
shows the error spectra of quantized versions of image 1 
(Fig. 5(a)) with and without error diffusion. Both plots 

use a 64 color palette generated by the EBBS algorithm. 
The algorithm of Fig. 7(a) maps each color to the nearest 
neighboring palette color while the algorithm of Fig. 7(b) 

uses the modified error diffusion method with (CY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 6) as 
described in Section 111-B, The plots show that, while 
nearest neighbor pixel mapping minimizes the overall er- 
ror power, error diffusion produces a shaped error spec- 
trum with lower error energy at low frequencies. Table I11 
shows this same result numerically by comparing these 

same two methods of pixel mapping using the RMSE and 
a filtered RMSE (FRMSE) performance criteria. The 
FRMSE is computed by low-pass filtering the error before 
computing the RMS deviation. This reflects the frequency 
sensitivity of the human visual system together with the 
spatial bandwidth of the display device. 

Section 111-B discussed how the nonuniform distribu- 
tion of colors in the palette can lead to quantization error 
oscillations and proposed the modified error diffusion 
method to eliminate these oscillations. One method of de- 

tecting oscillations is to measure the output error of the 
quantizer in the error diffusion loop. When this error is 
large it suggests that the input values to the quantizer are 
far from any available palette colors. In practice, large 
errors result in very poor quality images often containing 
high frequency patterns of spots. Table IV uses the Pep- 

pers image (the worst case of the four images) to show 
the dependence of the quantizer output RMSE on the value 
of the clipping parameter CY and the method of quantiza- 
tion. It is useful to note that the conventional error diffu- 
sion may be thought of as modified error diffusion with CY 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. The two types of quantization methods used are 

tree-based quantization, and a full search quantizer which 
finds the minimum-distance palette color. In addition to 
the quantization RMSE, the percentage of pixels at which 
clipping occurs is also listed. This, together with the 
FRMSE, gives an indication as to when an excessive 
amount of clipping is occurring due to a small value of CY. 

It is interesting to note that oscillation occurred both with 
and without the full search quantizer, and that when clip- 
ping was used the two quantization methods had compa- 
rable performance. This table also indicates that CY = 6 
yields a reasonable compromise between oscillation 
damping and restricted limiting. 

In order to illustrate the artifacts present in the quan- 
tized images, we have included monochrome versions of 
some of the quantized images. These images were gen- 

j501 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 0 0  -1 

-;- 

(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
150, 

(b) 

Fig. 7.  Spatial spectra of the quantization error in two displayed images. 
Each plot shows the RMS spectrum of the luminance component of the 
error. The plots correspond to the error spectrum from (a) minimum dis- 
tance pixel mapping and (b) the modified error diffusion. 

TABLE Ill 

RMSE A N D  FILTERED RMSE (FRMSE) PRODUCED 
BY THE NEAREST NEIGHBOR A N D  ERROR DIFFUSION 

METHODS OF PIXEL MAPPING 

Algorithm RMSE FRMSE 

Nearest neighbor 8.87 5.49 
Error diffusion 10.53 4.70 

TABLE IV 

PERFORMANCE COMPARISONS OF ERROR DIFFUSION A N D  MODIFIED ERROR 
DIFFUSION METHODS FOR PIXEL MAPPING. THE PARAMETER 01 CONTROLS 

FEEDBACK SIGNAL IS CLIPPED 
THE AMOUNT OF QUANTIZATION ERROR WHICH CAN OCCUR BEFORE THE 

Quantizer % of Pixels 
Algorithm RMSE Clipped FRMSE 

ED (tree search; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 00) 426.9 0 8.24 
ED (full search: 01 = 00)  242.4 0 6.68 
MED (tree search; CY = 6) 26.4 8.1 4.89 
MED (full search: a = 6) 25.6 7.7 4.70 
MED (tree search; a = 3) 16.5 22.2 4.99 
MED (full search; 01 = 3) 16.0 21.7 4.83 

erated by using the luminance component of the quantized 
colors as defined in (6). While distortions in color are not 
visible, false contouring can still be seen. Each figure 
shows the center region of the image Lenna enlarged by 
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(e) ( f )  

Fig. 8. A comparison of color palettes using enlarged monochrome versions of color images. Each palette contains 256 colors. 
(a) Original image is shown together with quantized versions using (b) an image independent color map of 8 red, 8 green, and 
4 blue; (c) histogram based method (HIST); (d) binary splitting method (BS); (e) weighted binary splitting (WBS); ( f )  erosion 
based binary splitting (EBBS). 

a factor of two. This emphasizes smooth regions in her 
shoulder and face which are difficult to quantize. Fig. 8 
contains the results of the five color quantization algo- 
rithms, fixed (8, 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4), HIST, BS, WBS, and EBBS. The 

fixed color map shows very severe degradation and con- 
touring. The result of the histogram-based method is sig- 
nificantly better than the fixed map, but it still contains 
severe artifacts in areas of smooth color variation. The 
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and spotty patterns caused by the large oscillations of the 
error diffusion filter. The modified error diffusion elimi- 

nated these artifacts and improved the display quality rel- 
ative to minimum TSE pixel mapping. However, the im- 
age quality is still somewhat degraded relative to the 
original. We have found that error diffusion can dramat- 
ically improve the quality of an image generated from an 
excessively small palette, but it generally does not pro- 
duce transparent results since in the process it adds some 
distinguishable noise. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V .  CONCLUSION 

A variety of methods were explored for designing and 
using hierarchical image specific color palettes. The ad- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, - \  

vantage of the hierarchical design is that nearly optimal 
color palettes can be designed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(N log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM )  time where 
N is the number of image pixels and M is the number of 
colors in the palette. In addition, the hierarchical structure 
allows colors outside the image to be quantized in (3(N 
log M )  time. This computational savings is important in 
dithering applications. The color palette was improved by 
modifying the minimum total square error criteria to in- 
corporate more subjective measures of image quality. This 
was done using two methods: subjective weighting and 
erosion. Erosion was found to require less computation, 
but both methods were found to yield very high quality 
results for palettes of size 256. 

The techniques of ordered dithering and error diffusion 
were extended for use with image-specific color palettes. 

(b) 

Fig. 9. Monochrome versions of quantized color images using error dif- 

fusion methods. Each image uses a 64 color palette generated with the 
EBBS method. (a) Result of conventional error diffusion, and (b) modified 
error diffusion using a = 6 and a tree search quantizer. 

third image, generated using the basic binary splitting al- 
gorithm, has relatively good but not transparent quality. 
The areas above Lenna lips and on her forehead and along 
her should show false contours. The contours along her 
shoulders and face are significant when viewed on a high 
quality display. Both the WBS and EBBS algorithms are 

significant improvements over the basic algorithm, but the 
EBBS exhibited slightly more reliable performance with 
substantially less computation than the WBS algorithm. 
For 256 color palettes, we have found that both methods 
yield transparent quality for a variety of images. The ad- 
vantage of the erosion method is that the actual quanti- 

zation quality is measured during the palette design. In 
contrast, the weighting method predicts problematic areas 
of the image. 

The results of two error diffusion algorithms using a 64 
color EBBS palette are also shown in  Fig. 9. Both images 
used tree-based quantizers, but the first image used con- 
ventional error diffusion and the second used the modified 
error diffusion of Section 111-B with (Y = 6. The conven- 
tional error diffusion method resulted in saturated regions 

Basic error diffusion exhibited instability due to the sparse 

nature of the color palette, but a modified error diffusion 
technique was proposed to limit this instability when it 
occurred. Modified error diffusion substantially reduced 
artifacts caused by excessively small palettes of size rang- 
ing from 32 to 128 colors. 
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