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Figure 1: A color image (Left) often reveals important visual details missing from a luminance-only image (Middle). Our
Color2Gray algorithm (Right) maps visible color changes to grayscale changes. Image: Impressionist Sunrise by Claude
Monet, courtesy of Artcyclopedia.com.

Abstract

Visually important image features often disappear when
color images are converted to grayscale. The algorithm in-
troduced here reduces such losses by attempting to preserve
the salient features of the color image. The Color2Gray algo-
rithm is a 3-step process: 1) convert RGB inputs to a percep-
tually uniform CIE L∗a∗b∗ color space, 2) use chrominance
and luminance differences to create grayscale target differ-
ences between nearby image pixels, and 3) solve an optimiza-
tion problem designed to selectively modulate the grayscale
representation as a function of the chroma variation of the
source image. The Color2Gray results offer viewers salient
information missing from previous grayscale image creation
methods.

CR Categories: I.4.3 [Image Processing and Com-
puter Vision]: Enhancement—Grayscale manipulations
I.4.10 [Image Processing and Computer Vision]: Image
Representations—Multidimensional

Keywords: non-photorealistic, image processing, color
reduction, perceptually-based rendering
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Figure 2: Isoluminant changes are not preserved with tradi-
tional color to grayscale conversion. Converting an image of
a reddish square whose luminance matches that of the blue
background (Left) to grayscale (Middle) results in a feature-
less gray image. The Color2Gray algorithm incorporates
chrominance changes (Right).

1 Introduction

If digital images are regarded solely as an optical record,
then a grayscale image only needs to record light intensities
using a flat spectral response. Current color to grayscale
conversions already meet this goal. However, as viewers,
we often expect a more ambitious result: we want digital
images to preserve a meaningful visual experience, even in
grayscale. We are less concerned with the accuracy of light
intensities and more concerned with the preservation of vi-
sual cues that help us detect the most important, or salient,
scene features. Accordingly, a black-and-white line drawing
is sometimes far more expressive than a color photograph,
and a garish cartoon-shaded rendering can often make im-
portant features, such as the shape, position, and reflectance
of an object, more apparent.

Color documents printed in grayscale are often indecipher-
able. Figures and graphs in papers with saturated colors
look good printed in color, but when printed in grayscale,
a “red line” may appear to be the same shade of gray as a
“green line”. Grayscale mappings of color images that are
constructed solely by approximating spectral uniformity are
often woefully inadequate because isoluminant visual cues
signaled only by chromatic differences are lost [Livingstone
2002], such as the reflection of the sun in Figure 1.
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(a) CIECAM97 Lum (b) L∗a∗b∗ Lum. (c) XYZ Lum. (d) YCrCb Lum. (e) Auto Contrast (f) Color2Gray

Figure 3: Comparison of grayscale conversions by previous methods (a-d), Photoshop’s grayscale mode with auto contrast (e),
and our Color2Gray algorithm (f).

Figure 4: Converting the source image (Left) to grayscale
with Photoshop’s grayscale mode results in a nearly feature-
less image (Middle). The Color2Gray algorithm creates cir-
cles that are distinct from the background (Right). Param-
eters: θ = 180◦; α = 8; µ = entire image.

Vision scientists hypothesize that the human visual sys-
tem does not perceive absolute values, and instead chromi-
nance and luminance perception are based upon relative as-
sessments, in part due to the center-surround organization
of cells in the early stages of visual processing [Lotto and
Purves 1999]. We propose that preserving relationships be-
tween nearby pixels in an image is much more important
than representing absolute pixel values. Our work con-
tributes to the growing trend in computer graphics of using
change-based mappings for image representation and ma-
nipulation [Fattal et al. 2002; Pérez et al. 2003; Levin et al.
2004]. The technical contribution of this work is a color to
grayscale image conversion algorithm based upon the human
visual system’s sensitivity to change. Additionally, we pro-
vide a new signed chrominance distance calculation in the
CIE L∗a∗b∗ chrominance plane. The Color2Gray algorithm
creates images that maintain the salience of color images by
mapping chrominance and luminance changes in a source
image to changes in a grayscale image.

Finding the most appropriate method to depict color dif-
ferences in grayscale is also central to this research. For
example, there are no luminance changes in the color image
in Figure 2; adding them might seem at first to be a dis-
tortion of the original grayscale values. However, we claim
that all visible color changes should cause visible changes
if the grayscale image is to convey a more effective visual
experience in comparison to current methods.

2 Related Work

Previous methods for converting RGB images to grayscale
employed dot products or weighted sums to map a three
dimensional color space to a single dimension, as shown in
Figure 3. Other methods adopted by programs like Adobe
Photoshop [Volk 2000; Brown 2004; Adobe Photoshop 2004],
devised custom non-linear projections and required users to
set image-dependent parameters by trial and error. These
methods applied a fixed function to map a set of 2D man-
ifolds in color space to a set of 1D points (luminance) and
were ineffective at preserving chrominance differences be-
tween isoluminant pixels (Figure 4). Contrast enhancement
techniques increased the dynamic range of the image, map-

ping isoluminant pixels with different chrominance to the
same gray value (Figure 3e).

Converting a color image to grayscale is a dimensionality
reduction problem. In the course of our research, we have
explored both linear and non-linear dimensionality reduction
techniques, such as principal component analysis (PCA) and
space-filling curves. PCA can be employed to compute an
ellipsoid in color space that is a least-squares best fit for the
cloud of points formed by all the image color values. Color
values in the image can then be projected on a luminance
axis defined by the primary axis of this ellipsoid. The effec-
tiveness of PCA depended upon the color space; we found
that the larger the ratio between the primary and secondary
axes, the more likely the technique created distinctive gray
values for different colors. For example, color space plots for
a CIE L∗a∗b∗image appeared twisted and stretched in RGB
space and yielded different principal component axes and
different grayscale mappings. We also explored a non-linear
dimensionality reduction technique, similar to Teschioni et
al. [1997], which created clusters in the color space and ap-
plied space-filling curves to build a 1D parameterization of
3D color space. Both space-filling curves and PCA often cre-
ated results with a high dynamic range because the length
of any 1D pathway that adequately fills a 2D plane or 3D
volume quickly approaches infinity.

We also experimented with Poisson solvers [Fattal et al.
2002] and discovered that they work well on images such as
the sunrise image (Figure 1), but not on images with large
disconnected isoluminant regions (Figure 4) because Poisson
solvers compute gradients over nearest neighbors, ignoring
difference comparisons over distances greater than one pixel.

The color to gray problem is also similar to color quantiza-
tion [Heckbert 1982] and compression of gamut dimension-
ality. The research by Power et al. [1996] created an image
with a reduced set of inks or colors. However, both color
quantization and gamut compression typically preserved lu-
minance contrast and ignored contributions from chromi-
nance for single ink/color images.

Contemporaneous research by Rasche et al. [2005a; 2005b]
on the color to gray problem maintained the proportionality
between perceived color difference and perceived luminance
difference and ignored spatial arrangement of pixels. They
also provided an extension to reduce three dimensional color
space to a two dimensional surface to render images as they
would appear to color-deficient observers. Our solution in-
corporates changes from luminance, chrominance, and dis-
tance combined as well as provides three simple parameters
to enable users to create aesthetic and perceptually salient
grayscale images.

3 Algorithm

The Color2Gray algorithm has three steps: first, we con-
vert a color image to a perceptually uniform color space,
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Figure 5: Color2Gray results for the color image in the cen-
ter of the figure over several values of the parameter θ, which
divides the chrominance plane. Note, for this colorblind im-
age, you should not be able to see the “45” made of dots in
the source color image unless you are colorblind. Original
image copyright Jay Neitz.

then compute target differences in order to combine lumi-
nance and chrominance differences, and finally, we use a least
squares optimization to selectively modulate the source lu-
minance differences in order to reflect changes in the source
image’s chrominance.

We express the color differences between pixels in the
color image as a set of signed scalar values, and then build
a grayscale version of the image with those values. For each
pixel i and neighbor pixel j, we find a signed distance scalar,
δij , based upon luminance and chrominance differences be-
tween i and j. Using these values we then derive values for
the grayscale image, g. We refer to the grayscale difference
between pixel i and a neighboring pixel j as (gi − gj). A
successful color to gray conversion consists of finding g such
that all (gi − gj) values closely match the corresponding δij

values.
Specifying δij is fairly involved, and can benefit from min-

imal amounts of user interaction (Section 3.1). Once we for-
malize δij (Section 3.2), we find the output image g by an
iterative optimization process (Section 3.3).

3.1 Parameters

The Color2Gray algorithm encodes differences from a color
image into luminance differences in a grayscale image. How-
ever, generating a satisfying result sometimes requires mak-
ing aesthetic decisions, such as the choice to make the orange
sun brighter, not darker, than its isoluminant surrounding.
Thus some level of user control is desirable. Previous in-
teractive techniques required users to perform region-based
adjustments, modify color channels or individually alter pix-
els. The Color2Gray algorithm allows users to control the
mapping of color differences to grayscale differences via three
simple parameters:

❼ θ: controls whether chromatic differences are mapped
to increases or decreases in luminance value (Figure 5).

❼ α: determines how much chromatic variation is allowed
to change the source luminance value (Figure 6).

❼ µ: sets the neighborhood size used for chrominance es-
timation and luminance gradients (Figure 7).

Figure 6: Changing the α parameter: α = 5, 10, 25, re-
spectively. Increasing alpha increases the contribution from
chrominance differences but may cause dynamic range map-
ping problems (θ = 45◦).

Figure 7: Left: Equiluminant fade from gray to blue on a
background with the same luminance. Middle: Color2Gray
result with µ = 9 neighborhood. Right: Color2Gray result
with a full neighborhood (θ = 270◦; α = 8.). Using a small
neighborhood produces a dark band through the middle of
the fade and produces artifacts where the edge of the fade
meets the background; whereas using the entire set of pix-
els as the neighborhood (full neighborhood) preserves the
horizontal fade with respect to its background.

The angle θ divides the chrominance plane and determines
whether a chromatic difference will darken or lighten the
source luminance difference. To understand the intuition be-
hind θ, consider mapping the chrominance changes in Figure
1 to shades of gray. The sun and its reflection would bene-
fit aesthetically from mapping the oranges to brighter gray
values (making the sun lighter) and mapping the blues to
darker gray values. Such a cool to warm mapping corre-
sponds to θ = 45◦. Though we have implemented tools for
automatically selecting θ, we make the parameter available
to the user. As shown by applying the Color2Gray algorithm
to the color blindness test image of Figure 5, varying θ may
provide insight into the salient cues available in the image.

The second parameter of the algorithm, α controls the
amount of chromatic variation applied to the source lumi-
nance values. The luminance values, L∗ ∈ [0, 100], are in a
much smaller range than either of the chrominance axes; a∗

is in the range [-500,500] and b∗ is in the range [-200, 200].
The parameter α sets an upper and lower bound for how
much of an effect a large chrominance difference can have
on the current luminance value for a given pixel, such that
the shift due to the chrominance values is within [−α, α].
In the next section, we define a function crunch() that al-
lows us to compress large-amplitude values into the valid
range, while leaving small yet significant variations around
zero almost untouched. By default, α = 10. However, some
images may allow for more chrominance adjustment, such
as the colorblindness test image in Figure 9, created with
α = 15. Figure 6 shows the effect of varying α.

The third parameter of the algorithm, µ, controls the size
of the neighborhood, indicating whether a user is more inter-
ested in preserving local or global changes. Smaller neigh-
borhoods may result in non-neighboring isoluminant regions
with different chrominance values in the source image to be
represented with the same grayscale value in the output im-
age g. Additionally, preserving only local changes can create
gradients that are not present in the source image, as shown
in Figure 7. All of the figures in this paper were generated
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Figure 8: Signed chrominance distance between pixels.
Given (a) pixel pairs (i.e. (Ci, Cj) = (C1, C2) or (C3, C4)),

and (b) their chromatic difference,
−−→
∆Cij , we divide the space

of color differences into positive and negative halves based
upon the parameter θ. We set the sign of the chromatic dif-

ference to be the same as the sign of (
−−→
∆Cij · −→vθ), where −→vθ

is a normalized vector defined by θ relative to the ∆a∗ axis,
as illustrated in (b).

using the entire image for neighborhood pixel comparisons,
unless otherwise noted.

3.2 Computing Target Differences

We begin by converting the color input image to CIE L∗a∗b∗

color space, because its Euclidean distances (L2 norm)
closely correspond to perceptual dissimilarity [Wyszecki and
Stiles 2000]. Li refers to the luminance of the ith pixel, and
∆Lij is shorthand for (Li −Lj). Similarly, ∆Aij , and ∆Bij

refer to the a∗ and b∗ channel differences between a pair of

pixels.
−−→
∆Cij refers to (∆Aij , ∆Bij), the chromatic differ-

ence vector between pixel i and it’s neighbor pixel j.
In order to determine the target difference, δij , we com-

pare the luminance difference, ∆Lij , with the chrominance

difference,
−−→
∆Cij . Since ∆Lij is a scalar and

−−→
∆Cij is a 2D

vector, we first map
−−→
∆Cij onto a single dimension using the

Euclidean norm, ||
−−→
∆Cij ||. Next we need to choose the ap-

propriate sign for ||
−−→
∆Cij || because it is always positive and

δij is a signed scalar. Therefore, we introduce an angle θ,
which parameterizes the ∆a∗∆b∗ chrominance plane. Let
−→vθ be a normalized vector defined by θ relative to the ∆a∗

axis. We set the sign of the chromatic difference to be the

same as the sign of (
−−→
∆Cij · −→vθ), as illustrated in Figure 8.

The parameter θ controls which chromatic differences are
mapped to increases or decreases to the source luminance
value (Figure 5), thus specifying the transformation of the

||
−−→
∆Cij ||s into a signed quantity.
Finally, we define the target differences, δij . If the ab-

solute luminance difference is smaller than the chrominance
difference, then we set δij to be a measure of the chromatic
differences; otherwise, δij is set to the luminance differences.
Formally, δij is defined as follows.

Given: crunch(x) = α ∗ tanh(x/α)
−→vθ = (cos θ, sin θ)

then:

δ(α, θ)ij =











∆Lij if |∆Lij | > crunch(||
−−→
∆Cij ||)

crunch(||
−−→
∆Cij ||) if

−−→
∆Cij ·

−→vθ ≥ 0

crunch(−||
−−→
∆Cij ||) otherwise.

We tried several methods for combining ∆Cij and ∆Lij in
order to define δij , and of those that we considered, the dis-
continuous case above worked best. Using a linear or smooth
blend between ∆Cij and ∆Lij can make the resulting im-
ages muddier because when the two terms have opposite
signs, the differences cancel out.

We can automatically determine θ by examining the
spread of the chrominance values of the source image and
finding an axis through the a∗b∗ plane that divides these
chrominances with the largest linear separation [Healey and
Enns 1996]. If the images do not have a single best axis,
such as images with a large range of chrominance values, we
utilize a cool-warm parameterization with θ = 45◦. How-
ever, for some images and certain choices of θ, there may
be troublesome discontinuities in the calculated signed color
differences which will push the optimization in contradict-
ing directions. We are currently investigating adaptive color
difference signing and unsigned methods that would avoid
these difficulties. However, in practice, these discontinuities
have not produced noticeable artifacts.

3.3 Solving the Optimization

Given a set of desired signed differences δij , we find a gray
image g that minimizes the following objective function,
f(g), where K is a set of ordered pixel pairs (i, j):

f(g) =
∑

(i,j)∈K

((gi − gj) − δij)
2. (1)

We initialize g to be the luminance channel of the source
image, and then descend to a minimum using conjugate gra-
dient iterations [Shewchuk 1994]. Equation 1 is convex, but
has multiple global minima, as for any grayscale image g, an
image with an identical optimization score can be created
by shifting all pixel values up or down by a constant value
(f(g) = f(g + c)). In order to choose a single solution from
the infinite set of optimal g, we shift the g vector returned
by our solver such that it becomes as close as possible to the
source luminance values (where “closeness” is defined using
sum squared differences).

4 Performance

The cost of setting up and solving the optimization problem
is proportional to the size of K. By default our, algorithm
compares every pixel to every other pixel, i.e. K contains
all ordered pixel pairs. Given such a K, the algorithm scales
poorly. However, one can also use a reduced set, such as that
implied by only considering pairs which cohabitate a µ × µ
neighborhood. For a square SxS image, the cost of gener-
ating all pixel pairs will be O(µ2S2), or O(S4) for the full
neighborhood case. Using an Althon➋ 64 3200+ processor,
computing images with full neighborhoods requires 12.7 sec-
onds for a 100x100 image, 65.6 seconds for a 150x150 image,
and 204.0 seconds for a 200x200 image, just as you would
expect for a O(S4) algorithm.

However, these runtimes can be improved considerably by
using programmable graphics hardware to perform the pixel
comparisons in parallel. In theory, the ability to process
an SxS block of values simultaneously should increase the
performance of the algorithm from O(S4) to O(S2). In prac-
tice, the performance of our GPU implementation is closer
to O(S3), requiring 2.8 seconds to solve a 100x100 image, 9.7
seconds for a 150x150 image, and 25.7 seconds for a 200x200
image, using an NVIDIA Geforce➋ GT6800 graphics card.
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Source code for our Color2Gray algorithm implementa-
tion, as well as additional example images, can be found at
http://www.color2gray.info/.

5 Results and Discussion

Figure 9 compares the Color2Gray algorithm to Photoshop’s
grayscale mode on a wide variety of images. Isoluminant col-
ors for state parks and water in the image in Row 2 make
the island disappear in the Photoshop result. The effects of
the Color2Gray algorithm are sometimes subtle, but color
changes visibly darkened the region behind the head of the
butterfly (Row 1) and darkened the green block while light-
ening the yellow block in the Cornell Box image (Row 4).

Our algorithm generally does not perform better than
the traditional grayscale representation when trying to map
widely spread chrominance gradations to something inde-
pendently distinguishable. The first row of Figure 10 il-
lustrates this limitation. The image contains such a wide
variety of isoluminant colors that no single span of 255 gray
values can express them all separately.

The Color2Gray algorithm does not provide large im-
provements for scenes with high dynamic range, especially
natural scenes, which typically have a wide range of lu-
minance changes. However, the method does improve any
image that contains large isoluminant regions with a small
number of different chrominance values such as the last row
of Figure 9. Here, Color2Gray makes the two sets of hills
behind the small car clearly distinguishable.

5.1 Augmented Color Images

We found that “Color2Gray result plus chrominance” im-
ages aid in making color images more easily comprehensi-
ble. We simply add the source image’s chrominance chan-
nels to the Color2Gray result in CIE L∗a∗b∗ color space and
then convert the image to RGB. This technique modifies the
color images only slightly but reveals Color2Gray results in
a grayscale-only printout. For example, we may be able to
create a document in which all of the figures will print legibly
in both color and grayscale. Adding color to the Color2Gray
result also provides useful feedback for visualizing the subtle
adjustments made with the Color2Gray algorithm, as illus-
trated in Figure 11.

6 Conclusion and Future Work

We are exploring extensions to the algorithm which would
remove the need to specify θ, for example, using an optimiza-
tion function designed to match both signed and unsigned
difference terms. We are also interested in investigating
multi-scale methods which could allow for faster solutions
on higher resolution images.

We believe better target differences, δij , should include
image complexity measures as well. For example, although
human easily compare widely separated luminance and
chrominance values in simple images (e.g. Figure 4, with
colored circles on gray), comparisons in complex images over
these same distances are far more difficult (e.g. Figure 1). In
complex images, reuse of the same grayscale values for dif-
ferent nearby colors becomes more acceptable. We plan to
conduct perceptual experiments to understand the threshold
for this difference as well as validating the degree to which
our algorithm preserves the saliency of the color image.

Color Source Photoshop Gray Color2Gray

Figure 9: Comparison of Color Source image, Photoshop
Grayscale, and Color2Gray Results. Source images courtesy
of Ana Vasileva, Yahoo!/NAVTEQ, Claude Monet, Dani
Lischinski, Jay Neitz, Paul Chapman, and Leon Bli, respec-
tively.
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Color Source Photoshop Gray Color2Gray

Figure 10: Images with a wide range of colors (Top) or with
subtle changes (Bottom) result in Color2Gray results that do
not provide large improvements over Photoshop grayscale.
Top source image courtesy of Ana Vasileva.

The Color2Gray algorithm produces grayscale versions
of color images, minimizing isoluminant mappings. While
Color2Gray cannot improve all source images, we believe
that its results will not be less perceptually salient than
the source luminance values alone. We encourage read-
ers to print this paper on a high quality grayscale printer
and examine their printed versions of the original color,
Color2Gray, and Color2Gray enhanced images.
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