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Abstract

Digital pathology (DP) is a new research area which falls under the broad umbrella
of health informatics. Owing to its potential for major public health impact, in recent
years DP has been attracting much research attention. Nevertheless, a wide breadth of
significant conceptual and technical challenges remain, few of them greater than those
encountered in the field of oncology. The automatic analysis of digital pathology slides
of cancerous tissues is particularly problematic due to the inherent heterogeneity of the
disease, extremely large images, amongst numerous others. In this paper we introduce a
novel machine learning based framework for the prediction of colorectal cancer outcome
from whole digitized haematoxylin & eosin (H&E) stained histopathology slides. Using a
real-world data set we demonstrate the effectiveness of the method and present a detailed
analysis of its different elements which corroborate its ability to extract and learn salient,
discriminative, and clinically meaningful content.

1 Introduction

Colorectal cancer (CRC), also known as bowel cancer or colon cancer, is the development of
cancer from the colon or rectum and accounts for about 10% of all cancer cases worldwide
[17]. Precise diagnosis and prognosis are very important in the choice of the most appropriate
treatment and the facilitation of the subsequent clinical management of patients. Consequently,
an increasing amount of current research is concerned with improving nuanced disease under-
standing, and the precision and accuracy of survivability estimation.

The Tumour-Node-Metastasis (TNM) staging system is still widely regarded as one of the
best population level predictors of CRC outcome [9]. However, its patient level precision is
low [27]. In part driven by this observation and the desire to effect improvement, the past five
years have witnessed a major growth of the application of various machine learning techniques
in patient level cancer prognosis [6, 32, 26].

The aim of the present work is to develop an end-to-end framework that predicts the disease
specific survivability of CRC patients over a five year period by applying deep learning to

O. Eulenstein, H. Al-Mubaid and Q. Ding (eds.), BiCOB 2019 (EPiC Series in Computing, vol. 60),
pp. 139–149



Colorectal Cancer Outcome Prediction from H&E Whole Slide Images Yue, Dimitriou, and Arandjelović

unannotated whole slide histopathology images (WSIs). The key challenges addressed are thus
as follows:

• Computational impracticality of training classifiers with gigapixel WSIs,

• Efficient ground-truth labelling of individual image patches,

• Determination of discriminative patch subsets,

• Convolutional neural network (CNN) design for patch level outcome prediction, and

• Fusion of patch level into image level predictions.

2 Relevant background

In 2018 in the United States, the estimated number of new cases of CRC was 97,220 with 50,630
disease associated deaths [30]. The overall death rate of CRC has decreased from 28 per 100,000
(1975) to 14 per 100,000 (2015) as the result of increased screening, decline in incidence, and
improvement of treatment [30]. Screening can effectively prevent CRC by the identification
and subsequent removal of early-stage precancerous growth, with a range of factors employed
to identify patients at risk. Some of the notable risk factors include colorectal adenomas [15],
hereditary conditions including Lynch syndrome and adenomatous polyposis [25], personal his-
tory of long-standing chronic ulcerative colitis [18], and alcohol use [8]. Although colorectal
cancer screening guidelines do not distinguish between female and male, the statistics show
that the number of new cases of males is 17% greater than that of female [19] while female over
65 years old presents higher mortality rate and lower 5-year survival rate of CRC compared to
their age-matched male counterparts [16].

However, CRC is found to be highly treatable and often curable when it is confined to the
bowel after surgical intervention [24]. Nevertheless, CRC is generally considered not curable
when the cancer cells have spread to other organs, termed metastasis. In this case, appropriate
choices of health management, including chemotherapy or targeted therapy, can still help im-
prove the quality and length of life [24]. Therefore, the early diagnosis and accurate prognostic
prediction of the cancer aggressiveness and patient outcome are significant.

3 CRC staging and prognosis

In present clinical practice, the main prognostic factors for CRC comprise: (T) depth of tumour
penetration through bowel wall, (N) presence or absence of nodal involvement, and (M) presence
or absence of distant metastases. These form the basis of the five stage TNM staging system
[11]. Stage 0 is least severe, with all the lesions restricted to the mucosa and the lamina propria.
Local excision or simple polypectomy with clear margins is the most common treatment option.
In Stage I, cancer may have grown into the muscularis mucosa or into the muscularis propria
but has not spread deeper into the colon muscle wall, to nearby lymph nodes or other distant
sites. Because CRC at this stage is still localized, it also has a high cure rate with wide surgical
resection and anastomosis. Stage II characterizes CRC that has spread to to or beyond the
serosa and may have grown into nearby tissue or organs, but not to the lymph nodes and has not
metastasised. Surgical resection is again the standard treatment, however high-risk patients,
such as those with t4 disease may be offered chemotherapy. Stage III is characterized by lymph
node involvement and the standard treatments are wide surgical resection and anastomosis, and
adjuvant chemotherapy. Stage IV disease is characterized bymetastatic disease. The treatment
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Figure 1: Chromatic normalization examples (left & right: original & normalized tiled strips).

of CRC at this stage largely depends on the sites of metastatic disease. Liver metastasis makes
up approximately 50% of Stage IV and recurrent CRC, and the options for treatment include
all the aforementioned ones as well as palliative radiation therapy, palliative chemotherapy, and
targeted therapy.

3.1 H&E staining

In this work, we utilize digitized whole slide images of archived diagnostic histopathological
tissue sections stained with haematoxylin and eosin (H&E); see examples in Fig 1. Eosin is an
acidic dye that stains the basic structures red or pink, such as the proteins within the cytoplasm.
Haematoxylin, on the other hand, is a basic dye which stains the acidic structure blue or purple,
such as DNA in the nucleus.

Within an H&E stained colon section, we can observe nuclei of cells in purplish blue, cyto-
plasm in red, erythrocytes in cherry red, collagen and mitochondria in pale pink. However, the
colour intensity of the stain depends on both the amount of stain applied and the duration of
exposure.

3.2 Previous work

The manual reporting of H&E stained tissue sections under the microscope, or WSIs on the
computer monitor, for TNM staging is laborious. It is also largely based on the subjective
experience-based assessment of the pathologist, which often causes variation across different
observers. Motivated by these limitations, there is an increasing amount of research on the use
of machine learning for the analysis of WSIs.

As a data-driven and end-to-end approach that learns high-level feature without subjective
biases, application of convolutional neural networks (CNNs), computer-aided interpretation
tools, can be traced to 1990s when a convolutional artificial neural network which attempts
to mimic a radiologist’s analytic process of radiographic images was introduced [20]. There-
after, CNN architectures for carotid intima-media thickness measurement in ultrasound images
[29], brain tumour segmentation in magnetic resonance imaging scans [12], neuronal membrane
segmentation in electron microscopy images [7], and many others have been proposed. For
WSI histological analysis, CNNs have been used for challenging problems such as automated
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nuclear atypia scoring [22] and the discrimination between epithelial and stromal tissues [4],
with promising results.

More recently, a series of works suggested that fine-tuned pre-trained CNNs outperformed
CNNs that are trained from scratch while taking much less time as well [10]. Conventionally,
when training from scratch, all the parameters in the architecture of an artificial neural network
are randomly initialized. By contrast, when fine-tuning a CNN, the weight and bias values are
initialized with the parameters of a pre-trained CNN with the same architecture. It is argued
that the early layers of CNN learn the low-level image features which are roughly the same
for different vision problems, however, the deeper layers that learn the high-level features are
specific with respect to the classification task itself [31]. Four specific image analysis problems,
including colonic polyp or pulmonary embolism detection, colonoscopy frame classification and
intima-media boundary segmentation were considered by Tajbakhsh et al. [31] to demonstrate
the potential of knowledge transfer between ‘natural’ and medical images.

3.2.1 Patch-based CNNs

Although CNNs are widely considered as the state-of-the-art models in various applications of
image classification, the analysis of WSIs remains challenging because training a deep CNN
model with gigapixel WSIs is still computationally impractical. Hence, most of the aforemen-
tioned techniques work with severely down-sampled images. However, this approach inherently
effects a loss of discriminative information at finer scales.

Hou et al. [13] train a model on patches of high-resolution images and from these make
predictions for entire WSIs, with an expectation maximization based algorithm used to auto-
matically determine discriminative patches. Thereafter, a number of other methods which rely
on the use of image patches and CNNs have demonstrated promising results in distinguishing
WSIs of tumorous and normal tissues [14], as well as the segmentation of precursor lesions [1].
However, prognosis is an inherently more difficult learning challenge [23].

Recently an adaptive sampling method was applied in an end-to-end framework [33] to
cluster group of images with different local content. This framework comprises four key stages:
(i) adaptive generation of patches from WSIs, (ii) patch clustering according to the phenotypes,
(iii) automatic clustering selection, and (iv) aggregation of cluster level predictions. However,
due to the low-resolution of down-sampled phenotypes and the lack of an effective way to
aggregate patch-wise predictions, the framework only achieves 57% average accuracy. The
framework we propose in the present paper overcomes the key limitations of the aforementioned
work in part by introducing a novel way of generating phenotypes.

4 Proposed methodology

The main objective of this work is to predict the survivability of stage I and II CRC patients
from whole-slide H&E stained histopathology images. More specifically, the key aim is to
predict whether the patient is likely to survive at least five years (the currently used clinically
driven salient follow-up time) after surgery.

4.1 Data preparation & pre-processing

The analysis of WSIs is widely conceived as one of the most challenging tasks in the field
of medical image analysis due to the following factors: (i) individual image size, (ii) usually
extreme class imbalance, (iii) low total slide count (contextually speaking), (iv) scanning and
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preparation image artefacts, and (v) WSI salient information heterogeneity. We will shortly
expand in greater detail but in summary, in order to address these we propose a sequence of
steps which include chromatic normalization, patch extraction, data augmentation, and patch
clustering.

Chromatic normalization Histopathological tissue sections or WSI are often examined in-
dividually by pathologists, who mainly focus on relative colour and pattern differences within a
single tissue section. It is rare to compare directly different slides in order to make a diagnosis;
each slide is examined to identify particular spatial or pattern characteristics. However, in the
application of quantitative analysis and medical statistics for diagnosis and prognosis, different
overall absolute colour value can lead to serious bias especially when the slide count is low.
The variation in terms of colour distribution is ultimately the difference in the amount of light
absorbed; Fig 1 shows examples of slides from different surgeries. As can be seen, the colour
profile exhibits great inter-clinic variability. While it is true that the use of greyscale would
address this problem, it also effects a loss of valuable pathological information.

We apply the Reinhard normalization [28] which begins by converting the RGB representa-
tion into a perception-based colour space lαβ with known phosphor chromaticity. This is done
by a conversion from RGB to XYZ tristimulus values and then a conversion from XYZ space
to LMS which is then followed by principal component analysis (effecting axes rotation).

The first conversion is based on the phosphors of monitor that is used to display an image.
A device independent conversion is applied as an approximation that maps the white in the
chromaticity diagram to white in RGB space:
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Next, mapping to LMS space is performed:
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To eliminate distribution skew in the LMS space a logarithmic transform is applied and a
pre-calculated maximal de-correlation matrix used to rotate the axes:
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where the l component is the achromatic value, the α and β components represent chromatic
yellow-blue and red-green channel values. Now the achromatic axis is orthogonal to the equi-
luminant plane. Finally, the distribution of values in each channel is normalized to be the
standard normal.

Patch extraction Patches are extracted after the entire WSI has been down-sampled and
normalized. The gigapixel resolution of the WSIs makes the existing approaches in the literature
prohibitively computationally demanding. To make the model trainable, herein tiles of size
224×224 pixels are extracted from the 1/10 resolution image (n.b. 40× magnification level was
used in acquisition).

Recall that the patch extraction process in the pioneer work of [13] is still human labour
intensive as it requires patches with less than 30% of tissue area or excessive blood content to
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Figure 2: Training corpus augmentation by synthetically generated imagery. Shown is an
original image (far left) and four examples of synthetic images generated from it (the remainder).

be labelled and discarded manually. To construct an end-to-end pipeline, we instead approach
the problem of relevant patch selection through the use of fully automatic clustering which does
not assume or require application of human prior knowledge.

Data augmentation To prevent the model from over-fitting and alleviate problems caused
by data imbalance, data augmentation is applied to the training data. Herein we perform
augmentation by means of applications of a restricted set of affine transformations, Gaussian
blur, and all-channel multiplication.

Specifically, we apply geometric transformations by means of 90◦ rotations, and vertical
and horizontal reflections, in random combinations, effecting an 8-fold increase in the data set
size. Gaussian blur with the unitary standard deviation is applied in order to make the model
generalize to blurred images since blur is often found in regions of WSIs as a result of locally
poor focusing [21].

4.2 Patch clustering

A major problem for patch-wise based classification approaches is that there is no ground truth
label for each individual patch. In order to overcome this issue, we broadly consider a patch
either to be (sufficiently) discriminative or not. This alone does not get one much further as
it is very difficult to extract the discriminative subset of patches without expert knowledge
and intensive human labour. Therefore, to obtain a collection of discriminative patches, we
propose that an unsupervised learning method is used to cluster similar patches into several
groups. In particular, we apply the k-means algorithm to group patches from a single WSI
[2]. To increase the robustness of the result to the random initialization of parameters we
perform multiple clusterings using different random starting parameters, and adopt the one
associated with the lowest loss, thereby avoiding sub-optimal local minima. Lastly, CNN based
classifiers are trained with patches from different clusters and used to determine which clusters
are discriminative. In this work we adopt two clustering approaches, described next.

Information density clustering Information density is a simple but efficient way to group
the extracted patches. In particular, since peripheral patches tend to contain large uniform
areas, they are suited for compression by the DEFLATE algorithm used by the PNG image
format.

The information ratio is defined here as the inverse of data compression ratio, IR = 1

CR
= Sc

Su

where Su is the bit size of an uncompressed image. For a 224× 224 pixel RGB 8-bit image, Su

is 150,528 bytes, and Sc is the size of the corresponding losslessly compressed PNG file.
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(a) (b)

Figure 3: (a) Distribution of patch memberships (left) across different information ratio based
clusters and the corresponding visual examples (right). (b) An example of a WSI (left) and
sample patches (right) from the different phenotype based clusters inferred automatically.

Operation Input dimension
Pre-trained CNN 224× 224× 3
Global average pooling 7× 7× 512
Dimension reduction (PCA) 512
k-means clustering 50

Table 1: Summary of data flow and
transformation at different stages of the
proposed algorithm employing phenotype
clustering based patch selection.

An example is shown in Fig 3(a). Observe that most patches fall into one of the three
clusters (CR−1 = 0.1, 0.4, 0.7) as well as that patches with higher CR−1 tend to contain more
salient (cancer related) information than others. However, it is important to note that this
does not necessarily imply that they are more pertinent for prognosis i.e. our ultimate task.
For example, the spatial arrangement of immune and cancer cells in peripheral regions around
the tumour is known to be informative in this regard.

Phenotype clustering We also developed a new phenotype clustering approach [33]. The
motivation behind phenotype clustering stems from the observation that the extracted patches
exhibit significant heterogeneity; see Fig 3(b). Because it is computationally expensive to per-
form clustering in the original 150,528 dimensional space (224 × 224 × 3), herein (instead of
performing simple down-sampling) we used an ImageNet pre-trained CNN to generate pheno-
types and then principal component analysis for dimensionality reduction. A summary of the
process is shown in Table 1 and visual examples in Fig 4.

4.3 Patch-wise CNN prognosis

Our CNN design was inspired by the well-known VGG16 network though with some notable
changes to its architecture and training, made to best suit the problem at hand. The main of
these are: (i) size of the fully connected layer, (ii) learning optimizer, (iii) learning rate, and
(iv) use of transfer learning.

We apply the CNN on the patch level and regard the ground truth label of the entire
corresponding WSI as its label. The fact that not all patches contain discriminative features
(for survival prediction) motivated our choice to train a network for each cluster separately
and independently. Then the clusters which correspond to the networks that converge and
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Figure 4: Examples of clustering results. Each block of four images comprises the original WSI
(top left), and the corresponding information density (top right) and phenotype based (k = 5
and k = 10 respectively bottom left and bottom right) clustering labels, colour coded.

have high validation accuracy are inferred to be discriminative. Networks of non-discriminative
patches clusters may also converge but their high validation error still allows for the automatic
inference of their non-discriminative nature.

4.4 Aggregation of predictions

The validation accuracy threshold of 65% was chosen for the selection of discriminative clusters.
After the patch levels predictions are made, these are aggregated into cluster level predictions.
Since each WSI has different numbers of tiles from a given cluster, patch level predictions are
represented by normalized histograms, thus effecting a homogeneous representation. A support
vector machine (SVM) classifier [5] is trained to learn the cluster level outcome.

5 Experimental evaluation

5.1 Patient samples and ethics

Whole slide images from patients operated on in NHS Lothian hospitals were used in the present
work. Our data set comprises WSIs of tissue sections from each of the diagnostically residual
and archived formalin fixed paraffin embedded tissue blocks, from CRC stage I and stage II
patients who underwent surgical resection. This work was conducted in accordance with the
declaration of Helsinki and no patient identifiable information was provided to the researchers.
Ethical approval was obtained after review by the NHS Lothian NRS BioResource, REC ap-
proved Research Tissue Bank (REC approval ref: 15/ES/0094), granted by East of Scotland
Research Ethics Service. Apart from the WSIs, each patient data sample is accompanied by a
demographical description and follow-up information including age at surgery, date of death,
and whether this patient dies of CRC (recall that in the present paper we are interested in
outcome prognosis i.e. survivability prediction). The original slides were stained using haema-
toxylin and eosin at the time of treatment, and were scanned using a ZEISS Axio scan Z1 (Zeiss,
Oberkochen, DE) whole slide scanner with a 40× objective. The scale of a single pixel represents
0.111µm × 0.111µm of the actual size. The digital camera used was a Hitachi HVF2025SCL
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Patch level Cluster level
Accuracy F1 Accuracy F1

ID3-CNN-Vote 0.60 0.67 0.50 0.67
ID3-CNN-SVM 0.60 0.67 1.00 1.00
Ph5-CNN-Vote 0.68 0.67 1.00 1.00
Ph5-CNN-SVM 0.68 0.67 1.00 1.00
Ph10-CNN-Vote 0.70 0.81 0.50 0.67
Ph10-CNN-SVM 0.70 0.81 0.50 0.67

Table 2: Summary of results; pre-
fixes ID and Ph refer to respec-
tively information density and
phenotype based clustering, fol-
lowed by the corresponding num-
ber of clusters.

with an exposure time of 200µs. As our focus is on prognostic classification, all the images in
the corpus correspond to positively diagnosed CRC cases.

The entire data set contains 75 WSIs representing one slide from a single patient. The
smallest image is 6GB and the largest one is 18GB, with an average size of the WSIs being
8GB, which is approximately 300,000 pixels by 200,000 pixels. The bit depth is 24 with 3
channels. The original data was in the commonly used CZI format and included an identity
label for each slide.

5.2 Results and discussion

We started our analysis by examining the overall prediction results and, in particular, the
effect that different clustering and aggregation techniques, and their parameters have. For
comparison, in addition to our SVM based aggregation described in the previous section, we
also present results for majority voting based aggregation [3]. A summary is provided in Table 2.

There are several important observations that are readily apparent from the table. Firstly, all
of the approaches – that is, different combinations of clustering and decision fusion techniques
– performed very well indeed already on the level of individual patches. On the patch level
phenotype based clustering with larger k performed best. Interestingly, at this stage the manner
of decision fusion (majority vote vs. SVM based) made no difference in the context of any of
the different algorithms.

Further insight can be gained by looking at cluster level performance, especially when in-
terpreted in the context of the aforementioned results. Here we do observe some advantage of
SVM based decision fusion, albeit only when information density based clustering is employed.
Another noteworthy observation is that unlike in other cases, cluster level prediction is worse
when phenotype based clustering with larger k is used. Our hypothesis, which requires further
experiments for validation, is that this is not a ‘true’ trend but rather a stochastic anomaly
which emerges from the need of more data for large k. Lastly, and most importantly, moving
from patch to cluster level prediction using SVM based fusion dramatically improves algorithms
with both information density and small k phenotype based clustering, and results in perfect
performance. This observation also supports our hypothesis as regards the anomaly noticed for
large k phenotype based clustering.

Finally, we sought additional insight and examined the k = 5 clusters for the best performing
method (Ph5-CNN-SVM). What we found was that the semantics of the five clusters were very
easy to interpret and can be summarized as containing the following patch types – Cluster
0: outside of the tissue micro-section, Cluster 1: containing blood cells, Cluster 2: containing
cancerous and immune cells, Cluster 3: void, and Cluster 4: containing fat cells. Thus, we can
conclude that our method not only performs extremely well in terms of the ultimate goal of
survival prognosis but also that it does so by learning clinically meaningful problem structure.
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Ample previous work testifies to the importance of interpretability in the adoption of novel
machine learning assistive tools by medical professionals.

6 Summary and conclusions

This paper is the first work to address one of the most challenging problems in the emerging
sphere of digital pathology – that of using images not previously annotated by a pathologist
to develop algorithms that can be applied automatically to generate diagnostic and prognostic
information from WSIs. Almost all current applications of CNN require careful annotation of
tissue images by a qualified pathologist, and this is a rate limiting step. The novel algorithm
we introduced addresses the overwhelming amount of data by automatic, unsupervised discrim-
inative patch selection and the convergence performance of cluster level trained convolutional
neural networks, and the inference of prognosis on the level of individual discriminative clusters
followed by decision fusion using support vector machines. On a real-world corpus our phe-
notype based clustering employed in conjunction with the aforementioned techniques achieved
perfect performance both in terms of overall accuracy and F1 score.
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