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Color Stabilization Along Time and Across Shots of

the Same Scene, for One or Several Cameras of

Unknown Specifications
Javier Vazquez-Corral and Marcelo Bertalmı́o

Abstract—We propose a method for color stabilization of shots
of the same scene, taken under the same illumination, where one
image is chosen as reference and one or several other images
are modified so that their colors match those of the reference.
We make use of two crucial but often overlooked observations:
firstly, that the core of the color correction chain in a digital
camera is simply a multiplication by a 3x3 matrix; secondly,
that to color-match a source image to a reference image we don’t
need to compute their two color correction matrices, it’s enough
to compute the operation that transforms one matrix into the
other. This operation is a 3x3 matrix as well, which we call H .
Once we have H , we just multiply by it each pixel value of the
source and obtain an image which matches in color the reference.
To compute H we only require a set of pixel correspondences,
we don’t need any information about the cameras used, neither
models nor specifications or parameter values. We propose an
implementation of our framework which is very simple and fast,
and show how it can be successfully employed in a number
of situations, comparing favourably with the state of the art.
There is a wide range of applications of our technique, both for
amateur and professional photography and video: color matching
for multi-camera TV broadcasts, color matching for 3D cinema,
color stabilization for amateur video, etc.

I. INTRODUCTION

We expect two pictures of the same scene, taken under the

same illumination, to be consistent in terms of color. But if

we have used different cameras to take the pictures, or just

a single camera with automatic white balance (AWB) and/or

automatic exposure (AE) correction, then the most common

situation is that there are objects in the scene for which the

color appearance is different in the two shots.

This is problematic in many contexts. With a single camera,

the only way to ensure that all pictures of the same scene are

color consistent would be to save images in the RAW format,

or to use the same set of manually fixed parameters for all

the shots. These are not common choices for amateur users,

but even professional users face the same challenges: the most

popular DSLR cameras for shooting HD video don’t have the

option of recording in RAW [4]; and while in cinema the

exposure and color balance values are always kept constant for

the duration of a take (i.e. AE and AWB are never used), the

shooting conditions may require to change these values from

shot to shot. With different cameras the problem is aggravated,

because using the same parameter values in all cameras is not
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enough to guarantee the stability of color across shots [16].

In many professional situations several cameras are used at

the same time (e.g. large photo shoots, many mid-scale and

most large-scale cinema productions), and in some cases the

multi-camera set-up is required, not optional. For instance,

TV broadcasts employ devices called camera control units,

operated by a technician called Video Controller or Technical

Director (TD): while each camera operator controls most of

his/her camera functions such as framing or focus, the TD

controls the color balance and shutter speed of a set of cameras

so as to ensure color consistency across them [26].

We can see then that an automatic color stabilization procedure

would be both a very useful tool for amateur users and a

key asset for the industry. Our contribution is to propose

a framework for color stabilization of shots of the same

scene, taken under the same illumination, where one image

is taken as reference and one or several other images are

modified so that their colors match those of the reference.

This framework is very simple and does not require calibrated

cameras nor any information about the cameras used, neither

specifications nor camera parameters. We make use of two

crucial but often overlooked observations: firstly, that the core

of the color correction chain in a digital camera is simply a

multiplication by a 3x3 matrix; secondly, that to color-match a

source image to a reference image we don’t need to compute

their two color correction matrices, it’s enough to compute the

operation that transforms one matrix into the other, and this

only requires a set of pixel correspondences. Although we rely

on the estimation of a 3x3 matrix, what we propose is not a

color constancy method: we do not try to recover reflectances

neither illuminants, but to remove color fluctuations, making

all images look the same in terms of color (even if those colors

correspond to an incorrect white balance procedure). We show

how our approach can be successfully employed in a number

of situations, comparing favourably with the state of the art:

single-camera stills or video with AE and AWB, single-camera

with changing color temperature or type of scene presets, twin-

camera shots for 3D cinema, multi-camera shots.

II. RELATED WORK

A pioneering color stabilization method for video is presented

in [5] by Farbman and Lischinksky: some frames are desig-

nated as anchors, and the rest are color-adjusted to them. This

adjustment is performed with a dense map containing color

differences, computed from a set of corresponding pixels and
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after interpolation in color space, treating channels indepen-

dently and not using any imaging model for the camera. The

shown results are excellent, but the method is based on a strong

temporal coherence assumption so the authors report it can’t

be used when there are considerable changes from one video

frame to the next. For this same reason, it wouldn’t appear

to be suited for color matching two still pictures with wide-

baseline views of the same scene, and in any case the authors

restrict the application of their method to video.

In [13] Kim et al. propose an in-camera imaging model from

which they derive camera calibration procedures to determine

the camera response function, color transformation matrix and

so on. This information allows them to perform a number of

tasks with outstanding results, including color transfer between

pictures taken with the same or different, but known and

calibrated, cameras. Therefore, the main limitation of this

approach is that it requires a camera calibration stage, it just

can’t be applied to pictures taken by cameras of which we

know nothing: for each camera model a number of training

images, each recorded both in JPG and RAW formats, is

needed, and for cameras without RAW support they have to

use a RAW image of the same scene but taken with another

camera as reference. Also, another limitation of this technique

is that correction of differences due to AWB requires user

assistance.

In the academic literature there is abundant work on the more

general problem of color transfer among images, and in a

recent article [20] Reinhard surveys methods for this problem,

mentioning essentially four types of approaches: warping clus-

ters or probability distributions in a three-dimensional color

space, as in Pitié et al. [18]; matching means and standard

deviations in an appropriate, de-correlated color space, as in

Reinhard et al. [21]; aligning and scaling principal axes of

the color distributions, as in the work [14] by Kotera; and

straightforward histogram matching, performed independently

on each color channel of an original or de-correlated color

space. These are all global methods, i.e. they modify the value

of each pixel ignoring its location and hence also ignoring the

values of the neighboring pixels. Recent methods use pixel

correspondences to identify similar regions between the image

pair and then refine the color matching transform which still

is global, as in the work by Kagarlitsky et al. [12]. Local

methods have been proposed by Tai et al. [24], where the

images are segmented into regions in which color distributions

are represented as Gaussian mixtures and then matched, and

by Huang and Chen [11], where colors are transferred among

corresponding landmarks and then extended to the rest of the

image. While these methods provide very good results in a

variety of situations, they are also much more involved than

global approaches and rely on solutions to challenging tasks

such as image segmentation. The state of the art in color

transfer is the technique by HaCohen et al. [9], a remarkable

work where a dense correspondence map is computed and

applied to a variety of situations, including global and local

color transfer; recently, this approach has been extended to

improve color consistency in photo albums [10]. The results

are excellent, although no quantitative evaluation is performed

for the color transfer application and the authors report some

limitations of their approach, including the difficulty of finding

reliable correspondences in very large smooth regions or

handling scenes with strong lighting changes because they fit

one single color model to the whole scene.

III. COLOR STABILIZATION

A. In-camera color processing chain

Before we introduce our approach, let us review the elements

of a digital camera’s color processing chain [2]:
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where RGBin is the camera raw triplet at a given pixel loca-

tion, to which a diagonal white balance matrix D is applied,

followed by the colorimetric matrix C (that transforms an

(R,G,B) triplet into its corresponding (X,Y, Z) tristimulus

value), followed by the color encoding matrix E (that converts

(X,Y, Z) tristimulus values into a standard RGB color space

like sRGB, for display purposes), followed by a gain constant

α, and finally a power function of exponent γ is applied. All

three matrices D,C and E are 3x3. In [17] it is pointed

out that the RGBin camera raw triplet is usually not the

original sensor signal but a corrected version of it, where

the original nonlinear camera exposures have been linearized

through a LUT; thus, we can assume that all RGBin triplets

are actually proportional to the exposures. The final gamma

correction power function is also implemented with a LUT,

and since the color transformation matrices can be cascaded

into a single 3x3 matrix, the whole color processing pipeline

can be expressed as a LUT-matrix-LUT sequence [17]:
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This model is an approximation: in practice the curve of the

gamma correction is slightly modified so that it doesn’t have

infinite gain near black [19], and therefore it’s not exactly

a power law, and also all RGBout values are clipped or

non-linearly mapped into a predefined range (e.g. [0,255] in

sRGB) which introduces non-linearities in the color correction

procedure, as Kim et al. point out [13]. Furthermore, RGBout

is the output of this color correction pipeline but not the actual

triplet value recorded by the camera, because there still remain

some image processing operations in the full camera pipeline,

e.g. edge enhancement, denoising, compression, which will

alter the final values.

The colorimetric matrix is a function of the scene illuminant,

so ideally a different matrix should be used for each different

scene illuminant the camera is working with [17]. Many

cameras come with several pre-set matrices computed under

different illuminations. For instance, using the matrix for
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fluorescent lighting removes a noticeable green cast that would

otherwise be present if we used a matrix computed with

a standard illuminant like D65 or D50; other pre-sets may

correspond for instance to a “film look” (with de-saturated

colors), or may give a very vivid color palette.

These pre-set matrices can also be adjusted manually so as to

achieve a certain image look, since changing the colorimetric

matrix affects hue and saturation. But for our problem there is

a stunning, key observation that we can make from learning

what the original purpose was of modifying a colorimetric

matrix: to allow cameras to be “color matched” so that there

were no color shifts when cutting between multiple cameras

during live broadcasts [1].

That is, changing the nine elements of a broadcast camera’s

color matrix is enough to match its shots to those taken by

another camera, and for this the camera operators didn’t need

to determine which were the internal matrices E,C,D of

either camera. This means two fundamental things for us,

which will constitute the basis of our approach:

1) Color matching can be achieved with a 3x3 matrix.

2) We don’t need to know the actual values of the matrices

involved in the color processing chain.

B. Overview of proposed framework

Let’s start by considering the case of a single camera. We take

a picture, Î1, change its settings, change its position, and take a

second picture, Î2. We are also assuming that the illumination

doesn’t change, so if p is a scene point appearing in both

images then it has produced in the sensor the same triplet

(R,G,B)p in both pictures. But, given that we have changed

both camera position and settings, point p will very probably

appear at different locations and with different pixel values,

(R,G,B)p1 and (R,G,B)p2, in the two images:
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Although the parameter γ is a known industry standard (e.g.

γ = 1

2.2
in sRGB, γ = 1

2.0
in BT.709 for HDTV, γ = 1

2.6
in

digital cinema, etc.) in practice it is usually changed, e.g. by

the camera itself depending on the picture style [13], or by the

technical director in charge of a camera control unit at a live

broadcast [23]. But it is important to note that, as Thomas et

al. point out in [23], processing of gamma-corrected (instead

of linear or linearized) images isn’t usually problematic. In

practice we don’t need to very accurately estimate the values

γ1 and γ2: assuming for both the industry standard value

already gives a reasonable result for our problem. This result

can be improved using an estimate of the ratio γ1

γ2

(and we will

introduce a novel procedure to perform this estimate,) but no

gain seems to be obtained by using the actual values for both

γ1 and γ2: just setting the smaller of the two values at 2.2, and

using the estimated ratio to compute the other gamma value,

is enough to give results that compare favorably with the state

of the art and which also do not appear to improve if more

accurate estimates of γ1 and γ2 are used, as we shall see in

more detail in the implementation and experiments sections.

For the above reasons, then, let’s assume that we have an

estimate of the gamma values so we can undo the gamma

correction:
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Now we can see that:
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therefore:
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Let H be the unknown 3x3 matrix H = A1A2
−1, then we

have:
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and this relationship holds for all pairs p1, p2 of corresponding

pixels. Therefore, each pair of pixel correspondences gives

us an equation of the form of (7), and we can find H by

solving a system of equations. We only have 9 unknowns for

H but typically we have many pixel correspondences, so the

system is overdetermined and the solution can be found by an

optimization procedure (since the simplest one, least squares

minimization, is sensitive to outliers, we use a more robust

technique as we explain later).

Once H has been found, we simply need to apply it to each

pixel in Î2 so that it looks as in Î1. And this holds for all pixels,

not just those for which we have found correspondences: the

correspondences are used to estimate H , but H is a global

transform and when we have it we have all we need to make

the images color consistent.

It is easy to see that the analysis above holds as well for

the multi-camera case. One could argue that with different

sensors and different CFA (Color Filter Array) filters we no

longer can say that the registered value (R,G,B)p is the

same in both cameras. This is true, but the main purpose

of the colorimetric matrix, transforming (R,G,B) triplets

into (X,Y, Z) values, is to standardize the captured colors,

making them device independent. Therefore we can assume
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(a) (b) (c) (d)

Fig. 1: (a) Reference. (b) Source. (c) Our result assuming γ1 = γ2 = 2.2, error RMSE=9.31. (d) Our result after estimating

the gamma values, error RMSE=5.08.

that these sensor differences are being taken care of by the

color processing chain, and for two cameras we have the same

working model, that of equation (3).

Summarizing, our proposed framework consists of the follow-

ing three steps:

1) Set values for γ1 and γ2.

2) Find pixel correspondences among Î1 and Î2.

3) Compute the color matching matrix H .

This is a framework based on an imaging model which is

definitely limited in some regards, e.g. it isn’t completely

accurate to linearize the camera response using a simple

gamma correction, and the 3x3 transformation matrix is only

valid for colors in the center of the mapping function. But

in the following sections we will show that, with an example

and simple implementation of each of the three abovemen-

tioned steps, the proposed approach is capable of solving our

problem. Alternative implementations of our framework, with

more accurate techniques for some or all of the three required

steps, could improve the results.

C. Implementation

1) Set values for γ1 and γ2: As mentioned earlier, a working

solution is to assume the standard values for γ1 and γ2, such as

2.2 for sRGB, but we obtain better results if we estimate the

actual values. This is shown in Figure 1: the error, measured

as the RMSE (Root Mean Squared Error) over the color chart,

decreases from 9.31 to 5.08 when we use values for γ1 and

γ2 estimated with the method that we will now describe.

An accurate estimation of γ from a single image is an ill-

defined problem and existing solutions (e.g. [6]) are lacking.

But in our case we have two images of the same scene, and

we have used this fact to devise a novel method to estimate

simultaneously γ1 and γ2. Our method is the following:

• Find pixel matches (Pi, Qi) between Î1 and Î2, i.e.

Î1(Pi) ≃ Î2(Qi)∀i. For this we use SIFT [15]. We

perform this procedure on the original images, ignoring

the differences in gamma values and color appearance

that they have, so the final set of pixel matches is

just a rough approximation, good enough at this current

stage. Later on, for the second step of our framework,

we will perform a more accurate computation of pixel

correspondences, see section III-C2.

• Choose a particular value for γ1 and another for γ2, and

use them to linearize Î1(Pi) and Î2(Qi). Now we are in

the case of eq. 4, and we can compute the color matching

matrix H by solving eq. 7 (for this we use the same

method explained below for the third step of our color

stabilization framework). We denote this matrix as Hγ1,γ2

since it depends on the values for γ1 and γ2.

• We perform the above step for many (γ1, γ2) pairs, and

choose the one that minimizes the error |aγ1,γ2
−1|, where

aγ1,γ2
is given by Î1(Pi)

1

γ1 = aγ1,γ2
Hγ1,γ2

Î2(Qi)
1

γ2 +
bγ1,γ2

( aγ1,γ2
is found by correlation over all pixel

matches (Pi, Qi) ).

Figure 2 plots the error |aγ1,γ2
−1| (in log-scale) as a function

of γ1 and γ2 for two images where one is taken with AWB on

and the other has a “daylight scene” preset. We can see that

the error is clearly much smaller over a certain line γ1 = kγ2,

so in practice we set the smaller of the two gamma values to

2.2 and use the ratio k to determine the other gamma.

Fig. 2: Error |aγ1,γ2
− 1| (in log-scale) as a function of γ1

and γ2.

We have run a test where we consider an input image pair and

perform color transfer with our full method for many gamma

values which vary over the line γ1 = kγ2. In this test we have

the ground truth image so we can compute the Peak Signal to

Noise Ratio (PSNR) of our result as a function of the gamma

pair along the line, and this value is shown in figure 3: we

can see that the PSNR is pretty stable on this optimum line.
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Fig. 3: PSNR of the color stabilization result as a function of

the gamma pair along the optimum line.

We tested this method for estimating γ1 and γ2 over the

multispectral image database of Foster et al. [8] using the 31

camera model specifications of Kim et al. [13], obtaining an

extremely high correlation with the actual γ1 and γ2 values.

2) Find pixel correspondences among linearized Î1 and Î2:

Once we have γ1 and γ2 we can undo the gamma correction,

as explained in section III-B, obtaining the linearized images

I1 and I2. Next we compute pixel correspondences with SIFT

[15], using the implementation of [25] with their default choice

of parameters. To avoid the possible inaccuracies of the SIFT

matches we first compute smoothed versions of the original

images, after convolution with a Gaussian of σ = 5. By doing

this, we make the matches steady even if they have been

found in textured regions or corners. We also refine these

correspondences with RANSAC [7], removing matches that

lead to a transformation matrix H that produces large color

errors, e.g. if one pixel is on a diffuse surface and its match lies

on the highlight of a specular reflection, or if there is a large

difference between the dynamic range of the two cameras so

one shot has for instance a completely overexposed sky which

matches blue tones in the other image. These matches originate

H matrices which are outliers, and therefore they are cancelled

out by RANSAC. Our parameter values for RANSAC are: 5

points to fit the model, 1000 iterations, a threshold value of

0.09 for determining when a datum fits a model, and 0.001

as the minimum length of the solution vector. As a further

refinement, we remove those correspondences that suppose

an angular motion more than 20 degrees larger or smaller

than the median average. The corrective effect provided by

RANSAC (and by the angular motion procedure) over the

original SIFT matches is presented in Figure 4, which shows

how incorrect correspondences obtained by SIFT result in poor

color stabilization results. In this example, by using only SIFT

we get an incorrect yellow tone on the propeller (see detail),

whereas this color is properly matched from the reference if

we apply the RANSAC and angular motion corrections.

3) Compute the color matching matrix H: We look for H by

solving a system of equations which is the same as that of eq.

7, but instead of the (r, g, b) values at the point matches we

use more robust measures, that are less sensitive to variations

in the localization of the keypoints found by SIFT and which

therefore allow us to obtain a more robust estimate of H: mean

average and first SVD-eigenvector of neighborhood values. We

will now present this procedure in detail.

Firstly, for each keypoint pixel p1 = (p1x, p1y) and its

corresponding match p2 = (p2x, p2y), eq. 7 can be written

as:

I1(p1)−HI2(p2) =
−→
0 , (8)

where I1(p1) is the column vector with the (r, g, b) values of

image I1 at pixel p1 (likewise for I2, p2). We consider the

square neighborhoods of half-size w centered at pixels p1, p2,

Iwi (pi) = {Ii(x, y)| |x− pix| ≤ w, |y − piy| ≤ w}, i = 1, 2,
(9)

and arrange these patches as matrices of size 3 × (2w + 1)
so that each column of Iwi (pi) has the (r, g, b) values of a

neighbor of pi. Assuming that the neighborhoods of matching

pixels are also similar, we may write

Iw1 (p1)−HIw2 (p2) =
−→
0 , (10)

therefore the mean average of the columns of each matrix

((mr,mg,mb)
T
pi
, i = 1, 2) must also satisfy eq. 7:
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Clearly, the solution to eq. 11 will be less affected by noise

and errors in the localization of pixel matches than the solution

to eq. 8.

Another robust measure is given by the first SVD left-singular

vector of the neighborhood values, because it represents the

principal axis of the 3D color histogram at the patch: in regions

with several dominant colors, this axis remains stable under

minor changes in keypoint location. Performing the singular

value decomposition of Iw1 (p1), eq. 10 becomes:

USV T −HIw2 (p2) =
−→
0 , (12)

where U has dimensions 3 × 3, S is a rectangular diagonal

3× (2w+1) matrix containing the singular values of Iw1 (p1)
and V T is a (2w+1)×(2w+1) matrix. Rearranging equation

12, we get

U = HIw2 (p2)(V
T )−1S+ (13)

where + represents the pseudo-inverse. This equation has the

form

U = HW (14)

where the 3 matrices U,H,W are of dimension 3× 3. If the

first singular value in S is somewhat larger than the second one

we can assume that there are several dominant colors in the

patch, therefore the first left-singular vector of the SVD will

be robust under the presence of noise or small displacements

of the patch (given by changes in the position of the keypoint).

So, if the ratio of the first two singular values S11

S22

is larger

than some threshold T , we relate the first column of U and

the first column of W in eq. 14 again as in eq. 7:




U11

U21

U31





p1

−H





W11

W21

W31





p2

=





0
0
0



 . (15)



6

Fig. 4: Effect of the use of RANSAC in our approach. Top row, from left to right: source, our result using only SIFT, our result

using SIFT and RANSAC, our results using SIFT and RANSAC and angular motion, reference. Middle row: cropped detail

from top row. Bottom row, from left to right: correspondences by using SIFT, by using SIFT and RANSAC, and by using SIFT,

RANSAC and angular motion.

Each pair of pixel correspodences will give us a set of

equations as in eq. 11, and possibly one set of equations as in

eq. 15 (if S11

S22

> T ). With all the resulting equations, obtained

from all pixel matches, we build a system and solve for H . As

we mentioned in section III-B, computing matrix H through

least squares minimization is sensitive to outliers, so in order

to make it more robust we may employ RANSAC as in section

III-C2, now using a more restrictive threshold value of 0.05.

After finding H we apply it to all the pixels in the source

image with the gamma correction un-done, and finally re-do

the gamma correction. Values outside the [0, 255] range are

clipped. We can see that the only two parameters required by

our algorithm are the patch half-width size w and the threshold

ratio T .

For the numerical implementation we have chosen SIFT and

RANSAC because they are simple, well known and very fast

techniques. In our prototype Matlab code more than 85% of

the execution time is due to SIFT and RANSAC, and both have

real-time implementations [22], so this suggests the possibility

that our method could be applied in real-time scenarios like

live TV broadcasts.

IV. RESULTS

We start this section with example results of our method for

different situations, then we compare with the state of the art,

and finally we present some figures that show the limitations

of our method and possible improvements to it.

A. Seven different scenarios

In order to highlight the effectiveness of our approach, for all

the examples in this section we have used the same parameter

values: w = 1, T = 4.

1) Color matching for professional 3D cinema. We can

apply our method to color correction in 3D cinema, as

Fig. 5 shows. Despite the use of professional cameras

of the same model and with the same parameters, still

color differences appear and our method eliminates most

of them.

2) Using two known cameras. In Figure 6, (a) to (c),

we are matching the colors of a picture taken with a

mobile phone camera (Samsung Galaxy Note, 8Mpix-

els) to those of an image taken with a photographic

camera (Panasonic DMC-FZ45). Although the cameras

are known we do not make use of their specifications or

parameter settings, so this scenario is for us exactly the

same as the following one.

3) Using two unknown cameras. In Figure 6, (d) to (f),

(g) to (i), and (j) to (l) we are making consistent

the colors of a pair of pictures of the same location

taken in different moments, most probably violating our

assumption that the illumination is the same for both

images, but nevertheless the result is convincing. The

original images (d),(e),(g),(h),(j),(k) were simply freely

available web pictures from different individuals, taken

with unknown camera models, so it wouldn’t be possible

to use for this case the state-of-the-art color transfer

method based on the camera calibration procedure of

Kim et al. [13].

4) Varying color temperature. In Figure 7, (a) to (c), our

method successfully stabilizes colors after a change in

the color temperature setting (manual white balance) of

the camera.

5) Varying “type of scene” camera-setting. In Figure 7,

(a), (d), and (e), our method is able to correctly match

the colors to the reference, which has a different “type

of scene” setting than the source image. Typical scene

settings in consumer cameras include “sunny”, “cloudy”,

“lightbulb”, “fluorescent lighting”, “sunset”, etc.

6) Amateur video with AWB and AE. Figure 8 shows an

example of a video recorded with AE and AWB on.

Top: original. Bottom: our result, where all frames were

color-matched to the leftmost frame. Notice how we are
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able to stabilize the brightness of the wall on the right

and its surroundings. Also notice that our method does

not suffer from accumulation errors, since we select one

frame as reference and we keep using it as long as there

are enough correspondences. We must note that in this

result the stabilization has caused some dark regions

to become brighter (because they are brighter in the

reference) and this may make the noise more apparent.

7) Video with large temporal variation. Our proposed

method also works when the temporal coherence be-

tween frames is low: Figure 9 shows two stills from

a video where the objects in the scene have moved

substantially from one image to the other. With our

technique we are able to restore the background tree

to its reference colors.

B. Comparison with the state of the art

We have compared our technique with the state of the art

methods of Kotera [14], Pitié et al. [18] and HaCohen et al.

[9].

The PCA-based color transfer method by Kotera [14] is

worth mentioning because in cinema post-production there are

software packages where color grading is performed via PCA,

with user assistance. This PCA method computes, like ours,

a 3x3 matrix and applies it globally to the source image, but

the principal components are estimated on 3D histograms and

often there are problems due to mismatches of principal axes,

like in the example shown in Figure 10.

Next we compare qualitatively our results with those of Pitié et

al. [18] and HaCohen et al. [9], in Figures 11 and 12. In Figure

11 the differences are especially noticeable in the sky, which

lacks contrast in the result of [9] and shows some pink/orange

tones in the result of [18]. In Figure 12 we point to the colors

of the woman’s shirt and trousers, of the cupboards and of

other objects in the back. These image regions do not appear

in the reference, and hence they are more challenging for a

method like [18] that relies on the statistics of the overlapping

regions, and also for [9] which fits a single color model,

computed on the overlapping regions, to the whole image.

We perform quantitative comparisons versus the methods of

HaCohen et al. [9], Pitié et al. [18], and Kotera [14]. Visual

results are presented in Figures 13, 14 and 15. In Figures

13 and 15 we have available the ground truth, which was

obtained by taking a photo of the scene with the same camera

and settings as those of the reference image, while for Figure

14 the quantitative evaluation is computed using the result by

Kim et al. [13] as ground truth. Therefore, for each image in

these figures we can compute the PSNR between the ground

truth image and the output of each color transfer method:

PSNR = 10log10

(

2552

MSE(IGT , ICT )

)

, (16)

where IGT is the ground truth image, ICT is the color transfer

result, and the MSE is averaged over the three color channels:

MSE(I, I ′) =
1

3

∑

c=R,G,B

1

MN

∑

1≤i≤M
1≤j≤N

(Ic(i, j)− I ′c(i, j))2,

(17)

where Ic (c = R,G,B) denotes channel c of image I .

We have fixed the parameters of our method in the following

way: we have used the parameter values w = 5 and T = 16
for the odd rows of Figure 15 that correspond to a situation

where we must match an image taken with “type of scene =

sunset” to a reference taken with “type of scene = portrait;

illuminant = sunny”, and also for Figure 13 which represents

as well a somewhat dark scene. In the even rows of Figure 15

where one image was taken with AWB on, and the other with

“illuminant = sunny”, and for Figure 14 which also represents

a well-lit scene, we have used the parameter values w = 9
and T = 2 and run RANSAC only once, to discard incorrect

matches.

Table I shows that, with the default choice of parameters, our

results for the images from Figures 13, 14 and 15 are on

average above the state of the art. We can vary w and T on a

per-image basis to obtain even better PSNR numbers. For this

we generate results for a fixed range of (w, T ) values, find

the three image results which are optimum according to three

different measures, and select the best image among these

three by visual inspection. We have chosen to use the following

measures, computed as differences (accumulated over the

keypoint neighborhoods) between the reference image and the

result: difference in color, Euclidean histogram distance, and

ratio between the mutual information of the two images and

the entropy of the result image.

Finally, let us focus again on Figure 14. We recall how Kim et

al. [13] perform camera calibration by taking test images with

a given camera, after which they are able to do color matching,

automatically if there has been no AWB, or with manual user

assistance otherwise. Our result is very similar to the one of

Kim et al. [13], with the advantage that our color matching

process is “blind” (i.e. we don’t need to know anything about

the camera with which the picture was taken).

TABLE I: Average PSNR for the images of Figures 13, 14

and 15

Method PSNR

Fig.12 Fig.13 Fig.14 Average

Proposed: changing parameters 34.69 27.09 27.37 27.94

Proposed: parameters fixed 33.71 27.05 27.17 27.70

[HaCohen et al. 2011] 32.12 22.88 27.31 27.34

[Pitié et al. 2007] 23.20 27.70 24.63 24.76

[Kotera 2005] 8.72 26.10 23.51 22.49

C. Limitations and possible improvements

Figure 16 shows how our results may improve if we use,

instead of SIFT, a method which gives a more populated set of

pixel correspondences between I1 and I2 (in this example we
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have applied to the ground truth image a state-of-the-art optical

flow computation algorithm [3]), at the expense of increasing

the computational cost.

Figure 17 shows some limitations of our method. For the wide

angle shots on the top our result is poor, probably due to the

lack of enough SIFT matches caused by the great disparity

among the shots; a more sophisticated method than SIFT for

finding correspondences, like [9], could improve the results.

For the stereo shots on the bottom our results are also lacking,

and we think that for this example a global approach like ours

isn’t enough, because the color differences may be due to color

aberrations of the beam-splitter and therefore local instead of

global, not an uncommon scenario in 3D cinema [16].

Another limitation of our method is related to highly saturated

colors, which tend to fall outside the color gamut of the output

format and therefore are usually clipped. The result is that for

pixels with these colors the in-camera color processing can

no longer be modeled as a linear transformation, as stated by

Kim et al. [13]. Since these colors do not fulfill our basic

assumption of a linear model for the color pipeline, as stated

in Eq. 4, they might be transferred incorrectly, as Figure 18

shows: notice the results for the yellow marker and the red

cup.

V. SUMMARY

We have presented a method to remove color fluctuations

among images of the same scene, taken with a single camera

or several cameras of the same or different models. No

information about the cameras is needed. The method works

for still images and for video. It is based on the observation

that the color correction operations performed in-camera (apart

from gamma correction) can be cascaded into a single 3x3

matrix, and color matching among images only requires to

transform one matrix into another, it’s not necessary to actually

estimate the matrices. This is precisely what motivated TV

engineers to allow for manual modification of the colorimetric

matrices of broadcast cameras, so that their colors could be

matched and the transitions among them were smooth.

We have shown applications of our method in a variety of

settings, as well as comparisons with the state of the art in

the color transfer literature. We have chosen to implement our

method using reliable, classical techniques, for which there

exist hardware accelerated implementations, but we also show

how better numerical methods can further improve the results.
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Fig. 5: Left: Reference image. Middle: Source image. Right: Our result. Images property of Mammoth HD Inc.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6: (a) Picture taken with a photographic camera. (b) Picture taken with a mobile phone. (c) Our result of matching (b)

to (a). (d) Reference. (e) Source. (f) Our result, matching (e) to (d). (g) Reference. (h) Source. (i) Our result, matching (h) to

(g). (j) Reference. (k) Source. (l) Our result, matching (k) to (j).

(a) (b) (c) (d) (e)

Fig. 7: (a) Reference. (b) Source, different color temperature. (c) Our result of matching (b) to (a). (d) Source, different “type

of scene” camera setting. (e) Our result of matching (d) to (a).

Fig. 8: Top: Original video, with AE and AWB. Bottom: Our result.
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Fig. 9: Left: Reference image. Middle: Source image. Right: our result. The original images are stills from a video.

(a) (b) (c) (d)

Fig. 10: (a) Reference. (b) Source. (c) Result from Kotera [14]. (d) Our result.

(a) (b) (c) (d) (e)

Fig. 11: (a) Reference. (b) Source. (c) Result from Pitié et al. [18]. (d) Result from HaCohen et al. [9]. (e) Our result.

(a) (b) (c) (d) (e)

Fig. 12: (a) Reference. (b) Source. (c) Result from Pitié et al. [18]. (d) Result from HaCohen et al. [9]. (e) Our result.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 13: (a) Reference. (b) Source. (c) Ground truth. (d) Result from Kotera [14] . (e) Result from Pitié et al. [18]. (f) Result

from HaCohen et al. [9]. (g) Our result with fixed parameters.(h) our result changing parameters
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 14: (a) Reference. (b) Source. (c) Result of Kim et al. [13], used as ground truth. (d) Result from Kotera [14] . (e)

Result from Pitié et al. [18]. (f) Result from HaCohen et al. [9]. (g) Our result with fixed parameters.(h) our result changing

parameters.

Fig. 15: From left to right: reference, source, ground-truth, Kotera [14], Pitié et al. [18], HaCohen et al. [9], our result with

fixed parameters, our result changing parameters.
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Fig. 16: From left to right: reference, source, our result changing parameters (31.04 dB), our result with fixed parameters

(30.85 dB), our result using optical flow to compute the matches (31.86 dB).

(a) (b) (c)

(d) (e) (f)

Fig. 17: (a) Reference. (b) Source. (c) Our result, matching (b) to (a). (d) Reference. (e) Source. (f) Our result, matching (e)

to (d).

Fig. 18: Effect of saturated pixels in our approach. From left to right: source, reference, our result.


