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We study fermionic atoms of three different internal quantum states (colors) in an optical lattice,
which are interacting through attractive on site interactions, U < 0. Using a variational calculation
for equal color densities and small couplings, |U | < |UC |, a color superfluid state emerges with a
tendency to domain formation. For |U | > |UC |, triplets of atoms with different colors form singlet
fermions (trions). These phases are the analogies of the color superconducting and baryonic phases in
QCD. In ultracold fermions, this transition is found to be of second order. Our results demonstrate
that quantum simulations with ultracold gases may shed light on outstanding problems in quantum
field theory.

PACS numbers: 03.75.Mn , 32.80.Pj, 71.35.Lk

The achievement of Bose-Einstein condensation (BEC)
a decade ago has opened the new field of ultracold atomic
physics where dilute alkali-metal gases are cooled into the
quantum degenerate regime [1]. In particular, degener-
ate Fermi gases have been realized [2] with temperatures
down to T/TF ≈ 0.05. An attractive feature of these
systems is the high degree of tunability. Feshbach res-
onances allow atomic interaction strengths to be tuned
[3], while optical lattices can be used to create artificial
crystals of light in which atoms form Bloch bands like
electrons in solids [4, 5, 6]. Moreover, the effective inter-
action strength can be modulated by the optical lattice
alone and thus tuned through quantum phase transitions
like the bosonic Mott transition [6]. Recently, fermionic
40K atoms have been loaded into optical lattices as well
[7]. It has been predicted that quantum simulations with
cold fermions in optical lattices may ultimately shed light
on complex solid-state phenomena like high-temperature
superconductivity [8]. In a different line of experiments,
fermionic superfluids close to the BEC-BCS transition
have been created and even loaded into optical lattices
[9, 10]. Very recently, also pairing of fermions with un-
equal spin densities and the eventual breakdown of su-
perfluidity has been studied [11].

More generally, with the degrees of freedom offered by
cold atoms, it is possible to create new states of matter
which have no equivalent in condensed matter. While
typical electronic systems have at most SU(2) spin ro-
tational symmetry, the atomic total angular momentum
F can be larger than 1/2, resulting in 2F + 1 hyper-
fine states. In optical traps, all of these states can be
trapped, e.g., for spinor condensates of 23Na and 87Rb
[12]. For fermionic atoms, coexistence of 3 different hy-
perfine states of 40K in an optical trap has been demon-
strated [13].

Here, we study optical lattices loaded with fermionic
atoms that possess three different internal quantum num-
bers (colors), α = 1 . . . 3 and interact through an attrac-
tive on-site interaction. This system is well described by
a SU(3) Hubbard Hamiltonian. For small interactions a
color superfluid (CSF) state appears with a triplet or-
der parameter [14]. Here we show that for low fillings
and larger interactions a quantum phase transition takes
place from the superfluid state to a Fermi liquid phase,
where groups of three fermions bind together to form tri-

ons. This transition is closely analogous to the one con-
jectured in QCD, where at large quark densities, a color
superconducting state is expected while at low densities,
baryonic matter emerges.

Such an optical system can be realized, e.g., by loading
6Li atoms of nuclear spin I = 1 into an optical lattice and
applying a magnetic field that is larger than the hyperfine
coupling. In this case, the electron spin of the Li atom is
essentially polarized along the external field direction and
the 2I +1 nuclear quantum numbers provide the internal
degrees of freedom. Attractive interactions independent
of the nuclear spin are induced by an anomalously large
and negative triplet scattering length as = −2160a0 [15].
We expect the experimentally accessible temperatures for
this three-state ensemble to be in the same range as for
two-component mixtures, i.e., T/TF ≈ 0.05 [9]. In the
absence of spin-flip processes, the densities of the three
“color” states can be adjusted independently by radiofre-
quency sweeps and selective evaporation [11].

In an optical lattice the atoms experience a periodic
potential V (x) = V0

∑

l=x,y,z cos2(kxl), with k the wave
vector of the laser and the directions labeled by l. At low
fillings, this system can be described with good accuracy
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by the Hubbard Hamiltonian

H = −t
∑

i,j,α

ĉ†iαĉjα +
U

2

∑

i,α6=β

n̂iαn̂iβ . (1)

Here n̂iα = ĉ†iαĉiα measures the number of fermions with

color α at site i, with ĉ†iα the creation operator of a
fermion. The interaction U is assumed to be negative
throughout this Letter while the ratio |U |/t can be tuned
in a wide range by changing the depth V0 of the optical
lattice. In Eq. (1), we also assume a homogeneous optical
lattice, and neglect to a first approximation the parabolic
confinement potential of the atom trap. Note that Eq. (1)
has an SU(3) symmetry associated with global rotations,
ciα → ∑

β Uαβciβ , and H conserves the total number of

particles of each color, N̂α ≡ ∑

i n̂iα. For 6Li in a strong
magnetic field, this symmetry arises because the inter-
action between the atoms is mediated by electronic van
der Waals forces, which are independent of the nuclear
degrees of freedom.

For small values of |U |/t, the attractive interaction has
been shown to induce a superfluid state at T = 0 [14]. In
this state, fermions are paired to form Cooper pairs with
an order parameter ∆αβ ≡ 〈ciαciβ〉 which transforms ac-
cording to the adjoint representation 3̄ of SU(3). For
very large values of |U |/t, however, perturbation theory
in the hopping t predicts a state of entirely different na-
ture: Here three atoms tend to form a composite object,
a local bound color singlet of energy 3U , which can hop
between neighboring sites with an amplitude teff ∼ t3/U2

and interact repulsively to form a Fermi liquid at very low
temperatures. Note that the symmetry of the superfluid
and the trionic state is different; therefore, there must be
a phase transition that separates them. As we shall see,
this transition is of second order, and the two states are
separated by a quantum critical point.

The above transition occurs at intermediate values of
U/t, where neither perturbation theory nor diagram-
matic approaches can be applied successfully. We there-
fore use a variational approach in the high-dimensional
limit d → ∞. As a variational ansatz at T = 0, we use a
Gutzwiller-projected wave function |G〉 =

∏

i gt̂i |BCS〉 ,
where |BCS〉 is a BCS superfluid state with two out of
three color states paired

|BCS〉 =
∏

ǫ
k′<µ3

ĉ+

k′3

∏

k

(uk + vkĉ+

k1
ĉ+

−k2
)|0〉 , (2)

and P̂G ≡
∏

i gt̂i =
∏

i[1 + (g − 1)n̂i1n̂i2n̂i3] is a gen-
eralized Gutzwiller projector that favors triply occu-
pied states for large values of the variational parame-
ter g. Without making a restriction, we have assumed
in Eq. (2) that only the ∆12 = −∆21 components of
the order parameter are non-zero.This corresponds to
a particular gauge of the pairing field [14]. The fac-
tors uk and vk denote the usual BCS coherence factors,

u2
k

= 1

2

(

1 + ξk/
√

ξ2
k

+ ∆2
)

and vk =
√

1 − u2
k
, with

ξk = ǫk − µ12, and ǫk = −2t
∑d

l=1
cos kl the kinetic en-

ergy of the atoms on the lattice.
For n1 = n2 = n3, one can gain energy in the superfluid

state by transferring particles to the channels where the
superfluid condensate forms. Therefore, for a given total
density n, the CSF has a global energy minimum for
slightly unequal densities, n1 = n2 6= n3. In Eq. (2), we
therefore introduced different chemical potentials for the
first two and the third channel, µ12 6= µ3. Note, however,
that µ12 6= µ3 are not our variational parameters; they
are just used to fix the total density n ≡

∑3

α=1
〈n̂iα〉 and

n3 ≡ 〈n̂i3〉.
To obtain our variational estimate for the energy, we

need to evaluate the expectation value of the Hamilto-
nian, E(∆, g, n, n3) ≡ 〈G|H |G〉/〈G|G〉, and minimize it
with respect to the independent parameters ∆, g and n3

for a given density n. To compute quantities of the form
〈Ô〉G ≡ 〈BCS|P̂GÔP̂G|BCS〉, we first expand the prod-
uct P̂G =

∏

i[1+(g−1)t̂i] and rewrite P̂GÔP̂G so that no

operator ĉ†iα occurs to the right of the corresponding an-
nihilation operator, ĉiα. We can then use Wick’s theorem
to evaluate the expectation value and recast it in terms
of a Grassmannian effective field theory with action:

S = −1

2

∑

ij

Ψ̄i(D
−1
0 )ijΨj − u

∑

i

ti . (3)

Here ti =
∏

α c̄iαciα, with ciα a Grassman field, and
Ψ̄i = (c̄iα, ciβ) denotes a “Nambu spinor”. The ex-
pectation value of the particle density is given by
〈ĉ+

iαĉiα〉G = 〈niα〉S − u〈ti〉S , while the average of terms
occurring in the kinetic and interaction energy are given
by

∑

α〈ĉ+
iαĉjα〉G =

∑

α〈c̄iαcjα[1 − (1 − g)(diα + djα) +
(1−g)2(diαdjα+δijdiα)]〉S , and 〈n̂iαn̂iβ〉G = 〈niαniβ〉S−
u〈ti〉S , with niα = c̄iαciα and diα =

∏

β 6=α niβ . The
Gutzwiller projector manifests in Eq. (3) as an effective
interaction, u = 1 − g2, which is attractive for trionic
correlations (g > 1). The propagator D0 is given by

(D−1
0 )ij =

(

G0 F0

F+
0 −G+

0

)−1

ij

, (4)

with Gαβ
0 ij ≡ −〈ĉiαĉ+

jβ〉BCS and Fαβ
0 ij ≡ −〈ĉiαĉjβ〉BCS .

Similar to [16], we can derive identities that relate all
expectation values above to the full Green’s function,
Dij ≡ −〈ΨiΨ̄j〉S of the effective field theory. While
we cannot compute Dij analytically in finite dimensions,
a great simplification occurs in the d → ∞ limit with
t ≡ t∗/

√
d (and t∗ = fixed), where the self energy be-

comes completely local [16]. In this limit, we can obtain
Dij and thus compute E(∆, g, n, n3) exactly, by deriv-
ing self-consistent integral equations using an approach
similar to dynamical mean field theory [16, 17].

The upper panel in Fig. 1 summarizes our results for
the filling ̺ ≡ n/3 = 1/3. We show the condensation
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energy per lattice site, defined as the energy difference
between the superfluid state and the minimum energy
state for the same filling and ∆ = 0. For |U | < |UC | ≈
−1.774 t∗, the minimum occurs at finite values of ∆ and
g > 1; thus, we find a CSF with built-in three-body
correlations. As expected, the energy of the CSF has a
minimum with n1 = n2 > n3. In other words, the ’spin
operators’ defined in terms of the the Gell-Mann matrices
as ĉ†iλ

µĉi, tend to acquire a non-zero value, and the CSF
becomes also “ferromagnetic”. With an equal number of
atoms of each color, this implies phase separation; that is,
superfluid domains will form with the order parameter in
each domain “pointing” in a different direction [18]. This
tendency to form domains can also be captured through
a Ginzburg-Landau analysis, to be discussed in a future
publication [17]. Note that ferromagnetism appears only
as a secondary order parameter, since the transition is
driven by the local superfluid correlations.

The transition temperature TC associated with the for-
mation of the CSF is related to the condensation energy,
Econd. As shown in Fig. 1, Econd initially increases with
|U |; however, it goes to zero as one approaches the critical
value, U → UC . At this point, the order parameter ∆
also scales continuously to 0; thus, the point U = UC

is a quantum critical point. At U → UC , the varia-
tional parameter g diverges, and |G〉 reduces to a linear
combination of states having trions (or no particles at
all) at each lattice point. This g → ∞ state provides
the solution of minimum energy for the whole region
|U | > |UC |. Note also that in the high-dimensional limit,
the effective hopping amplitude of the trions vanishes
as ∼ 1/d3/2. Therefore, trions are immobile in d = ∞
dimensions, and the energy of the trionic state is sim-
ply Etrion/L = nU = 3̺U , with L the number of lattice
sites. In d = ∞, the trionic state has also a finite residual
entropy. This entropy is, however, immediately removed
once one considers a finite dimensional system where tri-
ons can hop with some effective hopping teff 6= 0: Then
trions are expected to form a Fermi liquid with a Fermi
temperature T ∗. We expect the Fermi temperature to
scale to 0 in finite dimensional lattices as one approaches
UC from the trionic side. As shown in the inset of Fig. 1,
the deviation from equal densities (“ferromagnetic polar-
ization”), δn3 ≡ ̺ − n3, also vanishes as U → UC , since
the condensation energy that drives the accumulation of
particles in the superfluid channels goes to zero at UC .

This picture might, in principle, be modified through
the intrusion of other phases. However, except for the
half-filled fully-nested case not discussed here, there are
no indications for this. At weak coupling, functional
renormalization group [14] does not detect any other
instabilities. The trionic repulsive Fermi liquid is ap-
parently also stable, except possibly at ρ ≈ 1/2, where
charge ordering will take place. We therefore believe that
our variational calculation captures the basic structure of
the phase diagram, which, however, might become dec-

FIG. 1: (color online). Upper panel: Condensation energy
as a function of |U |/t∗ for filling ̺ ≡ n/3 = 1/3. Note that

t∗ = t
√

d is the typical kinetic energy of the fermions and
determines the Fermi temperature TF . The inset shows how
the superconducing order parameter, ∆, the deviation from
equal densities, δn3 ≡ ̺ − n3, and 1/g scale to zero as one
approaches the critical value UC/t∗ ≈ −1.774. Lower panel:
UC/t∗ as a function of the filling factor ̺ = n/3. The phase
diagram is symmetric to ̺ = 0.5.

orated by subdominant and possibly undetectable insta-
bilities at lower energy scales.

At T > 0, thermal fluctuations destroy the CSF order
above a critical temperature. In 3-dimensional lattices,
TC is expected to be finite and related to the condensa-
tion energy Econd. For d < 3 dimensions, phase fluctua-
tions completely destroy the long-range superconducting
order at T > 0.

The phase diagram in Fig. 1 parallels the famous finite
temperature phase diagram of QCD where a supercon-
ducting state occurs at large quark densities, correspond-
ing to large kinetic energies in our case, while baryonic
matter emerges at low densities, i.e., small kinetic en-
ergies [19]. In QCD, however, the phase transition is
believed to be of first order due to the long-range inter-
action generated by gluons. Furthermore, unlike quarks,
the 3-color ultracold fermions considered here (e.g., 6Li)
have no additional flavors and spin degrees of freedom.
The CSF emerging in our case has a non-trivial SU(3)
color content and is analogous to the color superconduct-
ing phase in 2-flavor QCD where only two flavors of light
quarks are considered [20]. In the alternative theoreti-
cal scenario of 3-flavor QCD the superconducting state
is expected to be color-flavor locked [21].

The variational analysis can be performed for all den-
sities. We summarize our results in the T = 0 phase dia-
gram in the lower panel in Fig. 1. Because of particle-hole
symmetry the phase diagram is symmetric with respect
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to half-filling, ̺ = 1/2. Close to half filling, Fermi surface
nesting could lead to additional phases not captured by
our analysis.

Experimentally, the critical temperature could be
reached by implementing adiabatic cooling in the opti-
cal lattice [8, 22]. To leading order, this procedure leaves
the ratio T/TF invariant as absolute temperature scales
decrease. From Fig. 1 we expect the CSF critical tem-
perature to be TC/TF ∼ 0.1 for the 3-color degenerate
Fermi gas which has to be reached before the lattice is
switched on. Realistic values for the dimensionless inter-
action strength are in the range |U |/t ∼ 1−100. The full
phase diagram can therefore be experimentally probed.
Trion formation is expected to set in at temperatures of
order |U | ∼ ER where ER ≈ 0.7µK is the recoil energy
of 6Li in an optical lattice [10].

Maybe the easiest way to detect the CSF is to break
the SU(3) symmetry to U(1) and detect vortices and the
superconducting condensate fraction directly by pushing
the system through a Feshbach resonance [11]. Further-
more, it should be also possible to observe the phase
separation discussed above: For equal initial densities
of all three internal states, domains will form where one
of the states has a lower density than the others. This
imbalance can be easily detected by light absorption, as
already demonstrated for the BEC-BCS transition in a
Fermi gas with overall spin imbalance [11]. Note that
the system discussed here has equal total populations of
all three hyperfine states, and the domain formation to-
gether with a local imbalance occurs spontaneously.

The quantum phase transition could also be observed
via Bragg scattering [23]. With this technique, the dy-
namic structure factor S(k, ω) can be measured which is
a suitable quantity for detecting the superfluid ground
state [8]. In the CSF, several Goldstone modes arise due
to the reduced SU(2) symmetry of the ground state, and
one of them (the Anderson-Bogoliubov mode) is visible in
S(k, ω) [14]. This mode will become soft close to the tran-
sition as the order parameter vanishes and disappears in
the trionic phase.

The characteristic excitation spectrum of the trionic
phase can be probed by “shaking” the optical lattice,
i.e., applying a periodic amplitude modulation. This
technique has already been used to determine the ex-
citation spectrum of a bosonic Mott insulator [24, 25].
Deep in the trionic phase we expect a dominant excita-
tion at a characteristic frequency ω = 2|U | corresponding
to the breaking up of trions, which becomes broadened by
Fermi liquid quasiparticle excitations as one approaches
the transition into the superfluid.

Since neither the CSF nor the trionic phase depends
on a particular filling, we expect only small modifications
of our results due to the trapping potential or the ensu-
ing inhomogeneous density. Moreover, for U ≈ UC the
Cooper pair size ξ will be small compared to the trap

diameter R. Thus, the trapping potential plays a mi-
nor role as in the measurement of the dynamic structure
factor for interacting bosons [23].
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[24] T. Stöferle et al., Phys. Rev. Lett. 92, 130403 (2004).
[25] C. Kollath et al., Phys. Rev. Lett. 97, 050402 (2006).

http://arXiv.org/abs/cond-mat/0005001

	References

