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If a knot is represented by an �-strand braid, then HOMFLY polynomial in representation � is a sum over characters in all rep-

resentations � ∈ �⊗�. Coe�cients in this sum are traces of products of quantum R̂-matrices along the braid, but these matrices
act in the space of intertwiners, and their size is equal to the multiplicity��� of � in �⊗�. If � is the fundamental representation� = [1] = ◻, then�◻� is equal to the number of paths in representation graph, which lead from the fundamental vertex ◻ to the

vertex�. In the basis of paths the entries of the�−1 relevant R̂-matrices are associatedwith the pairs of paths and are nonvanishing

only when the two paths either coincide or di�er by at most one vertex, as a corollary R̂-matrices consist of just 1 × 1 and 2 × 2
blocks, given by very simple explicit expressions. If cabling method is used to color the knot with the representation �, then the
braid has as many as �|�| strands; � have a bigger size �|�|, but only paths passing through the vertex � are included into the

sums over paths which dene the products and traces of the �|�| − 1 relevant R̂-matrices. In the case of 	
(�), this path sum
formula can also be interpreted as a multiple sum over the standard Young tableaux. By now it provides the most e�ective way for
evaluation of the colored HOMFLY polynomials, conventional or extended, for arbitrary braids.

1. Introduction

Knot polynomials are currently among the central objects of
interest in quantumeld theory; they are exactly at the border
between the known and unknown.
e knot polynomials can
be dened as Wilson loop averages:�K⊂M

� (� | �) = ⟨tr� � exp(∮
K

A)⟩
�	
, (1)

that is, generic gauge-invariant observables in the simplest
version of the 3-dimensional Yang-Mills theory and the topo-
logical Chern-Simons model [1] with the action:�4� ∫

M

tr(A�A + 23A3) , (2)

and they depend on a closed contour K in a three dimen-
sional manifold M, on the representation � of the gauge

group � = 	
(�) and on the coupling constant � =�2
�/(�+). Since the theory is topological, the dependence is
actually only on the topological class ofK; that is, the contour
can be considered as a knot. For the simply connected space

M = �3 or 	3 the average �(� | �) is actually a polynomial

in � and � = �, hence, the name “knot polynomial.”


e study of knot polynomials in topology goes back to
[2–7], and they were put into the context of quantum eld
theory in the seminal works by Schwarz [8] and Witten [9],
further developed in [10–13]. Since the theory is topological,
there are no dynamical phenomena like connement, instead
a close relation exists to the 2-dimensional conformal the-
ories [9, 14–18], very much in the spirit of AdS/CFT cor-
respondence [19–21]. In this way the knot polynomials are
related to the most di�cult part of conformal eld theory, to
modular transformations, which through the AGT relations
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[22–32] are connected to the 	-duality between the N = 2
supersymmetric Yang-Mills theories [33–44].
is makes the
study of knot polynomials the next task a�er the structure
of conformal blocks themselves more or less understood in
terms of the Dotsenko-Fateev matrix models [45–55] and
other similar representations [56, 57].

An additional interest is induced by existence of non-
trivial deformations of the knot polynomials: to superpoly-
nomials [58–66] and rened Chern-Simons theory [67, 68]
(see also [69]), to extended knot polynomials [70], which puts
them into the class of �-function like objects, and so forth. At
least naively [71, 72], they belong to the family ofHurwitz par-
tition functions [73–76], more general than the conventional
KP/Toda �-functions, probably related to the generalized �-
functions of [77–80].

However, for any kind of generic investigation and
application of knot polynomials, they should be rst e�ec-
tively calculated and represented in a theoretically appealing
form, allowing evaluation of these polynomials for particular
knots and representations. 
ere are di�erent competitive
approaches to do this, for example, [81–84]. 
e goal of this
letter is to summarize the results of our method [70, 85–
87], which provides a complete, nice, and practically e�cient
solution to this problem.

2. HOMFLY Polynomials via
Quantum R-Matrices


e method may begin with choosing the temporal gauge�0 = 0 [88–90] in Chern-Simons theory; then the theory
becomes quadratic with the ultralocal propagator �(�) ("⃗).

en the original knot in 3-dimensions is substituted by a 2-
dimensional knot diagram (a 4-valent oriented graph), and
theWilson average reduces to a �-graded trace of the product
of quantumR-matrices, standing at the vertices of the graph
[10–12].

It is most convenient to choose the knot diagram in the
form of a closure of a braid. If the braid has � strands, then
the product involves� − 1 di�erentR-matrices:R(�) stands
at the intersection of strands # and # + 1, and # = 1, . . . , � − 1.
For instance, for the 3-strand braid one has�(�1 ,�1|�2 ,�2|,...)� = tr

grad

�⊗3 R
�1
(1)R
�1
(2)R
�2
(1)R
�2
(2) ⋅ ⋅ ⋅ . (3)

In the pattern picture %1 = 0, &1 = −2, %2 = 2, &2 = −1, and%3 = 3 (see Figure 1).
Similarly, for arbitrary��(�11 ,...,�1,�−1|�21 ,...,�2,�−1|,...)� = tr

grad

�⊗� R
�11
(1) ⋅ ⋅ ⋅R�1,�−1(�−1)R�21(1) ⋅ ⋅ ⋅R�2,�−1(�−1) ⋅ ⋅ ⋅ . (4)


e trace here is dened with additionally inserted element��⊗� so that '� = tr
grad

� * = dim�� (�) (5)

are the quantum dimensions of the representation � (the

characters of the group � at the special values -� = (�� −�−�)/(�� − �−�)). In this formula the R matrices are of

the huge size dim(�)2 × dim(�)2 and this expression can
seem absolutely hopeless to evaluate for generic group � and
representation �.

However, things are actually much simpler. 
e product�⊗� can be expanded into a sum of irreducible representa-
tions, generically, with nontrivial multiplicities. 
e crucial
observation is that R(�) act as unity in each irreducible
representation, so that the matrices in (4) can be reduced to

R̂(�) of a much smaller size, equal to just the multiplicities��� of � in �⊗� [70, 85]:
�K

� (�) = N
�(K) ∑
�∈�⊗�

6K

��'� (�) , (6)

6(�11 ⋅⋅⋅�1,�−1|⋅⋅⋅ )�� = tr��� R̂
�11
(1) ⋅ ⋅ ⋅ R̂�1,�−1(�−1) R̂�21(1) ⋅ ⋅ ⋅ R̂�2,�−1(�−1) ⋅ ⋅ ⋅

(7)

Here N is a normalization factor which emerges due to
our choice of nonstandard normalization ofR-matrices and7(K) is the writhe number. 
e standard normalization of
R-matrix in the vertical framing is restored with the factor�−2�� , where 8� = ∑�,�∈�(: − #) and the sum runs over the

coordinates (#, :) of the boxes in the Young diagram that
corresponds to the representation �. In order to restore the
topological invariance, one has to change framing with a

factor of �−|�|�−2�� which totally givesN = �−|�|�−4�� .
What is important, in formula (7) the knot and group

dependencies are separated and one can consider �� as a
function of � = � rather than �; the parameter � enters
only the quantum dimensions '� and can be easily substi-
tuted by �. Moreover, this formula actually introduces the
extended HOMFLY polynomial��{-}, if '� are interpreted
as characters, which are functions of innitely many time-
variables {-�} instead of � or � [70, 85]. 
e topological
invariance is, however, lost beyond the topological locus -� =-∗� = (�� − �−�)/(�� − �−�).

To deal with this formula one needs an explicit expression

for the R̂-matrices; see [85, 91, 92]. 
ose papers contain

many various observations about the structure of R̂-matri-
ces, and they were used to calculate many nontrivial knot
polynomials; still a complete description is not yet found
on that way, except for the fundamental representation case
of � = [1] = ◻, fully described in [86], and for the
(anti)symmetric representation case [91–93] (some results in
this latter case are also reproduced by alternative methods
[94–100]).

It is therefore natural to attack the case of arbitrary�with
the help of the cabling approach [101] and apply the results
of [86]. 
is is successfully done in [87, 102]; this letter is a
short summary of [86, 87], puried from all the details and
extensive list of examples evaluated there.
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Figure 1

Note also that here we restrict our discussion to the knots
only. 
e links can be dealt with similarly; however, they
require some technical complications; thus, for the sake of
brevity, we skip this extension (see details in [87]).

3. R̂-Matrices via Paths in
the Representation Graph

Since the cabling reduces the problem from � to the case
of the fundamental representation, the results of [86] are
directly applicable [87] and we begin from repeating them in
a concise and pictorial form (see Figure 2).

Implicit in [86] is representation of the coe�cients 6◻�
in the form of a sum over paths in the representation graph
[87]. 
e rst four levels of the representation graph of
[85] are shown in Figure 2; in an obvious way it describes
the multiplication of fundamental representations [1]. 
e

multiplicity�◻� of the representation� in ◻⊗|�| is obviously
equal to the number of directed paths in the representation
graph, connecting ◻ and �. More generally, ��� is equal to
the number of directed paths between � and�. 
e matrices

R̂(�), # = 1, . . . , � − 1 can be represented in the basis of
paths between � and ◻ and according to [86, 87] they have
extremely simple form in this basis.

First of all, with each index # of the matrix R̂(�) one
associates a level # in the graph. A given path P is passing
through exactly one vertex �� at level # and through some two
adjacent vertices ��−1 and ��+1 at levels # − 1 and # + 1. 
e
structure of the representation graph is such that these ��−1
and ��+1 are connected either by a single two-segment path
(singlet) (then it is a fragment of our �) or by two such paths
(doublet), the segments of our pathP and another pathP

�.
We call the transformationsP ↔ P

� a 
ip (see Figure 3).
In the former case (singlet), our pathP provides a diag-

onal element in R̂(�) and it is equal to either � or −1/�. In
the language of Young diagrams the singlet appears when the
two boxes added to the diagram ��−1 in order to form ��+1 lie
either in the same row, then we put � at the diagonal of R̂�, or
in the same column, then we put −1/� (see Figure 4).

In the latter case (the doublet) (see Figure 5), the two
boxes are neither in the same row nor in the same column,
and the two pathsP andP

� form a 2 × 2 block in R̂(�). 
is
block is described as follows. First, that of the paths P and
P
� which lies to the le� of the other, corresponds to the le�

column and to the rst row of the 2 × 2 block. Second, the
Young diagrams ��+1 is obtained by adding two boxes to the
diagram ��−1, and the two paths correspond to doing this in
two di�erent orders, thus providing at the intermediate stage
the two adjacent vertices �� and ��� . 
e two added boxes are

[1] Level 1

[2] [11] Level 2

[3] [21] [111] Level 3

[4] [31] [211] [1111] Level 4

. . .

[22]

Figure 2

connected by a hook in the Young diagram, which has length< (measured between the centers of the two boxes). 
en the2 × 2 block is equal to(−�−�?� @�@� ��?�) , ?� = 1[<]� = � − �−1�� − �−� ,
@� = √1 − ?2� = √[< − 1]�[< + 1]�[<]� . (8)

Figure 5 shows that for ��−1 = [5521], ��+1 = [6522], �� =[6521], and ��� = [5522], the parameter < = 7.

is provides a complete and very explicit description

of the matrices R̂(�), # = 1, . . . , � − 1, which appear under
the trace in the expression for 6◻�. Note that in this form
thesematrices depend on�.
is description can seem rather
lengthy and tricky, but in practice it is very algorithmic, easily
programmable, and very e�ective for practical calculations
[87].


e paths from ◻ to � in the representation graph are
labeled by the standard Young tableaux, that is, the Young
diagram�with the numbers 1, . . . , |�| assigned to its boxes in
such a way that the emerging sequences are increasing along
each row and each column. 
e number in a given box is
just the number of steps, at which the box was attached to
the diagram when moving from ◻ to�. 
e number of paths
is therefore equal to the well-known number of the standard
Young tableaux, �◻� = |�|!∏boxes∈�H (box) , (9)

where H(box) is the length of the hook in � associated to the
box.


us the central formula (7) can be considered as a
multiple sum over the standard Young tableaux of �, and
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P�
i

Example of a singlet A doublet

Flip

Pi−1Pi−1

Pi Pi

Pi+1Pi+1

(exactly two paths between Pi−1 and P1+1)(no other path between Pi−1 and P1+1)

Level i − 1

Level i + 1

Level i

Figure 3

[5521] [6521] [7521]

�e diagonal entry for the path � is q

[5521] [5531] [5541]

�e diagonal entry is q

[5521] [55211] [552111]

�e diagonal entry is −1/q

Figure 4: Example of singlets.

the number of summations is equal to the number ∑�� |%��|
of vertices in the braid.

4. Examples

To illustrate the use of these formulas, we calculate the
contributions of simple diagrams � to the simple HOMFLY
polynomials. 
ere is nothing new in these formulas, they
are present here just to illustrate how the method works. For
numerous new examples see, [87].

If one considers only �◻ in the fundamental represen-
tation � = ◻ = [1], |◻| = 1, then (20) for an �-strand
braid involves � of the size �, that is, � at the level � in the
representation graph. Tomake use of (20), one needs to know

the� − 1matrices R̂(�).� = 2. 
ere are two possible � = [2] and � = [11] and one

matrix R̂(1) in each case.
For � = [2] there is a single path from ◻ = [1] to [2];

that is, �◻[2] = 1; it coincides with the segment ([1], [2]);
thus, according to our rules the corresponding 1 × 1 matrix

R̂(1) = �.

[5521]

[6521]

[5522]

[6522]

n = 7

Figure 5: Example of doublets.

Similarly for � = [11] one gets R̂(1) = −1/�.

us the generic expression (19) in this case is���(�)◻ = ��'[2] (�) + (−�)−�'[11] (�) , < odd. (10)
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e coe�cient at the l.h.s. takes into account the normaliza-
tion factorN.� = 3. For � = [3] and [111] there are unique paths from ◻
and the corresponding matrices R̂(1) = R̂(2) are again 1 × 1
and are equal to � and −1/�, respectively.

However, for � = [21] the situation is already di�erent.

ere are twopaths between◻ and [21], and the le� one [1] →
[2] → [21] contains the segment ([1], [2]), while the second
path [1] → [11] → [21] contains the segment ([1], [11]). 
is

means that the matrix R̂(1) in the sector � = [21] is 2 × 2;
it is diagonal with the entries � and −1/�. 
e matrix R̂(2) is
again 2 × 2, but it is not diagonal, because the two paths are
connected exactly by the �ip. Since the length of the hook in
this case is < = 2, our rules imply that

R̂(2) = ( 1[2]�)( − 1�2 √[3]�√[3]� �2 ), (11)

and the formula for the arbitrary 3-strand braid is [85] (see
Figure 6)

��1+�1+�2+�2+⋅⋅⋅� ( �1�1|�2�2|⋅⋅⋅ )◻= ��1+�1+�2+�2+⋅⋅⋅'[3] (�) + (−1�)�1+�1+�2+�2+⋅⋅⋅'[111] (�)
+ tr2×2

{{{{{{{{{{{{{{{
(� 00 −1�)

�1

×(
(

− 1�2[2]� √[3]�[2]�√[3]�[2]� �2[2]�
)
)
�1

(� 00 −1�)
�2

× (
(

− 1�2[2]� √[3]�[2]�√[3]�[2]� �2[2]�
)
)
�2

⋅ ⋅ ⋅ }}}}}}}}}}}}}}}}}
,

(12)

� = 4. For � = [4] and [1111] all the three matrices R̂1,2,3
are 1 × 1 and equal to � and −1/�, respectively.

[1] [21]

n = 2

[2] [31]

n = 3

Figure 6

For � = [31] there are three paths. Ordered from the le�
to the right they are^ = [1] _→ [2] _→ [3] _→ [31] ,` = [1] _→ [2] _→ [21] _→ [31] ,a = [1] _→ [11] _→ [21] _→ [31] . (13)

At level 2 the �ip relates ` and a and at level 3 relates ^ and `.

is implies that in sector [31] one has [85]

R̂(1) = (� � −1�) ,

R̂(2) = (((((
(

� 0 0
0 − 1�2[2]� √[3]�[2]�0 √[3]�[2]� �2[2]�

)))))
)

,

R̂(3) = ((((
(

− 1�3[3]� √[2]�[4]�[3]� 0√[2]�[4]�[3]� �3[3]� 00 0 �
))))
)

.

(14)

For � = [211] the answer is similar; the three paths are
now ^ = [1] _→ [2] _→ [21] _→ [211] ,` = [1] _→ [11] _→ [21] _→ [211] ,a = [1] _→ [11] _→ [111] _→ [211] , (15)
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R̂(1) = (
(

� −1� −1�
)
)

,

R̂(2) = ((((((
(

− 1�2[2]� √[3]�[2]� 0√[3]�[2]� �2[2]� 00 0 −1�
))))))
)

,

R̂(3) = ((((((
(

−1� 0 0
0 − 1�3[3]� √[2]�[4]�[3]�0 √[2]�[4]�[3]� �3[3]�

))))))
)

.

(16)

For � = [22], there are just two paths: = [1] _→ [2] _→ [21] _→ [22] , = [1] _→ [11] _→ [21] _→ [22] , (17)

and they are related by the �ip at level 2.
is means that both

R̂(1) and R̂(3) are 2 × 2 and diagonal, while R̂(2) is not:

R̂(1) = R̂(3) = (� 00 −1�) ,
R̂(2) = (

(
− 1�2[2]� √[3]�[2]�√[3]�[2]� �2[2]�

)
)

. (18)


e counterpart of (10) and (12) is nowobvious, but rather
lengthy, so we do not write it down here.

5. Cabling Method

Cabling is based on the fact that the representation � appears

in the product of |�| fundamental representations, � ∈ ◻|�|;
thus, the answer for�K

� can be extracted from the answer for�K
|�|

◻⊗|�| by the projection:�K

� (�) = N� ∑
�∈◻⊗�|�|

C
K
|�|

◻� '� (�) , (19)

where the normalization factor is slightly corrected as com-
pared with (7), see [87] for details. Cabling is widely used not
only in the knot theory [101], but also in the theory of R-
matrices and integrable systems [103–106] (where it is called
the fusion procedure).

Here K
|�| is an �|�|-strand braid, obtained from K

by substituting each line (strand) by a bunch (cable) of |�|
strands so that the intersection of two strands is now a pecu-
liar combination R of |�|2 original R-matrices, but in the
fundamental representations (see Figure 7). In other words,

CK
|�|

◻� = tr�◻� P̂� R̂
�11
(1) ⋅ ⋅ ⋅ R̂�1,�−1(�−1) R̂�21(1) ⋅ ⋅ ⋅ R̂�2,�−1(�−1) ⋅ ⋅ ⋅

(20)

P� is the projection from the reducible representation ◻⊗|�|
onto �. It can actually be inserted everywhere in between
the R matrices, but for the case of knots (not links) a single
insertion is su�cient.

Now, (20) can be written explicitly and calculated with
the help of Section 3, but in terms of the �|�|-strand braid

and the corresponding R̂ matrices replaced with R̂. 
is is
a rather cumbersome expression even for the simplest knots
(therefore we do not rewrite (20) in this way) but absolutely
straightforward and adequate for practical computations.

Moreover, here comes a bonus of the path sum represen-
tation: the projector P� is nearly trivial, at least in the case of
knots: one should include only the directed paths from � to◻, which pass through the vertex �, this e�ectively decreases
the size of the matrices R̂(�), * = 1, . . . , � − 1 from �◻� to�◻� ⋅ ���.
NB. 
e constituent matrices R̂(�), # = 1, . . . , �|�| − 1,
cannot be reduced in this way: one cannot insert the projector

inside R̂.

6. Cabling for � = 2 and |�| = 2
Now we can use the last example in Section 4 to demonstrate
how the cabling works in our formulas. 
e 4-strand braids
are enough to describe only the 2-strand (torus) knots in
representations [2] and [11]. In this case there is just a single
combined matrix:

R̂(1) = R̂(2)R̂(1)R̂(3)R̂(2). (21)

According to our rules, if we consider, for example, �(�)[2]
for a 2-strand knot, we should leave in R̂(1) only the paths
passing through the vertex [2].


ismeans that the single path leading to� = [4] remains
intact, while the one to [1111] is now eliminated; this means
that there will be no contribution of � = [1111] to�(�)[2] .
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=

R

P̂RR̂P̂R

PR

Figure 7

From the three paths which led to � = [31], only two
remain, ^ and `; thus the third line and the third column

should be omitted from the matrix R̂:

R̂ = (((((
(

� 0 0
0 − 1�2[2]� √[3]�[2]�0 √[3]�[2]� �2[2]�

)))))
)

(� � −1�)

×((((
(

− 1�3[3]� √[2]�[4]�[3]� 0√[2]�[4]�[3]� �3[3]� 00 0 �
))))
)

×(((((
(

� 0 0
0 − 1�2[2]� √[3]�[2]�0 √[3]�[2]� �2[2]�

)))))
)

= (((((((((
(

− 1[3]� −√[2]�[4]�[2]�[3]� �2√[2]�[3]�[4]��2[2]�[3]�−√[2]�[4]�[2]�[3]� − [4]�[2]�[3]� − �2√[3]��2√[2]�[3]�[4]�[2]�[3]� − �2√[3]� 0
)))))))))
)

_→ P̂[2]R̂P̂[2] = (1 1 0) R̂(1 1 0)
_→ (

(
− 1[3]� −√[2]�[4]�[2]�[3]�−√[2]�[4]�[2]�[3]� − [4]�[2]�[3]�

)
)

.
(22)


is 2 × 2matrix has two eigenvalues: 0 and −1.
Similarly from the three paths to � = [211] only one

survives, ^, and R̂matrix is reduced to 1 × 1:
R̂ = (((((

(
− 1�2[2]� √[3]�[2]� 0√[3]�[2]� �2[2]� 00 0 −1�

)))))
)

(� −1� −1�)

×((((((
(

−1� 0 0
0 − 1�3[3]� √[2]�[4]�[3]�0 √[2]�[4]�[3]� �3[3]�

))))))
)

×(((((
(

− 1�2[2]� √[3]�[2]� 0√[3]�[2]� �2[2]� 00 0 −1�
)))))
)

= ((((((((
(

0 1�2√[3]� √[2]�[3]�[4]��2[2]�[3]�1�2√[3]� − [4]�[2]�[3]� √[2]�[4]�[2]�[3]�√[2]�[3]�[4]��2[2]�[3]� √[2]�[4]�[2]�[3]� − 1[3]�
))))))))
)_→ P̂[2]R̂P̂[2] = (1 0 0) R̂(1 0 0) _→ (0) .

(23)
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us, despite a path survives in the [211] sector, its contribu-
tion is actually vanishing, as it should be, because [211] ∉[2] ⊗ [2].

Also for� = [22] only one path of the two remains,  , and
(
(

− 1�2[2]� √[3]�[2]�√[3]�[2]� �2[2]�
)
)

(� 00 −1�)
2

×(
(

− 1�2[2]� √[3]�[2]�√[3]�[2]� �2[2]�
)
)= ( 1�2 00 �2) _→ P̂[2]R̂P̂[2]= (1 0) R̂(1 0) _→ ( 1�2) .

(24)

Putting everything together one gets for odd < (i.e., for
the knot):�2��2��(�)[2] = tr

grad

[1]⊗4P̂[2]R̂
� = tr

grad

[1]⊗4(P̂[2]R̂P̂[2])�= �4�'[4] (�) + tr2×2

× {{{{{{{{{{{{{{{{{
((
(

− 1[3]� −√[2]�[4]�[2]�[3]�
−√[2]�[4]�[2]�[3]� − [4]�[2]�[3]�

))
)

}}}}}}}}}}}}}}}}}
�

'[31] (�)
+ �−2�'[22] (�)= �−2� (�6�'[4] (�) − �2�'[31] (�) + '[22] (�)) .

(25)


e formula at the last line is the standard Rosso-Jones
expression [107–109] for the coloredHOMFLY polynomial in
the case of a torus knot.

NB. Note that the matrices R̂ do not commute with P̂� and
that the projector is as simple as described above only for the
rst cable in the braid.

Note also that two of the ve � ∈ [1]4 do not contribute
to themiddle line for somewhat di�erent reasons; '[1111] does
not appear, because there are no paths, going from ◻ to [1111]
via [2], while for '[211] such path exists, just its contribution

to the relevant element of R̂ is zero.

ese examples illustrate all the peculiarities of our

formulas. Once they are understood, the use of the path sum
formalism is straightforward.

7. Open Questions


e path sum formula provides a complete solution for the
evaluation problem of arbitrary colored HOMFLY polyno-
mials. It is nice looking and theoretically attractive, and it is
algorithmic and very e�ective for practical computations (a
vast list of examples is provided in [87, 102]). It represents
the knot polynomials in the form of a character expansion
[70, 85] and therefore expresses them directly in terms of�,�, or, the time-variables -�, whatever one prefers. Still there
are a few obvious directions to study.

First, our nal formula for the colored knots heavily
relies on the cabling approach and therefore is in a certain
sense more involved than (7). In particular, when � ̸= ◻, the
sizes ofR-matrices are considerably bigger than theoretically
possible (though the entries are simpler). Of course, the path
sum representation exists for the arbitrary �, but it is in terms
of another representation graph, Γ� describing powers of
the representation �, and the correspondingR-matrices are
more involved (their constituents are no longer just 1 × 1 and2 × 2 blocks). At the same time that graph is the subset of the
full one, Γ◻, which we considered in the present letter, and the
sum over the paths from � to ◻, passing through the vertex�, can be also considered as a sum over just the paths from�
to �, more in the spirit of (7). However, there are many such
paths in Γ◻ with the same image in Γ�, and they contribute to
the matrix elements of the composite R̂. 
e quantities (20)
contain also multiple sums over the paths from � to ◻, but in
fact they do not depend on this, and one can simply x one
such path arbitrarily (as a kind of a gauge xing). It would
be very interesting to nd a relevant modication of the path
sum formula which would not refer to the cabling procedure,
and [91, 92] strongly implies that this can be possible and that
such a formula should possess its own beauties.

Second, the representation graph exists for arbitrary Lie
algebras, not only for 	
(�), and the sum path formula
should be straightforwardly generalized to arbitrary groups,
in particular, from the HOMFLY (for 	
(�)) to Kau�man
(for 	u(�)) polynomials.


ird, it is now obvious that the Khovanov-Rozansky
approach [58–63] and the superpolynomials [64, 65] should
have a similar representations in terms of the multiple sums
over paths (i.e., over the standard Young tableaux). 
ere are
certain advances in this direction for the torus knots [110–
115], particularly close should be the results by [116, 117].
We emphasize once again that the sums over Young tableaux
provide the answers for arbitrary knots, not only torus; this
is a theorem for the HOMFLY polynomials and a plausible
conjecture for the superpolynomials.

To this list one should of course add amassive calculation
of the colored HOMFLY polynomials for nontorus knots,
especially in representations with many lines and rows in the
Young diagram, that is, not just (anti)symmetric representa-
tions. Such examples are crucially important for understand-
ing the structure of generic knot polynomials, for example,
a la [93–100, 102, 118, 119] or [71, 72, 120, 121] or [122], and
various relations between them [123–127].
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for links from Chern-Simons perturbation theory,” Nuclear
Physics B, vol. 488, no. 3, pp. 677–718, 1997.

[14] G. Moore and N. Seiberg, “Taming the conformal zoo,” Physics
Letters B, vol. 220, no. 3, pp. 422–430, 1989.

[15] V.V. Fock andY. I. Kogan, “Generating function for 2+1dWZW
model correlators and the Sugawara construction from the �
Chern-Simons theory,” Modern Physics Letters A, vol. 5, no. 17,
pp. 1365–1371, 1990.

[16] J. M. F. Labastida and A. V. Ramallo, “Operator formalism for
Chern-Simons theories,” Physics Letters B, vol. 227, no. 1, p. 92,
1989.

[17] J. M. F. Labastida and A. V. Ramallo, “Chern-Simons and con-
formal eld theories,” Nuclear Physics B, vol. 16, pp. 594–596,
1990.
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