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Abstract .  In the last decade, multiscale techniques for gray-level tex- 
ture analysis have been intensively studied. In this paper, we aim on 
extending these techniques to color images. We introduce wavelet energy- 
correlation signatures and we derive the transformation of these signa- 
tures upon linear color space transformations. Classification experiments 
demonstrate that the wavelet correlation features contain more informa- 
tion than the intensity or the energy features of each color plane sepa- 
rately. The influence of image representation in color space is evaluated. 

1 I n t r o d u c t i o n  

For image analysis, color and texture are two of the most important properties, 
especially when one is dealing with real world images. Classical image analysis 
schemes only take into account the pixel gray-levels, which represents the total 
amount  of visible light at the pixels position. The performance of such schemes 
can be improved by adding color information [1]. The color of a pixel is typically 
represented with the RGB tristimulus values, corresponding to the Red, Green 
and Blue frequency bands of the visible light spectrum. Color is then a feature 
in the 3-dimensional RGB color space, which contains information regarding the 
spectral distribution of light complementary to the gray-level information. 

An important topic when processing color images is their representation. The 
RGB representation is frequently being transformed into other color spaces [2] 
[3]. The performance of an image analysis system can strongly depend on the 
choice of the color representation [4] [5]. However, there does not appear to be 
a systematic means of determining an optimum color-coordinate system for a 
particular task. 

In the analysis of color images, the description of image regions has mainly 
been performed using color histograms [3] [6]. However, they no longer suffice 
when local spatial correlations are important to characterize a region. The extra 
information needed to adequately describe the image regions is commonly known 
as "texture".  Texture has been studied extensively and many texture analysis 
schemes have been proposed [7]. The fundamental property which they all have 
in common is that  they exploit local spatial interactions between pixels. 
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A rather limited number of systems use combined information of color and 
texture, and even when they do, both aspects are mostly dealt with using sepa- 
rate methods [8] [9]. It is only recently that attempts are being made to combine 
both aspects in a single method, by extending gray-level texture analysis meth- 
ods to color images [10] [11]. This combination can be made more formal by 
defining "color-texture" as "the set of local statistical properties of the colors of 
image regions". Efficient characterization of color texture requires the exploita- 
tion of spatial correlations as well as correlations between color bands. 

The importance of a joint color-texture characterization is expected to grow 
rapidly in the near future, e.g. for indexing image databases. At present time, the 
color extensions of several major texture analysis methods are still unexplored. 
We will investigate one of them, based on multiresolution decomposition. These 
techniques give rise to an interesting class of texture analysis methods. Strong 
arguments for their use can be found in psychovisual research, which offers ev- 
idence that the human visual system processes images in a multiscale way [12]. 
Wavelets provide a convenient way to obtain a multiresolution representation 
[13], from which texture features are easily extracted [14] [15] [16]. 

We propose a scheme for the characterization of colored texture images. Fea- 
ture extraction using wavelet decomposition is described. Wavelet correlation 
signatures are defined which contain the energies of each color plane and the 
cross-correlation between different planes. While the first have already success- 
fully been used for texture characterization, the latter represent the coupling be- 
tween texture and color. We will show that these features transform linearly upon 
linear color space transformation. The experiments will demonstrate the useful- 
ness of correlation signatures as texture features. The influence of the choice of 
color space representation on classification performance will be investigated. 

2 W a v e l e t  S i g n a t u r e s  

The (continuous) wavelet transform of a 1-D signal f(z) is defined as 

1 z - b  
(Waf)(b) = f(z)¢*b(Z)dx with Ca,b(z)---- ~ ¢ ( 7  ) (i) 

The mother wavelet ¢ has to satisfy the admissibility criterion to ensure that it 
is a localized zero-mean function. (1) can be discretized by restraining a and b to 
a discrete lattice (a = 2 '~, b E Z). Typically some more constraints are imposed 
on ¢ to ensure that the transform is non-redundant, complete and constitutes a 
multiresolution representation of the original signal. This has led to an efficient 
real-space implementation of the transform using quadrature mirror filters. 

The extension to the 2-D case is usually performed by applying a separable 
filter bank to the image: 

Ln(b ) = [H x • [Hy * Ln_1]$2,1]$1, 2 (b) (2) 

Dnl(b) -- [Hz • [Gy * Ln_I]~,2,1]$1, 2 (b) (3) 
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D.z(b )  -- [G~ * [Hy * Ln-1]$2,1]$1,2 (b) (4) 

Dn3(b) ~- [Gx * [Gy * Ln_1]$2,1]$1, 2 (b) (5) 

where b E R 2, * denotes the convolution operator, $2,1 (41,2) sub-sampling along 
the rows (columns) and Lo = I (x)  is the original image. H and G are a low and 
bandpass filter respectively. L~ is obtained by low pass filtering and is there- 
fore referred to as the low resolution image at scale n. The Dni are obtained by 
bandpass filtering in a specific direction and thus contain directional detail infor- 
mation at scale n; they are referred to as the detail images. The original image 
I is thus represented by a set of subimages at several scales; fL  D ~n=o ..... d-1 "( d, ni.ri=l,2,3 
which is a multiscale representation of depth d of the image I.  

The energy of a subimage D,~i is defined as 

E.i = f (D.~(b))2db (6) 

The wavelet energy signatures {E,i}~=o ..... d-l,i=1,2,3 reflect the distribution of 
energy along the frequency axis over scale and orientation and have proven to be 
very useful for gray-level texture characterization. Since most relevant texture 
information has been removed by iterative low pass filtering, the energy of the 
low resolution image Ld is generally not considered a texture feature. 

The most straightforward extension of the wavelet energy signatures to color 
images is to transform each color plane separately and extract the energies of 
each transformed plane; i.e. replace I by the R,G and B-plane consecutively in 
(2)-(6). We denote such an energy by E~ xj  where the Xj  indicates the color 
plane. This triples the amount  of features w.r.t, the gray-level case. 

Let us define 

cX jXk  / Xj ni = Dni ( b ) D ~  k (b)db (7) 

~ g.TX jXk "tj,k=l,2,3, j <k and call the set t , ~ n i  ~n=0,..,d-lf=l,2,3 the wavelet eovariance signatures. They 
include the energies for j = k; the others represent the covariance between dif- 
ferent color planes and consequently the coupling between the color and texture 
properties of the image. 

The covariance signatures, however, are by definition proportional to the 
energies. They are normalized to remove this redundant information: 

i ---- Cn Xjxk 
( ExJ EX k j 7£ k 

(s) 

.f I~XjX~ -~j,k=l,2,3, j<k The features tvn i  Jn=O,..,d-1,-(=l,2,3 are the wavelet correlation signatures. 
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3 C o l o r  S p a c e  T r a n s f o r m s  

For compression purposes, transformations to different color spaces are often 
employed to achieve image bandwidth reduction without significantly degrading 
image quality. However, since our goal is to efficiently characterize texture, the 
choice of color space should enable extraction of useful features rather than vi- 
sual image representation. Non-linear transforms are mainly employed to obtain 
a color space in which the 3 coordinates have an intuitive meaning (mostly a lu- 
minance, a saturation and a hue component) [17]. They typically introduce some 
non-removable singularities, which is very impractical for further processing. We 
will therefore limit ourselves to linear color space transforms, i.e. 

X'  = M X  (9) 

where X = (Xl(X) X2(x ) X3(x)) r contains the original components of the 
signal (r means transpose), M is a 3 by 3 invertible transformation matrix and 
X s contains the transformed signal. 

Three particular color space transforms (for which X = (R G B) ~) are: 

M1 -- 
0.405 0.116 0.133~ 
0.299 0.587 o.114| 
0.145 0.827 0.627] 

o114  ( 
0.596 ~0.274 -0.322 / 
0 . 2 1 1 - 0 . 2 5 3 0 , 3 1 2 /  

M 3  ~ 

0.333 0.333 0.333~ 
0.500 0.000 -0 .500 |  

-0.500 1.000-0.500] 

The first transforms RGB to the UVW-spare (V=Y=luminance). This is a 
"perceptually uniform" space constructed so that equal changes in the space 
are experienced as equal changes in color by human perception. Ms represents 
the YIQ-spare. The Y signal is the image luminance and the I and Q signals 
carry the chrominance information. The last one (M3) represents the K-L space 
(Karhunen-Lo~ve transform), which transforms an image to an orthogonal basis 
in which the axes are statistically uncorrelated, and in that sense decorrelates 
the information present in RGB space. 

Effect of linear color transform on the wavelet signatures 
We now investigate how the wavelet covariance signatures transform under a 
linear color spare transform. Let us fix n and i and rewrite (1) in vector notation 
for a color image X = (Xl(X) X2(x) X3(x))r: 

(W.,iX)(b) = f (10) 

Define Cni as a (symmtric) matrix with the wavelet covariance signatures as 
elements: 

Cni - " / (W2, , iX) (b )  ((W2-,iX)(b)) r db (11) 

After a color space transformation X' = M X  the covariance signatures become: 
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f ,~ X t C~i = (W2 ,i )(b) ((W2.,iX')(b)) r db 

= M C n i M  ~" (12) 

Or, explicitly: 
3 

m j r m k s ~ n i  - - n $  

r,s=l 

For the energies this means (taking the RGB-space for X): 

(13) 

3 
t t 

~ni -- m j r m j s ~ n i  
r,s=l 

2 R 2 G 2 B RG 
= m j l E n i  + mj2Enl  + rnj3En i -4- 2 m j l m j 2 C n l  

+2mjlmj3CnRi B + 2mj2mj3cGni B (14) 

These formulas offer an interesting insight in the effect of linear color space 
transform on the wavelet signatures. (13) shows that a linear color space trans- 
form implies a linear transform of the covariance signatures. However, from (14) 
it follows that this is not true for the energy signatures. The first 3 terms re- 
veal that  the "new" energy features are linearly obtained from the "old" ones; 
the next 3 terms however depend on the covariances between the R, G and B 
planes for the same subimage. There is no clear connection between the energies 
in the original and transformed color space; to compute the latter the wavelet 
covariance signatures are required. 

(14) also shows that performing a simple linear transform from RGB space 
to another color space results in a clearly different feature set. Hence, the quality 
of the features (i.e. their ability to characterize and discriminate between coIor 
textures) shall be heavily dependent on the choice of color space. This shall be 
demonstrated in the experimental section. 

When one experiments using several color transforms, a practical advantage 
of the relation (13) comes into play. It is sufficient to perform the wavelet trans- 
form once (for the R,G and B planes) and to compute the covariance signatures. 
The new wavelet signatures are then obtained using (13) without the need of 
performing several wavelet transforms. 

For the correlation signatures, the simple relation (13) does not hold. To 
transform correlation signatures into other color spaces, it is therefore convenient 
to transform the covariance signatures first and to normalize them afterwards. 
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4 Classification Methods  

A k-nearest neighbor classifier (k-nn) [18] is used to estimate recognition perfor- 
mance. Since the emphasis in this work is on the feature extraction stage, k-nn 
provides an efficient and robust classification scheme for evaluation of recognition 
rates and comparison of feature sets. 

Recognition rate is estimated by the leave-one-out method. This method 
sequentially picks each available data sample and classifies it (by the k-nn rule) 
using the remaining samples. Each available sample is thus employed once as a 
test sample. The recognition rate is estimated by counting the total number of 
samples classified correctly. 

Well known in pattern recognition literature is the curse of dimensionality 
phenomenon, which dictates that classification performance not necessarily in- 
creases with an increasing number of features (given a fixed amount of data 
samples). Therefore, given a feature extraction scheme and a finite number of 
training instances, there exists an optimal number of features for a particu- 
lar task. This becomes inherently important when dealing with colored images, 
since the number of extracted features is much larger compared to the gray-level 
case. Therefore, it is crucial to adopt a feature selection (or extraction) scheme 
to find a (sub-)optimal set of features. In this work the Floating Forward Fea- 
ture Selection scheme (FFFS) [19] is adopted. This algorithm is initialized by 
taking the best feature ("best" is defined here as giving the best recognition 
performance). The selection then continues by iteratively adding (or deleting) a 
feature in each step to obtain a subset of all available features which gives the 
highest classification performance. 

5 Experiments  and Conclusion 

30 real-world (512x512) RGB color-images from different natural scenes [20] 
were selected: Bark0, Bark4, Bark6, Bark8, Bark9, Brickl, Brick4, Brick5, Fab- 
ric0, Fabric4, Fabric7, Fabric9, Fabricll, Fabricl3, Fabricl6, Fabricl7, Fabricl8, 
Food0, Food2, Food5, Food8, Grassl, Sand0, Stone4, Tile1, Tile3, Tile7, Water6, 
Woodl and Wood2. A database of 1920 color image regions of 30 texture classes 
was constructed by dividing each image into 64 non-overlapping 64x64 subim- 
ages. The following classification experiments were conducted: 

1. Intensity (gray-level) images were generated by computing the luminance, 
hereby discarding color information. A wavelet transform of depth 4 was 
performed and energy signatures were computed for each of the 12 detail 
images. (total: 12 features) 

2. Each R, G and B component was wavelet transformed (depth 4) and energy 
signatures were computed from each detail image. (total: 36 features) 

3. Each R, G and B component was wavelet transformed (depth 4) and corre- 
lation signatures were computed from each detail image. (total: 72 features) 

4. 72 correlation signatures were computed using (13) for the 3 color spaces 
mentioned in section 3: a) UVW space, b) YIQ space, c) K-L space 
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Fig. 1. recognition rate (%) versus feature set dimensionality graphs, a) 1. intensity 
2. energy RGB 3. correlation RGB. b) correlation signatures in different color spaces: 
RGB (3), UVW (4a), YIQ (4b), K-L(4c). 

Classification results are depicted in Fig. 1. One observes that the recognition 
rates saturate about  a dimensionaiity of 10, at which point the error rates for 
each texture class were investigated. We found that  recognition for Fabric0-7- 
17-18, Food5, Sand0, Tile7 and Wood2 was 100% for all classifiers. Recognition 
rates for Fabric9-16 and Water6 were 97-100% and did not differ much between 
classifiers. This shows that intensity alone contains sufficient information to char- 
acterize some textures, but fails to do so on others. Fig. 1,a) shows that  adding 
color information does significantly increase recognition performance. Compar- 
ing curves 2 and 3 in Fig. 1,a) shows that the correlation signatures offer a clear 
advantage over the energies. 

Fig. 1,b) compares the performance of the wavelet correlation signatures in 
different colour spaces, which demonstrates that  recognition performace is color 
space dependent. It is apparent that the recognition rate for the UVW space is 
lower than in the K-L and YIQ spaces and also lower than for the RGB space. 
Recognition performance is thus indeed color space dependent. Overall, the best 
results are obtained with the K-L transform. 

The conducted experiments demonstrate that  color texture can adequately 
be described by the wavelet correlation signatures. These features are not only 
suited for image classification, but can easily be employed for other color texture 
analysis tasks. For instance, for segmentation the wavelet signatures are com- 
puted over a (small) local window centered on each pixel of the image, resulting 
in one feature vector per pixel. Each pixel is then assigned to a particular im- 
age region, e.g. by (unsupervised) clustering techniques in the space of feature 
vectors. 
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