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Abstract—Both commercial and scientific applications often need to transform color images into gray-scale images, e.g., to reduce the

publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to

gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well

defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high

time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least

reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is

defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly

well-defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted

from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving.

Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial

consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation

procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the

new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms

representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer

interactions.

Index Terms—Color to gray, probabilistic graphical model, visual cue.
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1 INTRODUCTION

COLOR to gray algorithms [1], [2], [3] are used to
transform color images into gray-scale images while

preserving important visual cues, which are color spatial
consistency, image structure information, and color channel
perception priority. We will define them strictly in this
paper. Although some researchers [2] mentioned the visual
cue preservation (VCP) for color to gray, there were no
formal definitions for visual cues. Conventional algorithms
have been widely used, for example, in publishing as a less
expensive alternative to providing full color images and for
helping color blind people perceive visual cues better in
color images. Recently, many color to gray algorithms [1],
[2], [3], [4], [5], [6], [7], [29], [31], [32] have been developed,
based on a wide variety of techniques.

Color to gray through linear combination of R, G, and B
channels is a kind of time-efficient approach. Wyszecki and
Stiles [4] have combined the R, G, and B channels using a

group of linear mapping functions. Wu and Rao [5] have
linearly combined the R, G, and B channels by defining a
series of policies to separate luminance value from the
chrominance value so as to construct the gray-scale image
based on the luminance value. Neither method, however,
was able to preserve the important visual cues represented
by different colors. For example, as shown in the trans-
formed gray-scale image in Fig. 1, the gray-scale rendering
of the full color image by linearly combining R, G, and B
according to [4] fails to represent the contrast between the
fruit and leaves that can be perceived in the color image.

We can also treat color to gray as a dimensionality
reduction process which degrades a three-dimensional
color space to the one-dimensional gray-scale space. There-
fore, some unsupervised dimensionality reduction algo-
rithms, e.g., principal component analysis (PCA) [8] and its
kernel generalization (w.r.t., kernel PCA, KPCA) [9], can be
utilized to carry out the color to gray transformation.
However, it is worth emphasizing that PCA for color to
gray is equivalent to linearly combining the R, G, and B
channels because, in PCA methods, the gray-scale image is
obtained by projecting the R, G, and B values of each pixel
to the leading principal color component from PCA.
Furthermore, PCA [8] assumes measurements are drawn
from a single Gaussian and so cannot handle the non-
Gaussian distribution of pixels of a color image. KPCA is
not seriously affected by this problem, but it is nonetheless
very slow [10] for real-time processing and their transfor-
mations are sensitive to the kernel function. Moreover,
automatic kernel selection is still an open problem.

Bala and Braun [6] have sorted all of the colors in an
image according to their original lightness values and then
arranged colors to gray scales by using a weight which is
proportional to their color distance. This approach performs
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well for color images with simple structures, e.g., graphics
generated by Excel, which contain no more than 10 distinct
colors. However, the algorithm is problematic for color
images with high frequency, e.g., a rasterized graphic,
without taking into account the visual cue from color spatial
distribution in an image.

Bala and Eschbach [31] and Alsam and Kolås [32] have
carried out the color to gray by applying the color difference
preserved in the original color image to the initial gray-
scale image, which is a linear combination of R, G, and B
channels. Bala and Eschbach [31] have applied the high-
frequency chrominance information to the luminance
channel to preserve the difference between adjacent colors
locally in the transferred gray-scale image. Alsam and Kolås
[32] have enhanced the initial gray-scale image by utilizing
a correction mask, which is the sum of the difference
between each of the color channels. However, both schemes
cannot distinguish between the contributions of hue and
chroma, i.e., they deem hue and chroma have an equivalent
importantance for color to gray transfer.

Socolinsky and Wolff [11] have applied image gradient
information to model the contrast of a color image locally
and used it as the visual cue to implement color to gray.
However, because the contrast is built based on the
maximal gradient from different channels at a short scale,
i.e., every pixel and its nearest neighbors, this algorithm
cannot deal well with long-scale contrast regions. Especially
challenging for this algorithm are the pseudo-isochromatic
plates for testing color blindness. In other words, it fails to
transfer essential cues from the color image to the gray-scale
image without counting visual cues from the spatial
distribution of color and different effects of color channels,
although we perceive different color channels in different
ways. For example, it is possible to map red and green to an
identical gray value by using this algorithm.

Rasche et al. [1] have defined an objective function that
enforces the proportional color differences across the
mapping between color to gray scale based on a subset of
pixels in a color image. By minimizing the objective
function, they obtained a linear mapping for the transfor-
mation. This method can also be used to map original R, G,
and B channels into other color spaces. However, it ignores
visual cues from the spatial arrangement and the different
perceiving effects of colors channels. Therefore, it fails to
deal well with images containing very small splashes of
colors. To solve this problem, they [7] have introduced
multidimensional scaling (MDS) [12] in the CIELAB color
space to model the color to gray process. Unfortunately, the

MDS-based algorithm is very slow when transforming
images containing abundant colors, e.g., natural scenes.

Human-computer interaction (HCI) has been demon-
strated to be helpful to further improve the performance of
color to gray algorithms by allowing parameters to be tuned
for a given image to obtain a visually reasonable transfor-
mation. Gooch et al. [2] have presented an interactive
Color2Gray (ICG) algorithm that tuned three newly defined
parameters: the difference in color chrominance, the
contrast between colors, and the size of a pixel’s neighbor-
hood. Users use this algorithm for Color2Gray and preserve
their preferred visual cues via tuning the above parameters
manually. Therefore, it is difficult to find the optimal
parameters for a given image to achieve the visual cues
preservation. In addition, it is unsuitable for high-resolution
images because of its high time cost. Motivated by the color
image perceptual framework [30], Smith et al. [29] pre-
sented a simple and fast color to gray scheme by combining
the global Helmholtz-Kohlrausch color appearance map-
ping and the multiscale local contrast enhancement. The
second step requires HCIs, which makes the scheme well
suited for natural images, photographs, artistic reproduc-
tions, and business graphics.

Besides the methods mentioned above, a number of color
transfer algorithms [13], [14], [15] which calculate color
mappings based on color correspondences between a target
color image and a source color image can also be applied for
color to gray. Because it is difficult to construct correspon-
dences for color images with complex structures, it is
unsuitable for the practical color to gray application. In
addition, some of them may require heavy manual work.

In summary, a good color to gray algorithm should be
able to transform a color image into a gray-scale image
efficiently while preserving visual cues. In this paper,
we define three visual cues via discovering different ways
of color image understanding from painters, vision re-
searchers, and psychologists. Based on these well-defined
visual cues, we then develop a new VCP algorithm for color
to gray based on a probabilistic graphical model. There are
two main contributions:

. Visual cues: Different people may have different
viewpoints to understand an identical color image,
e.g., painters revealed the color spatial consistency of
almost identical colors in a color image, computer
vision researchers suggested employing image
structure information for image understanding, and
psychologists found the human perception priority
of hue, chroma, and lightness. We define three visual
cues quantitatively to reflect these different under-
standings of color images. These three visual cues
are, namely, color spatial consistency, image struc-
ture information, and color channel perception
priority.

. Probabilistic graphical model for color to gray transforma-
tion: To transfer the captured visual cues in the color
image to a gray-scale image as much as possible, we
construct a probabilistic graphicalmodel based on the
well mathematically defined visual cues by treating
the target gray-scale image as aMarkov random field.
By using the Bayes’ theorem, this probabilistic
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Fig. 1. The color appearance variation is lost by linearly combining R, G,
and B channels [4] of a color image. Leaves and fruit have an almost
identical gray level in the transformed gray-scale image, although they
are visually distinct in the original color image.



graphical model is further transformed to a Max-
imum a Posteriori (MAP) problem, which is identical
to an integral minimization procedure. Furthermore,
according to the Euler-Lagrange equation, the inte-
gral minimization procedure can be rewritten as a
linear equation system.

Advantages of the proposed algorithm are the follow-
ing: 1) Visual cues are defined based on different under-
standings of color images to reflect human visual
cognition; 2) the probabilistic graphical model transfers
the most important visual cues from a color image to the
corresponding gray-scale image; and 3) the proposed
method is automatic with limited time complexity. In
comparison with competitive approaches, i.e., PhotoShop
[3], Interactive Color2Gray [2], and Multidimensional
scaling color to gray [1], the proposed one usually
outperforms other algorithms based on preference matrix
driven by paired comparison and can process a color
image with much less computational cost without HCIs.

The rest of the paper is organized as follows: In Section 2,
we first introduce a modified CIELCH color space and then
define three visual cues based on different ways of color
image understanding. Finally, we cast the color to gray
process as a probabilistic graphical model associated with a
fast optimizationprocedure.Experimental results inSection3
thoroughly demonstrate the effectiveness and the efficiency
of the new algorithm, and Section 4 concludes.

2 VISUAL CUE PRESERVATION FOR COLOR TO

GRAY

A visual cue is a statistic or signal that can be extracted
from a color image by a perceiver that indicates the states
of some properties of the image that the perceiver is
interested in sensing. It brings to mind knowledge from
previous experiences by providing a framework for its
own interpretation.

In this paper, we define three visual cues, which are the
color spatial consistency, the image structure information,
and the color channel perception priority, by briefing three
typical understandings of what people cognize color images.

We hold that color to gray preserves the aforementioned
three visual cues through a process of inference in which

cues are used to make probabilistic best guesses about what
should be presented in the transformed gray-scale image.
Here, we apply a probabilistic graphical model to imple-
ment color to gray and manifest visual cues in the
transformed gray-scale image.

Before we define the proposed three visual cues, we first
introduce a modified CIELCH color space. This is because
definitions of these cues are based on this color space.

2.1 A Modified CIELCH Color Space

A suitable color space is the foundation to carry out a
successful color image parsing. In this paper, it is essential
to choose a suitable color space to define visual cues.
According to color vision theory [4], to model the human
color perception, RGB is not as suitable as CIELCH or
CIELAB color spaces. In addition, because CIELAB color
space does not define hue and chroma explicitly, but
CIELCH does, we employ CIELCH. Because color spec-
trums are traditionally parsed (or analyzed) and formatted
in RGB (red, green, and blue) channels, we need to
transform pixels to CIELCH.

To transform pixels from RGB color space to CIELCH,
we first transform pixels from RGB space to l�� space [16],
which was obtained by a statistical learning process based
on a large number of natural color images. The highly
independent parameters l, �, and �, respectively, represent
the lightness, the red-green, and the blue-yellow compo-
nents. Fig. 2 shows that � and � span a disk which covers
red to yellow, yellow to green, green to blue, and blue to
red. The figure also shows that the hue can be quantified as
a ring while the chroma can be viewed as the radius of the
ring. Consequently, we can use � and � to define the hue
and chroma in a modified CIELCH,

C��� ¼ ½�
2 þ �2�1=2 and ð1Þ

H��� ¼
arccos ��

�2þ�2ð Þ�=2

h i

; C��� 6¼ 0; � � 0;

2�� arccos ��

�2þ�2ð Þ�=2

h i

; C��� 6¼ 0; � < 0;

8

<

:

ð2Þ

where � is a factor to control the distribution of the hue
value. In [17], arctan is employed to measure the hue
difference. The range of arctan is ð��=2; �=2Þ and arctan
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Fig. 2. The hue-chroma system for color representation



fails to distinguish the difference between the left

semicircle and the right semicircle of the hue representa-

tion; thus, a piecewise operator is applied in (2) to replace

the original acttan operator in [17]. The range of the

piecewise arccos is ½0; 2�Þ, so it is convenient to distinct

the difference between the left semicircle and the right

semicircle of the hue representation. Note that both the

hue and chroma will be undistinguishable when C��� ¼ 0.

Once all pixels are transformed to the modified CIELCH,

we can define three visual cues, respectively.

2.2 Visual Cue 1: Color Spatial Consistency

When you go out and paint, try to forget what objects you have
before you, a tree, a house, a field, or whatever, merely think, here is
a little square of blue, here an oblong of pink, here is a streak of
yellow, and paint it just as it looks to you, the exact color and
shape, until it gives you own naı̈ve impression of scene before you.

—Claude Oscar Monet (1840-1926), Impressionist Painter,
French.

The first visual cue is termed the color spatial con-

sistency, initially revealed by painters, which means that an

object in a color scene has almost identical colors. Claude

Oscar Monet, the 19th century French Impressionist,

grouped almost-identical colors together in patches, as

indicated by two elliptical regions in Fig. 3 to demonstrate

the sky and the reflection stripe of the sun on the sea in

spite of some subtle “burrs” (small strokes of color

brushing) in these regions. This is why painters can depict

a scene concisely with only a few brushes. Therefore, to

capture the correct structural information instead of the

subtle “burr” of an image, the color spatial consistency

should be taken into account.
The color spatial consistency measures the smoothness of

a window. The smoothness is reflected by the difference

between the color (i.e., hue and chroma) value expectation

and the Gaussian blurred result within the window. The

larger the difference is, the less the smoothness will be.
In this paper, the color spatial consistency is defined on

hue and chroma but not on lightness because lightness is

independent of color. Therefore, we have two color spatial

consistencies, UHðx; yÞ and UCðx; yÞ, defined on hue and

chroma, respectively. Both UHðx; yÞ and UCðx; yÞ are defined

in (5) and (6), respectively. Fig. 4 shows the procedure for

computing UHðx; yÞ and UCðx; yÞ of a sampling window. To

define UHðx; yÞ and UCðx; yÞ, we need to calculate the hue

value expectation EMH
ðx; yÞ and the chroma value expecta-

tion EMC
ðx; yÞ.

For a square window WM�M with a side length M and

centered at ðx; yÞ, its hue value expectation EMH
ðx; yÞ is:

EMH
ðx; yÞ ¼

1

jDM j

X

xþM=2

i¼x�M=2

X

yþM=2

j¼y�M=2

R
cos IHði; jÞ
sin IHði; jÞ

� �

; ð3Þ

and its chroma value expectation EMC
ðx; yÞ is:

EMC
ðx; yÞ ¼

1

jDM j

X

xþM=2

i¼x�M=2

X

yþM=2

j¼y�M=2

ICði; jÞ; ð4Þ

where IHði; jÞ and ICði; jÞ are, respectively, the hue and

chroma values at ði; jÞ obtained via (1) and (2),

jDM j ¼M �M, and the constant scale R is insensitive to

various color images (usually, we set R ¼ 100).
Then, for each pixel, UHðx; yÞðUCðx; yÞÞ is obtained by

computing the distance between the hue (chroma) value

of the Gaussian Gð�Þ blurred pixel ðx; yÞ and the

corresponding color (hue or chroma) value expectation

EMH
ðx; yÞðEMC

ðx; yÞÞ, i.e.,
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Fig. 3. The painting “Impression, Sunrise” by Monet.

Fig. 4. The procedure for computing two color spatial consistencies UHðx; yÞ and UCðx; yÞ.



UHðx; yÞ ¼
1

ZH

�

�

�

�

EMH
ðx; yÞ �R �Gðx; yÞ

�
cos IHðx; yÞ

sin IHðx; yÞ

� �
�

�

�

�

and

ð5Þ

UCðx; yÞ ¼
1

ZC
jEMC

ðx; yÞ �Gðx; yÞ � ICðx; yÞj; ð6Þ

where ZH and ZC are normalization factors in the sampling

window WM�M for hue and chroma, respectively. After

calculating all UHðx; yÞ and UCðx; yÞ in an image based on

(5) and (6), we need to rescale them to ½0; 1� based on min-

max normalization.
In hue and chroma, the color spatial consistencies

UHðx; yÞ and UCðx; yÞ for pixels around an edge are larger

than those for pixels in a flat region. As shown in Fig. 4,

pixels in fruit have smaller color spatial consistencies, while

pixels around the boundary between fruits and leaves have

larger color spatial consistencies.
In summary, the computation of the color spatial

consistency consists of three steps, i.e., computing color

(hue or chroma) value expectation, Gaussian blurring the

sampled window, and computing the difference between

color (hue or chroma) value expectation and Gaussian

blurring result.

2.3 Visual Cue 2: Image Structure Information

Computer vision researchers have suggested that the

understanding of a color image requires an understanding

of the structure of the image [19], [20], [21], [22]. The image

structure information is defined by how hue, chroma, and

lightness vary across an image. As illustrated by Fig. 5,

dramatic variations in channels of hue, chroma, and

lightness show three different presentations of the same

image. Usually, the image structural information can be

obtained by integrating gradients over three channels, i.e.,

rIHðx; yÞ, rICðx; yÞ, and rILðx; yÞ.
For the hue channel, we have two problems to calculate

its gradient.
First, it is difficult to distinguish different hues when

corresponding chroma values are small, though rIHðx; yÞ is

independent of chroma. In other words, as shown by the

�� system in Fig. 2, human eyes are insensitive to hue

variations when the chroma is near the center of the circle. It

is necessary to take this phenomenon into account so that a

weighting factor ½ICðx; yÞ=C0�
�H is imposed to adjust

rIHðx; yÞ, where ICðx; yÞ is the chroma value at ðx; yÞ, C0

is a constant to define the dynamic range of chroma, and

�H ¼ 2 is a constant coefficient for scale adjustment. With

this weighting factor, we can extract the gradients in hue
like human eyes do.

Second, it is impossible to distinguish the direction of
rIHðx; yÞ because hue is represented by a cyclic function, as
shown in Fig. 2. To tackle the second problem, we cut the hue
ring (as shown at the bottom right of Fig. 2) and transform it
into a line segment. To implement this procedure, we first
find a startingpoint, an angle �, on the ring, and then quantize
the ring into 256 bins. To avoid a bad cut thatmakes two close
points on the hue circle to be the two terminals, � is chosen to
be the huevalue that is farthest fromall possible huevalues in
the original color image, i.e.,

� ¼ argmax
�

X

x;yð Þ2I

cos IH x; yð Þ � cos �

sin IH x; yð Þ � sin �

� ��

�

�

�

�

�

�

�

;

� 2 0; 1�
2�

256
; . . . ; 255�

2�

256

� �

:

ð7Þ

Finally, the hue value for pixel ðx; yÞ is redefined on the line
segment as below:

I ~H x; yð Þ ¼
IHðx; yÞ � �; IHðx; yÞ � � � 0;
IHðx; yÞ � �þ 2�; IHðx; yÞ � � < 0:

�

ð8Þ

In summary, by combining the weighting factor
½ICðx; yÞ=C0�

�H , the original gradient rI ~Hðx; yÞ, and the
corresponding direction signðrI ~Hðx; yÞÞ, we update the
gradient on hue as:

rIH x; yð Þ  signðrI ~Hðx; yÞÞ
ICðx; yÞ

C0

� ��H

jrI ~Hðx; yÞj; ð9Þ

where �H ¼ 2 and signðxÞ is þ1 if x � 0; otherwise, �1.

2.4 Visual Cue 3: Color Channel Perception Priority

As reported in [17, p. 95], psychologists have found a
human’s perception priority of hue, chroma, and lightness
based on extensive experiments in psychology on visual
color and tolerance of human. That is, for a normal observer,
the cue of a color image is first provided by variations in
hue, then in chroma, and least of all in lightness [17]. That is
why we impose ordering and sequential dependencies
among hue, chroma, and lightness. The algorithm pays
attention to hue variations first. If hue is constant, attention
is paid to chroma variations. If hue and chroma are
constant, attention is then paid to lightness variations.

In this paper, the perception priority of hue, chroma,
and lightness is quantized by a series of priority factors,
which will be utilized to weight rIHðx; yÞ defined in (9),
rICðx; yÞ and rILðx; yÞ for integration. In this paper, the
hue priority factor PHðx; yÞ ¼ 1 and priority factors for
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Fig. 5. Distributions of the hue, chroma, and lightness channels in a color image.



chroma and lightness are defined based on color spatial
consistencies UHðx; yÞ and UCðx; yÞ. According to the
perception priorities of hue, chroma, and lightness, the
visual information perception in chroma channel is
affected by that in hue channel. Similarly, the visual
information perception in lightness channel is affected by
that in both hue and chroma channels.

By adopting the influence of the color spatial consistency
of hue UHðx; yÞ, we model the chroma priority factor as:

PCðx; yÞ ¼ expð��CUHðx; yÞÞ; ð10Þ

where �C is the smallest distinguishable variation of hue.
Given 0 � UH � 1, to separate chroma into 256 scales, we
need to set �C as � lnð1=256Þ or approximately 5.

By imposing the influence of the color spatial consistency
of hue and chroma, the lightness priority factor is given by:

PLðx; yÞ ¼ expð��CUHðx; yÞÞ expð��LUCðx; yÞÞ; ð11Þ

where �L is the smallest distinguishable variation of
lightness. Given 0 � UC � 1 and 0 � expð��CUHðx; yÞÞ � 1,
to separate lightness into 256 scales, we need to set �L as
� lnð1=256Þ or approximately 5.

2.5 A Probabilistic Graphical Model for Color to
Gray

For a given color image I, the corresponding gray-scale
image IG should preserve visual cues as much as possible.
There is a strong correlation between IG and I, and
neighboring pixels in IG are strongly correlated. Thus, we
choose to use the Markov random fields, a popular
probabilistic graphical model, to make use of this prior
knowledge. Fig. 6 shows an undirected graphical model
representing a Markov random field for color to gray in
which IGðx; yÞ is a gray value denoting the state of a pixel at
ðx; yÞ in the unknown gray-scale image and Iðx; yÞ denotes
the corresponding color pixels (IHðx; yÞ, ICðx; yÞ, and
ILðx; yÞ) at ðx; yÞ in the observed color image. This model
contains two types of nodes: observable nodes (blue for pixels
in the color image) and hidden nodes (gray for values in the
corresponding gray-scale image). Edges are used to
describe the relationships between/among nodes. These
two types of nodes, respectively, form two layers: the
observable layer and the hidden layer. The relationship

between the hidden node and the observable node is
represented by pðIðx; yÞjIGðx; yÞÞ, and the relationship
between the neighboring hidden nodes is represented by
pðIGðx; yÞÞ.

The color to gray model can be regarded as a process that
transfers the extracted visual cues from the color image I to
the gray-scale image IG asmuch as possible. And this process
can be formulated by the following MAP framework:

IG ¼ argmax
IG

pðIG j IÞ: ð12Þ

The probability function pðIG j IÞ is given by

pðIG j IÞ ¼ pðIG j IH ; IC ; ILÞ

¼ pðIH ; IC ; IL j IGÞpðIGÞ=pðIH ; IC ; ILÞ

/ pðIH ; IC ; IL j IGÞpðIGÞ;

ð13Þ

where IH , IC , and IL represent hue, chroma, and lightness
channels, respectively. The color image I is a combination of
IH , IC , and IL, so we have the first line of (13). By using the
Bayes’ theorem to pðIG j IH ; IC ; ILÞ, we obtain the second
line. Finally, because pðIH ; IC ; ILÞ is a constant, we get the
third line.

The relationship between hidden nodes and observable
nodes is described by pðIH ; IC ; IL j IGÞ, which is usually
given by the conditional Gaussian to handle visual cues
extracted from three different channels in the original color
image. The relationship between the neighbor nodes is
described by pðIGÞ, which is utilized to keep the gradient
direction consistency in the proposed approach.

In an imaging system, chroma and lightness are
correlated. For example, during the imaging process of a
scene (or an object), the high lightness will cause the low
chroma because of the mirror reflection of illumination.
However, to perceive a picture, a visual system perceives
the chroma (and the lightness) from pixels directly. There-
fore, the correlation between the chroma and the lightness
does away and we should model them independently.
Based on the color channel perception priority (the third
visual cue observed by psychologist), defined in (10) and
(11), IH is independent of IC and IL, IC is independent of IL
but depends on IH , and IL depends on both IH and IC . That
is IH , IC , and IL form a Markov chain and the color to gray
model defined in (13) can be transformed to:

max
IG

pðIG j IÞ / max
IG

pðIH ; IC ; IL j IGÞpðIGÞ

¼ max
IG

pðIH j IGÞpðIC j IG; IHÞ

pðIL j IG; IH ; ICÞpðIGÞ:

ð14Þ

To obtain IG that maximizes pðIG j IÞ, it is necessary to
compute pðIH j IGÞ, pðIC j IG; IHÞ, pðIL j IG; IH ; ICÞ, and
pðIGÞ in advance. Here, pðIH j IGÞ is the probability of
transferring the extracted visual cues in hue channel of
color image to the gray-scale image, pðIC j IG; IHÞ is the
probability of transferring the extracted visual cues in
chroma channel of color image to the gray-scale image by
taking into account the priority of hue, and pðIL j IG; IH ; ICÞ
is the probability of transferring the extracted visual cues in
lightness channel of color image to the gray-scale image by
taking into account priorities of hue and chroma. The
extracted visual cue of each channel is defined by the
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Fig. 6. An undirected graphical model representing a Markov random
field for color to gray in which IGðx; yÞ is a gray value denoting the state
of a pixel at ðx; yÞ in the unknown gray-scale image and Iðx; yÞ denotes
the corresponding color pixel (IHðx; yÞ, ICðx; yÞ, and ILðx; yÞ) at ðx; yÞ in
the observed color image.



gradient with the corresponding priority in terms of the
definitions in Sections 2.2-2.4. Note that the directions of
gradients rIHðx; yÞ, rICðx; yÞ, and rILðx; yÞ are important
to infer the direction of rIGðx; yÞ but consistency among
them is unnecessary. Therefore, it is essential to discuss the
directions of rIHðx; yÞ, rICðx; yÞ, rILðx; yÞ, and rIGðx; yÞ
before we define pðIH j IGÞ, pðIC j IG; IHÞ, pðIL j IG; IH ; ICÞ,
and pðIGÞ.

According to the color channel perception priority, we
will use the direction of hue rIHðx; yÞ, or we will use the
direction of chroma rICðx; yÞ if that of hue is unavailable,
or we will use the direction of lightness rILðx; yÞ if either
the direction of hue or that of chroma is not available. As a
consequence, we define a set of sign functions, which will
be utilized to define the direction of rIGðx; yÞ:

sign	
�

rI
ð�Þ
L ðx; yÞ

�

¼
þ1; rI

ð�Þ
L ðx; yÞ > 0;

�1; rI
ð�Þ
L ðx; yÞ < 0;

(

ð15Þ

sign	
�

rI
ð�Þ
C ðx; yÞ

�

¼

þ1; rI
ð�Þ
C ðx; yÞ > 0;

�1; rI
ð�Þ
C ðx; yÞ < 0;

sign	
�

rI
ð�Þ
L ðx; yÞ

�

; rI
ð�Þ
C ðx; yÞ ¼ 0;

8

>

>

<

>

>

:

and
ð16Þ

sign	
�

rI
ð�Þ
H ðx; yÞ

�

¼

þ1; rI
ð�Þ
H ðx; yÞ > 0;

�1; rI
ð�Þ
H ðx; yÞ < 0;

sign	
�

rI
ð�Þ
C ðx; yÞ

�

; rI
ð�Þ
H ðx; yÞ ¼ 0;

8

>

<

>

:

ð17Þ

whererI
ð�Þ
L ðx; yÞmeans x or y direction ofrILðx; yÞ and this

is same for rI
ð�Þ
C ðx; yÞ and rI

ð�Þ
H . According to the color

channel perception priority, sign	ðrI
ð�Þ
H ðx; yÞÞ should be

determined by sign	ðrI
ð�Þ
C ðx; yÞÞ only if rI

ð�Þ
H ðx; yÞ ¼ 0, i.e.,

(17). And only if rI
ð�Þ
C ðx; yÞ ¼ 0, should sign	ðrI

ð�Þ
C ðx; yÞÞ be

given by sign	ðrI
ð�Þ
L ðx; yÞÞ, i.e., (16).

W i t h sign	ðrI
ð�Þ
H ðx; yÞÞ, sign	ðrI

ð�Þ
C ðx; yÞÞ, a n d

sign	
�

rI
ð�Þ
L ðx; yÞ

�

, we can define pðIH j IGÞ, pðIC j IG; IHÞ,

and pðIL j IG; IH ; ICÞ as

pðIHðx; yÞ j IGðx; yÞÞ

/ exp
�

� ��2H krIGðx; yÞ � sign	ðrIHðx; yÞ
�

PHðx; yÞ j rIHðx; yÞjk
2Þ;

ð18Þ

pðICðx; yÞ j IGðx; yÞ; IHðx; yÞÞ

/ exp
�

� ��2C krIGðx; yÞ � sign	ðrICðx; yÞÞ

PCðx; yÞ j rICðx; yÞjk
2Þ;

ð19Þ

and

pðILðx; yÞjIGðx; yÞ; IHðx; yÞ; ICðx; yÞÞ

/ expð���2L krIGðx; yÞ � sign	ðrILðx; yÞÞ

PLðx; yÞjrILðx; yÞjk
2Þ;

ð20Þ

where the item krIGðx; yÞ � sign	ðrIHðx; yÞÞPHðx; yÞ j

rIHðx; yÞjk in (18) reflects the visual difference between

IG and IH wherein the magnitude and direction of

rIHðx; yÞ is, respectively, adjusted by the hue priority

factor PHðx; yÞ and sign	ðrIHðx; yÞÞ, the item krIGðx; yÞ �

sign	ðrICðx; yÞÞPCðx; yÞjrICðx; yÞjk in (19) reflects the

visual difference between IG and IC wherein the magni-

tude and direction of rICðx; yÞ are, respectively, adjusted

by the chroma priority PCðx; yÞ and sign	ðrIHðx; yÞÞ, and

krIGðx; yÞ � sign	ðrIHðx; yÞÞPLjrILðx; yÞjk in (20) reflects

the visual difference between IG and IL wherein the

magnitude and the direction of rILðx; yÞ are, respectively,

adjusted by the lightness priority factor PLðx; yÞ and

sign	ðrIHðx; yÞÞ.

In addition, it is natural to align the direction ofrIGðx; yÞ

to the direction of rIHðx; yÞ (rICðx; yÞ or rILðx; yÞ)

according to the color perception priority defined by (15)-

(17) to achieve the direction consistency which leads to a

good visual effect of the transformed gray-scale image.

Therefore, we can define the prior pðIGÞ as

pðIGðx; yÞÞ ¼
1; signðrIGðx; yÞÞsign

	ðrIHðx; yÞÞ � 0;
0; signðrIGðx; yÞÞsign

	ðrIHðx; yÞÞ < 0:

�

ð21Þ

Equation (21) is a constraint to represent the construction
of a gray-scale image via sign	ðrIHðx; yÞÞ, and exactly
reflects the color channel perception priority defined by the
Visual Cue 3. Based on (18)-(21), the MAP for color to gray
defined in (14) can be furthered as

max
IG

X

ðx;yÞ2I

���2L krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PLðx; yÞ jrILðx; yÞjk
2

���2C krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PCðx; yÞ jrICðx; yÞjk
2

���2H krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PHðx; yÞ jrIHðx; yÞjk
2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; ð22Þ

where the detailed procedure to obtain (22) is given in
Appendix A.

The MAP for color to gray obtained in (22) can be formed
as an integral minimization-based optimization procedure
[23], [24]:

Z Z

F ðrIGðx; yÞ;H
0

ðx; yÞ;C
0

ðx; yÞ;L
0

ðx; yÞÞdxdy

¼

Z Z
krIGðx; yÞ �H

0

ðx; yÞk2þ

�1krIGðx; yÞ �C
0

ðx; yÞk2 þ �2krIGðx; yÞ

�L
0

ðx; yÞk2

2

6

4

3

7

5
dxdy

¼

Z Z

@IG x;yð Þ
@x �H

0

x

	 
2

þ @IG x;yð Þ
@y �H

0

y

	 
2

þ �1
@IG x;yð Þ

@x �C
0

x

	 
2

þ @IG x;yð Þ
@y �C

0

y

	 
2
� �

þ �2
@IG x;yð Þ

@x � L
0

x

	 
2

þ @IG x;yð Þ
@y � L

0

y

	 
2
� �

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

dxdy:

ð23Þ

The detailed procedure for reformulating (22) to (23) is
given in Appendix B. Based on our experiences, we can set
�1 and �2 as one. Experimental results show that this setting
is fine to get good results for various types of images.
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According to the Variational Principle, a function IG that

minimizes the integral in (23) must satisfy the Euler-

Lagrange equation [24],

@F

@IG
�

d

dx

@F

@ IGð Þx
�

d

dy

@F

@ IGð Þy
¼ 0; ð24Þ

which is a partial differential equation in IG. By substituting

F , we obtain:

�2 @2
IG

@x2 �
@H

0

x

@x

	 


� 2�1
@2

IG

@x2 �
@C
0

x

@x

	 


� 2�2
@2

IG

@x2 �
@L
0

x

@x

	 


�2 @2
IG

@y2 �
@H

0

y

@y

� �

� 2�1
@2

IG

@y2 �
@C
0

y

@y

� �

� 2�2
@2

IG

@y2 �
@L
0

y

@y

� �

2

6

4

3

7

5
¼ 0:

ð25Þ

Dividing (25) by 2 and rearranging terms, we obtain

ð1þ �1 þ �2Þr
2
IG ¼ divH

0

þ �1divC
0

þ �2divL
0

; ð26Þ

where r2
IGðx; yÞ ¼ @2

x2IGðx; yÞ þ @2
y2IGðx; yÞ is the Laplacian

operator;

divH
0

¼
@H

0

x

@x
þ
@H

0

y

@y

is the divergence of gradient field and the same for divC
0

and divL
0

. In the following part, we show how to solve (26)

and implement the color to gray.
The detailed implementation procedure of the proposed

color to gray algorithm is given in Table 1. Specifically, for

step 4, we compute Laplacian and divergence value for

pixel ðx; yÞ based on the following two numerical approx-

imations, respectively:

r2
IGðx; yÞ ¼ IGðxþ 1; yÞ þ IGðx� 1; yÞ þ IGðx; yþ 1Þ

þ IGðx; y� 1Þ � 4IGðx; yÞ;
ð27Þ

divH
0

ðx; yÞ ¼ H
0

xðxþ 1; yÞ �H
0

xðx; yÞ þH
0

yðx; yþ 1Þ

�H
0

yðx; yÞ;
ð28Þ

where H
0

xðx; yÞ and H
0

yðx; yÞ are the x component and

y component of H
0

ðx; yÞ, respectively. The computations of

divC
0

ðx; yÞ and divL
0

ðx; yÞ are the same as divH
0

ðx; yÞ by

substituting C
0

ðx; yÞ and L
0

ðx; yÞ into (28), respectively.

At the boundary of an image, we assume derivatives
around the boundary are 0. Based on (27) and (28), (26) can
be transformed to a linear equation system Ax ¼ b, where
A is a sparse coefficient matrix, x consists of unknown gray-
scale values, and b comes from divH

0

þ �1divC
0

þ �2divL
0

.
The detailed procedure to construct the linear system is
given in Appendix C. For implementation, the sparse LU
decomposition solver [25] or Multigrid solver [26] can be
utilized to form the solution for (26). To further speed up
this step, the GPU solver [27] can be applied to replace the
sparse LU decomposition solver.

In Fig. 7, we show visual cue maps. In detail, the first
column is the original color image. The second column
shows the color maps in the CIELCH color space.
According to the discussion at the beginning of Section 2.1,
e.g., (3) and (5), there are two maps for the hue channel, so
there are two rows for the hue channel. The third column
shows the hue value expectation EMH

and that of EMC
,

defined in (3) and (4), and the associated Gaussian blurred
maps are shown in the fourth column. Columns 5-7,
respectively, show the maps of visual cue 1, i.e., color
spatial consistencies UH and UC ; those of the visual cue 3,
i.e., color channel perception priorities PC and PL, and those
of the visual cue 2, i.e., image structure information. The last
column shows the transferred gray-scale image. In the
original color image shown in Fig. 7, based on the row-
column notation, we set (1, 2) and (2, 2) with different hue
values but the same chroma and lightness, (2, 1) and (2, 2)
with different lightness values but the same hue and
chroma, and (2, 3) and (2, 2) with different chroma values
but the same hue and lightness. In the output gray-scale
image, the differences between (1, 2) and (2, 2), between
(2, 3) and (2, 2), and between (2, 1) and (2, 2) are decreasing.
This figure also shows that the same color at two different
locations (e.g., the (1, 1) block and the (4, 4) block) in the
original image are converted into two different scalar values
(255 and 228, respectively) in the final gray-scale image.

3 EXPERIMENT AND RESULT ANALYSIS

In this section, we first evaluate the proposed VCP algorithm
for color to gray in comparison with well-known techniques,
which are the color to gray function in the Adobe Photoshop
(Photoshop) [3], the Interactive Color2Gray (ICG) [2], the
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TABLE 1
Visual Cue Preservation Algorithm for Color to Gray

�Because this algorithm depends on local measures of gradient and smoothness, it is possible that the same color at two different locations in the
original image could be converted into two different scalar values in the final gray-scale image.



multidimensional scaling color to gray (MDS) [7], and the
kernel principal components analysis (KPCA) [9], in terms of
effectiveness and efficiency. Then, we discuss the influence
of the sampling window size, the only free parameter in the
proposed VCP, defined in Section 2.2 for color to gray.
Finally, we provide additional examples to show the
effectiveness of VCP.

3.1 Comparison with Well-Known Algorithms

Results of a subjective evaluation are directly given by
human observers, so it is probably the best way to assess the
performance of color to gray. This is because human
observers are the ultimate receivers of the visual informa-
tion contained in an image. Therefore, we choose to adopt
the paired comparison [28] based user study to evaluate the

effectiveness of the proposed VCP. It is worth emphasizing
that both rating and ranking are not suitable here. This is
because both of them are complex for an observer to
perform and also would be an unnatural task for the
observer leading to distorted results. The paired comparison
is a method to present each subject with a pair of (color to
gray) transformed images yielded by two different algo-
rithms based on a same original color image. Participants
are required to indicate a preference image for one of the
two transformed gray-scale images compared to the
reference. Evaluation results are then stored in the pre-
ference matrix. For example, considering the preference
matrix in Fig. 8, the entry in the column “PS” (stands for the
Color2Gray function in Photoshop) and the row “ICG”
(stands for the Interactive Color2Gray [2]) is 28, which
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Fig. 8. For this case, KPCA and the proposed VCP achieved the best performance, and MDS performed comparably to the KPCA and VCP. The

background texture obtained by MDS was dark and turbid. In the preference matrix, an entry means the number of subjects determined the method

corresponding to the row performs better than the method corresponding to the column for this color image.

Fig. 7. Visual cue maps.



means 28 subjects considered ICG performed better than

Photoshop for this color image.
In all experiments, 31 participants, including 9 females

and 22 males, made the paired comparison and filled the

preference matrix. The column of “Score” is the summation

over columns. The higher the value of a corresponding

algorithm is, the better the algorithm is, e.g., both KPCA

and our method were deemed as the best methods to

transform the top-left color image in Fig. 8. In Figs. 8, 9, 10,

and 11, “Photoshop,” “ICG,” “MDS,” “KPCA,” and “VCP”

in each table stand for the color to gray function in Adobe

Photoshop, the Interactive Color2Gray [2], the Multidimen-
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Fig. 10. For this case, VCP outperformed other algorithms and MDS performed comparably to our method. MDS provided good contrast but failed to
distinguish some neighbor cells well, e.g., the cells (1,7) and (2,7). KPCA and ICG mixed some neighbor cells. VCP failed to provide good contrast

but can distinguish neighbor cells well. In the preference matrix, an entry means the number of subjects who determined the method corresponding

to the row performs better than the method corresponding to the column for this color image.

Fig. 9. For this case, VCP performed best and MDS performed comparably to VCP. KPCA provided the best visual effects for the flower but failed to

distinguish green leaves and brown leaves. MDS transformed the flower brightly but subjects did not like this effect. In the preference matrix, an entry

means the number of subjects who determined the method corresponding to the row performs better than the method corresponding to the column
for this color image.



sional scaling color to gray [7], KPCA for color to gray [9],
and the proposed algorithm. All of the color images in
Figs. 8, 9, 10, and 11 are adopted from [7].

For the proposed VCP-based color to gray, there are
three parameters but only one free parameter (i.e., the size
of sampling windows), which is set automatically for
different color images. In detail, for all experiments, we
set �1 ¼ �2 ¼ 1 (please see Section 3.2) because it is simple
and, meanwhile, VCP also performs well with this setting
for various images. The size of sampling windows is the
mean size of all segments, which can be obtained by an
image segmentation algorithm, e.g., the meanshift used in
this paper. In summary, we need not to tune parameters for
VCP-based color to gray.

For fair comparison, parameters in algorithms are tuned
to the best setting respectively to achieve best performance
for ICG and KPCA-based color to gray, and the results of
MDS-based color to gray are obtained from [7] directly. In
addition, the original color images and results of MDS-
based color to gray were obtained from [7] directly.

As shown in Figs. 8, 9, 10, and 11, with the color to gray
function in Photoshop, the objects cannot be distinguished
in transformed gray-scale images, although they are
distinguishable in the original color images. With multi-
dimensional scaling color to gray [7], in comparing with
Photoshop color to gray function, although more visual
information is preserved in the transformed gray-scale
image, a lot of subtle details are lost, e.g., the background
texture in the first color image in Fig. 8 and the drape of the
flower in the second color image in Fig. 9. Interactive
Color2Gray [2] fails to distinguish different colors in the first
color image in Fig. 8. Although KPCA [9] produces reason-
able results for large-scale objects in original color images, it
makes subtle visual appearance vague, e.g., the background

in the first color image in Fig. 8 and the difference between
the flower and the leaves (or the difference between the
green leaves and the brown leaves) in the second color
image in Fig. 9. For all cases, the new VCP method works
better than others, e.g., for the third color image in Fig. 10, it
distinguishes all different color blocks well.

Both the time and the space costs are low for the color to
gray function in Photoshop, which is a linear transforma-
tion method. However, its reproducing results are usually
poor because important visual cues in original color images
cannot be preserved in the transformed gray-scale images.
KPCA can usually produce reasonable results, but it fails to
manipulate high-resolution images because both time and
space costs are unacceptable for today’s computers. Inter-
active Color2Gray [2] requires complex human-computer
interactions to adjust parameters to obtain a reasonable
transformation result, which preserves user preferred
visual cues. Additionally, this algorithm is inefficient for
high-resolution images. Multidimensional scaling color to
gray [7] usually produces reasonable results, as shown in
Figs. 8, 9, 10, and 11, but its time cost is very heavy for
images with a large number of colors. In Table 2, we
evaluate the average time costs of KPCA, Interactive
Color2Gray, multidimensional scaling color to gray, and
the proposed VCP (by Multigrid solver) for color images in
different sizes. As shown in this table, VCP is efficient in
comparison with other algorithms. Experiments were
carried out on a personal computer with Pentium IV
3.0 GHz CPU and 4 GB memory.

3.2 Experiments with Different Sampling Window
Sizes

In this experiment, we study how free parameters affect the
performance of VCP and how to set suitable parameters to
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Fig. 11. For this case, VCP outperformed others while MDS and KPCA were comparable to VCP. Note the bottom-right dark green leaves in the
original color image could not be conveniently observed in the MDS and KPCA transformed gray-scale images. That is, VCP can preserve more
details in the color image than that of MDS and KPCA. In the preference matrix, an entry means the number of subjects who determined the method
corresponding to the row performs better than the method corresponding to the column for this color image.



achieve a reasonable transformation result for a specific
image. In the proposed algorithm, we have three free
parameters only, which are the sampling windows size M,
and �1, �2, as shown in Appendix B. Based on our
experiences, we can always achieve reasonable results by
setting both �1 and �2 to be 1 for images with different
resolutions, i.e., for all experiments �1 ¼ �2 ¼ 1. We
acknowledge it is possible to achieve a better performance
by using �1 and �2 for a specific image. In the future,
we will design a strategy to tune �1 and �2 automatically for
different images. At the current stage, the only free
parameter is the size of sampling windows.

To analyze the impact of the size of sampling windows
on the performance of VCP for color to gray, we set up a
set of experiments by varying the window size M
continuously. In Fig. 12, we display three transformed
gray-scale images corresponding to different M. Based on
this figure, we have the following observations: 1) Accord-
ing to the second gray-scale image in Fig. 12, when M is
comparable to M� (the size of a main object, i.e., the yellow
flower in the original color image), the transformed gray-
scale image can preserve important visual cues in the
original color image; 2) according to the first gray-scale
image in Fig. 12, when M is much smaller than M�,
detailed visual cues with image noises will be transferred
to the transformed gray-scale image; and 3) according to
the third gray-scale image in Fig. 12, when M is much
larger than M�, important visual cues cannot be found in

the transformed gray-scale image. Therefore, we can set M
as M� to achieve a good visual effect. Practically, we use
the meanshift algorithm to segment the original color
image to obtain a set of segments. The value of M is the
mean size of these segments.

3.3 Further Examples for the Proposed Approach

Further experimental results are given in Fig. 13. In the first
column (from the left), the difference between the red
booth and the green trees is successfully transferred to the
gray-scale image by the proposed method shown in the
bottom row. The results shown in the middle row, obtained
by Photoshop, cannot distinguish the color difference
although this difference is an important visual cue in
the color image. In the second column, the red fruit and the
green leaves are distinguished well in the gray-scale result
obtained by the proposed VCP. Moreover, flowers and
leaves are assigned with different gray-scale values. We
also test the new method on an artificial color dot pattern,
shown in the third column for color blindness test. The
result shows that our method transfers visual differences in
the color image to the transformed gray-scale one, so VCP
can be applied to the color blindness related applications.
In the last column, we test our method on the famous
impressionist painting by Monet. As the result in the third
row shows, the sun, the boat, and the sea are well
distinguishable. In summary, the proposed VCP for color
to gray is effective, robust, and flexible to various color
images. Additional results are given in Fig. 14.

4 CONCLUSION

Conventional color to gray algorithms achieved much but
share one or more of three particular drawbacks: First, some
of them do not produce gray-scale images that satisfactorily
render the levels of contrasts and detail that can be
perceived in the original color images, i.e., they may not
preserve important visual cues because there are no clear
definitions of visual cues; second, some may have very
heavy computational costs and are not ready for practical
applications; and finally, better quality results may depend
upon adjustments to free parameters by human operators,
which is not user friendly.

This paper proposed an algorithm that preserves newly
well-defined visual cues in the transformed gray-scale
image. In detail, the algorithm conveys visual cues which
are constructed based on three color image understandings
and are obtained in the CIELCH color space, under a
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Fig. 12. The impact of the size of sampling windows for the proposed color to gray algorithm: The source image was obtained from the Internet.

TABLE 2
Average Time Costs of Different Algorithms

with Color Images in Different Sizes

�The time cost stands for transforming a set of color images to gray-
scale ones, excluding the costs for interaction, parameter adjustment,
and image preprocessing.
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Fig. 13. Further examples for the proposed approach: The first row shows original color images, the second row shows gray-scale images
transformed by the Photoshop color to gray function and the last row shows the gray-scale images transformed by the proposed algorithm. Source
images were obtained from the Internet and courtesy of Monet (in the last two columns).

Fig. 14. Additional results: The first row shows original color images, the second row shows gray-scale images transformed by the Photoshop color
to gray function, and the last row shows the gray-scale images transformed by the proposed algorithm. Source images were obtained from the
Internet and courtesy of Bli (in the last two columns).



probabilistic graphical model. In addition, it is very fast and
requires no human-computer interactions. Thorough em-
pirical studies over a wide range of color images demon-
strate the effectiveness and the efficiency of the new
algorithm in reproducing gray-scale images from color
images in comparison with popular algorithms.

APPENDIX A

The detailed procedure to obtain (22) is given below. Based
on (18)-(21), the MAP framework for color to gray defined
in (14) is given by:

max
IG

pðIH j IGÞpðIC j IG; IHÞpðIL j IG; IH ; ICÞpðIGÞ

¼ max
IG

Y

ðx;yÞ2I

pðIHðx; yÞjIGðx; yÞÞ

� pðICðx; yÞ j IGðx; yÞ; IHðx; yÞÞ

� pðILðx; yÞjIGðx; yÞ; IHðx; yÞ; ICðx; yÞÞ

� pðIGðx; yÞÞ

2

6

6

6

4

3

7

7

7

5

/ max
IG

X

ðx;yÞ2I

ln pðIHðx; yÞjIGðx; yÞÞ

þ ln pðICðx; yÞjIGðx; yÞ; IHðx; yÞÞ

þ ln pðILðx; yÞjIGðx; yÞ; IHðx; yÞ; ICðx; yÞÞ

2

6

4

3

7

5

¼ max
IG

X

ðx;yÞ2I

���2L krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PLðx; yÞ jrILðx; yÞjk
2

���2C krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PCðx; yÞ jrICðx; yÞjk
2

���2H krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PHðx; yÞ jrIHðx; yÞjk
2

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

s.t. pðIGÞ ¼ 1.

APPENDIX B

The detailed procedure for reformulating (22) to (23) is

given below:

argmax
IG

X

ðx;yÞ2I

���2L krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PLðx; yÞ jrILðx; yÞjk
2

���2C krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PCðx; yÞ jrICðx; yÞjk
2

���2H krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PHðx; yÞ jrIHðx; yÞjk
2

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

¼ argmin
IG

X

ðx;yÞ2I

��2L krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PLðx; yÞ jrILðx; yÞjk
2

þ��2C krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PCðx; yÞ jrICðx; yÞjk
2

þ��2H krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PHðx; yÞ jrIHðx; yÞjk
2

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

¼ argmin
IG

X

ðx;yÞ2I

krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PHðx; yÞ jrIHðx; yÞjk
2

þ�1krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PCðx; yÞ jrICðx; yÞjk
2

þ�2krIGðx; yÞ � sign	ðrIHðx; yÞÞ

PLðx; yÞ jrILðx; yÞjk
2

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

Let

H
0

ðx; yÞ ¼ sign	ðrIHðx; yÞÞPHðx; yÞ jrIHðx; yÞj;

C
0

ðx; yÞ ¼ sign	ðrIHðx; yÞÞPCðx; yÞ jrICðx; yÞj;

L
0

ðx; yÞ ¼ sign	ðrILðx; yÞÞPLðx; yÞ jrILðx; yÞj:

By treating the above equations continuously, they can be

finally formulated as:

Z Z

F ðrIGðx; yÞ;H
0

ðx; yÞ;C
0

ðx; yÞ;L
0

ðx; yÞÞdxdy:

APPENDIX C
The detailed procedure for reformulating (26) to a linear

equation system Ax ¼ b is given below. By substituting

(27) and (28) into (26), for each pixel, we have

ð1þ �1 þ �2ÞðIGðxþ 1; yÞ þ IGðx� 1; yÞ þ IGðx; yþ 1Þ

þ IGðx; y� 1Þ � 4IGðx; yÞÞ

¼

H
0

xðxþ 1; yÞ �H
0

xðx; yÞ þH
0

yðx; yþ 1Þ �H
0

yðx; yÞ

þ�1ðC
0

xðxþ 1; yÞ �C
0

xðx; yÞ þC
0

yðx; yþ 1Þ �C
0

yðx; yÞÞ

þ�2ðL
0

xðxþ 1; yÞ � L
0

xðx; yÞ þ L
0

yðx; yþ 1Þ � L
0

yðx; yÞÞ

2

6

6

4

3

7

7

5

:

By reorganizing the left-hand side of the above equation,

we have

ð1þ �1 þ �2Þ½1 1 1 1 � 4�½IGðxþ 1; yÞ IGðx� 1; yÞ

IGðx; yþ 1Þ IGðx; y� 1Þ IGðx; yÞ�
T

¼

H
0

xðxþ 1; yÞ �H
0

xðx; yÞ þH
0

yðx; yþ 1Þ �H
0

yðx; yÞ

þ�1ðC
0

xðxþ 1; yÞ �C
0

xðx; yÞ þC
0

yðx; yþ 1Þ �C
0

yðx; yÞÞ

þ�2ðL
0

xðxþ 1; yÞ � L
0

xðx; yÞ þ L
0

yðx; yþ 1Þ � L
0

yðx; yÞÞ

2

6

6

4

3

7

7

5

:

Considering an image with W �H pixels, for each pixel

a similar equation can be constructed and indexed from 1 to

W �H. According to [24], by integrating these equations

together, a sparse square matrix can be formed on the left,

which is A in Ax ¼ b.
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