
Colored Nested Words

Rajeev Alur, Dana Fisman

University of Pennsylvania

Abstract

Nested words allow modeling of linear and hierarchical structure in data, and nested word au-
tomata are special kinds of pushdown automata whose push/pop actions are directed by the hi-
erarchical structure in the input nested word. The resulting class of regular languages of nested
words has many appealing theoretical properties, and has found many applications, including
model checking of procedural programs. In the nested word model, the hierarchical matching of
open- and close- tags must be properly nested, and this is not the case, for instance, in program
executions in presence of exceptions. This limitation of nested words narrows its model checking
applications to programs with no exceptions.

We introduce the model of colored nested words which allows such hierarchical structures
with mismatches. We say that a language of colored nested words is regular if the language
obtained by inserting the missing closing tags is a well-colored regular language of nested words.
We define an automata model that accepts regular languages of colored nested words. These
automata can execute restricted forms of ε-pop transitions. We provide an equivalent grammar
characterization and show that the class of regular languages of colored nested words has the
same appealing closure and decidability properties as nested words, thus removing the restriction
of programs to be exception-free in order to be amenable for model checking, via the nested
words paradigm.

Note

This is an extended version of the paper that appeared in LATA’16. The version in the proceed-
ings has an error in Theorem 6: Regular languages of nested words as defined in the proceedings
version are not closed under reversal. The current version defines regular languages of colored
nested words (and colored nested words automata) differently. Under the current definition regu-
lar languages of colored nested words are closed under reversal as well. We would like to thank
Sarai Sheinvald for pointing to the problem in the proceedings version.

1. Introduction

Nested words, introduced in [Alur and Madhusudan (2004)], are a data model capturing both
a linear ordering and a hierarchically nested matching of items. Examples for data with both of
these characteristics include executions of structured programs, annotated linguistic data, and
documents in marked-up languages such as xml. While regular languages of nested words allow
capturing of more expressive structure than traditional words, they retain all the good properties
of regular languages. In particular, deterministic nested word automata are as expressive as their

Preprint submitted to Information and Computation July 2, 2016

p0: P(n) { q0: Q(n) { r0: R(n) {

p1: try { q1: y = n / 2 r1: z = n-1

p2: x = 2*n q2: y = R(y) r2: if (z<0)

p3: x = Q(x) q3: y = y+1 r3: throw 0

p4: } q4: return y } r4: return z }

p5: catch (int) {}

p6: return x }

1

Figure 1: A procedural program.

xp0

xp1

9p2 9p3 xq0

9q1 9q2 xr0

9r1 9r2

r4y 9q3

q4y

p4y

p6y

P(n) { }

try { }

Q(n) { }

R(n) { }

Figure 2: An illustration of an execution of the code of the program in Figure 1 where function calls are captured
hierarchically.

non-deterministic counterparts; the class is closed under the following operations: union, in-
tersection, complementation, concatenation, Kleene-*, prefixes, suffixes, reversal, and language
homomorphism; and the following problems are decidable: emptiness, membership, language
inclusion and language equivalence.

Many algorithms for problems concerning such data can be formalized and solved using
constructions for basic operations and algorithms for decision problems. This fact led the way to
many interesting applications and tools. Two prominent areas are xml processing (see e.g. [Moza-
fari et al. (2012); Debarbieux et al. (2013); Madhusudan and Viswanathan (2009)]) and model
checking of procedural programs (see e.g. [Alur and Chaudhuri (2010); Alur et al. (2006);
Chaudhuri and Alur (2007); Thomo and Venkatesh (2011); Alur et al. (2011); Driscoll et al.
(2011)]).

By modeling executions of structured programs as nested words, one can algorithmically
verify/refute various aspects of program correctness. Consider for instance, the program in Fig. 1.
An example execution is illustrated in Fig. 2. Each step of the execution is mapped to the program
counter line, and in addition, function calls create hierarchical connections to their respective
returns. In the illustrations calls are depicted with down arrows, returns with up arrows, and
internal code with horizontal arrows.

Nested words can be represented by graphs as in Fig. 2 or via an implicit representation using
words over an alphabet Σ ˆ tx, ¨, yu. We use xa, 9a and ay as abbreviations for pa, xq, pa, ¨q and
pa, yq, respectively.1 For the program in Fig. 1, we can define the first component of the alphabet

1Our notation for internal letters, marking a letter with a dot as in 9a, differs slightly from nested words literature which
uses simply a. When there is no risk of confusion we may use un-dotted versions too.

2

1
 2
 3
 4
 5

Closes scopes 5,4,3

<div id="s">

 ML

 Haskell

 Scheme

</div>

<div id="w">

 C

 C++

 Perl

</div>

1

Figure 3: On the left, a Python program, on the right an excerpt from an html document

to be the set of possible program counter lines tp0, p1, . . . , r4u. Then the call to Q(), for instance,
will be modeled by the letter xq0. The implicit representation for the nested word in Fig. 2 is the
word obtained by concatenating the letters on the path consisting of all solid edges. The fact
that the hierarchical matching between calls and returns is explicitly captured (in comparison to
treating them as a linear sequence of instructions) can be exploited for writing more expressive
specifications of procedural programs such as pre/post conditions that can be algorithmically
verified — see [Alur et al. (2016)] for details.

But what happens if an exception is thrown? Then a call (or several calls) will not have a
matching return. Viewing the run as a nested word might match the thrown exception with the
most recent call, but this is not what we want.

A similar situation happens in parsing programs written in programming languages like
Python or Haskell, that use whitespace to delimit program blocks and deduce variables’ scope.
In such programming languages, a new block begins by a line starting at a column greater than
that of the previous line. If the current line starts at column n (i.e. after n spaces from a new line)
and the following line starts at the same column n it is considered on the same block. If the next
line starts at a column n1 ą n it is considered a new block. Last, if the next line starts in a column
n1 ă n then it is considered in the block that started at n1 and this implicitly closes all blocks that
were opened in between. (If no block started at column n1 this would be a syntax error.) If we
were to model this with nested words, we can only close the last block, but here we need to close
as many blocks as needed.

For strongly matched languages, such as xml, one might want to use this principle to help re-
cover un-closed tags, in cases where this will not result in a confusion, but rather help processing
the rest of the document. Consider for instance, the example of Fig. 3. In this example we have a
list with a couple of well-matched list items, and one list item that has no closing tag. We would
like to be able to process it and recover from the unmatched list item. If we consider in a
way similar to a thrown exception, we can achieve this task.

If we can’t model exceptions correctly, we cannot use model checking to formally prove/refute
properties about them, and a fundamental property such as “if a certain condition occurs in a pro-
gram, an exception is thrown and properly caught” is left beyond the scope of verification.

3

xp0

xp1

9p2 9p3 xq0

9q1 9q2 xr0

9r1 9r2

r3y

9p5

p6y

P(n) { }

try { throw 0

Q(n) {

R(n) {

Figure 4: a colored nested word corresponding to an execution of the code in Fig. 1 where an exception is thrown.

id
“

s

9ML 9Haskell 9S cheme

xdiv divy

xol oly

xli liy xli liy xli

id
“

w

9C

9C`` 9Perl

xdiv divy

xol oly

xli

xli liy xli liy

Figure 5: a colored nested word corresponding to the html excerpt in Fig. 3.

In this work we suggest to augment the nested words model with colors. Each call and return,
or opening and closing tags, are associated with some color (or rank). The colors are assumed
to be elements of a finite linearly ordered set. The hierarchical structure matches only nodes of
the same color. This allows relaxing the requirements on the hierarchical edges. A hierarchical
edge of a certain color may be unmatched if it is encapsulated by a matched hierarchical edge of a
different color of higher rank. This models catching thrown exceptions, closing as many blocks as
needed, or recovering from unmatched tags. Fig. 4 depicts a colored nested words corresponding
to an execution of the program in Fig. 1 where an exception is thrown. We assume a set of two
colors t1, 2u and that the exception tags try and throw and catch are of color 2 and function
call and returns are of color 1. Fig 5 depicts the nested word corresponding to the excerpt html
of Fig. 3. Here we assume a set of three colors t1, 2, 3u such that xdiv and divy are colored 3, xol
and oly are colored 2, and xli and liy are colored 1.

Following a formalization of colored nested words, we ask ourselves whether we can use
existing machinery of nested word automata and/or nested words tranducers to process colored
nested words. Realizing that this is unfeasible, we present colored nested word automata (cna).
These automata augment automata for nested words with restricted forms of ε-pop/push transi-
tions. The ε-pop transitions enable the automaton to read all the information on the stack that
was pushed on un-matched calls. We study also a blind version (bcna), that can see just the infor-
mation recorded on the matched call. We show that although there could be unboundedly many
stack symbols that it cannot observe in comparison to the first automata model, their expressive
power is the same.

We show that cna recognize exactly the class of regular languages of colored nested words.
We then show that this class of languages is as robust as regular languages: Deterministic cna are
as expressive as their non-deterministic counterparts. It is closed under the following operations:
union, intersection, complementation, concatenation, Kleene-*, prefixes, suffixes, reversal, ho-

4

momorphism and inverse homomorphism. The following problems are decidable: emptiness,
membership, language inclusion and language equivalence. We conclude with a grammar char-
acterization.

Related Work. The key idea in the model of nested words as well as colored nested words is
to expose the hierarchical matching between the open and close tags, and the corresponding
automata models are really processing the input dag. To understand the relationship of these
automata with classical formalisms such as context-free languages, we can view the input as a
sequence of symbols, with the hierarchical structure only implicit, and measure expressiveness
by the class of languages of words they define. With this interpretation, the class of regular
languages of nested words is a strict superset of regular word languages and a strict subset of
dcfls. This relationship has led to renewed interest in finding classes between regular languages
and dcfls such as realtime height deterministic pdas [Nowotka and Srba (2007)], synchronized
grammars [Caucal and Hassen (2008)], and Floyd grammars/automata [Crespi-Reghizzi and
Mandrioli (2012)] (and some interest in languages accepted by higher order pushdown automata,
e.g. [Hague et al. (2008)], which are not cfl.) The class of regular languages of colored nested
words is a strict superset of regular nested-word-languages and a strict subset of Floyd grammars.
While a cna can be encoded as a Floyd automaton by defining a suitable dependency matrix
between input symbols to dictate the stack operations, the view that cnas are finite-state machines
operating over the dag structure of the input colored nested word leads to a clean theory of regular
languages of colored nested words.

2. Colored Nested Words

As is the case in nested words, colored nested words can be represented explicitly using
graphs as in Fig. 4 or implicitly using words over an augmented alphabet. We start with the
implicit representation. Let A be a finite set of symbols, and C a linearly ordered finite set
such as t1, 2, . . . , ku. Colored nested words are defined to be words over alphabets of the form
AYAˆCˆt`,´u. Given a triple xa, c, hy, the first component a P A provides some content, the
second component c P C provides a color or rank and the third component h indicates whether
a hierarchical connection starts (`) or ends (´). Letters in A do not influence the hierarchical
structure. Letters of the form xa, i,`y and xa, i,´y, can be abbreviated as (i a and a i), respectively.
When A and C are clear from the context we use (Σ, 9Σ and Σ) for AˆCˆt`u, A and AˆCˆt´u,
respectively. For a given color i P C we use (iΣ and Σ i) for the sets Aˆtiuˆt`u and Aˆtiuˆt´u,
respectively. Finally, we use Σ̂ for (Σ Y 9Σ Y Σ), and a, b, c, and w, u, v for letters and words in
Σ̂, respectively.

It is sometime convenient to use different types of parenthesis, and predefine the order be-
tween them. For instance we can decide that (and) have color 2 and that [and] have color 1
and then write (a 9b [c 9b d] e) instead of (1 a 9b [1 c 9b d1] e1). In the sequel we will often use these
types of brackets with this assignment of colors.

Explicit Representation. In the above representation the hierarchical structure of the colored
nested word is implicit. There is an alternative formulation of colored nested words as graphs
meeting certain criteria. A colored nested word of length n can be represented explicitly by a
tuple pw, κ, è , Ü , ß , à , ãq where w is a word of length n over a finite set of symbols A; κ
maps nodes in r0..ns to colors in C; è , Ü , ß are binary relations in r0..n´1sˆ r1..ns and ã
and à are unary relations over r0..n ´ 1s and r1..ns, resp. The relations è , Ü , ß , à , ã

5

describe the hierarchical edges. The linear edges are implicit; there is a linear edge from every
i P r0..n´ 1s to i` 1, and w maps the linear edge with source i´ 1 and target i to the i-th letter
of w (an A-symbol), as shown in Fig. 4.

We refer to è as matched edges, to Ü and ß as recovered calls and recovered returns,
resp., and to à and ã as pending calls and pending returns, resp. The following conditions
must be satisfied, where for uniformity we view the relations à and ã as binary by interpreting
ià and ã j as ià8 and ´8ã j.

1. Edges point forward: if i j for some P tè , Ü , ß , à , ãu then i ă j.
2. Edges do not cross: if i j and i1 1 j1 for some , 1 P tè , Ü , ß , à , ãu then

it is not the case that i ă i1 ă j ă j1.
3. Matched edges agree on the color: if iè j then κpiq “ κp jq.
4. Recovered calls and returns are properly colored: if iÜ j then κpiq ă κp jq and if iß j

then κpiq ą κp jq.
5. Source positions may not be shared, unless in recovered/pending returns: if i j and

i1 1 j1 for some , 1 P tè , Ü , àu then i ‰ i1.
6. Target positions may not be shared, unless in recovered/pending calls: if i j and i1 1 j1

for some , 1 P tè , ß , ãu then j ‰ j1.

A colored nested word is said to be well-matched if it has no pending calls/returns, and no
recovered calls/returns. It is said to be weakly-matched if it has no pending calls/returns (but it
may have recovered calls/returns). A weakly-matched colored nested word is said to be rooted
if the first letter is in (Σ and the last letter is in Σ). It is said to be c-rooted if it is rooted and the
first and last letters are colored c. The outer level of a colored nested word is the word obtained
by omitting all weakly-matched proper infixes. For instance, if w “ (a[bb]c(d[e f)g) its outer
level is (acg).

For executions of programs with exceptions (Fig. 2 and 4), a word is well-matched if no
exceptions are thrown. For the html example, being well-matched means that all open tags are
closed in the correct order. If not, as is the case Fig. 3, the explicit representation of the nested
word will contain bi-chromatic edges. In the case of Python programs, being well matched
means that after a block ends, there are always some lines of code before the outermost block
ends, which is very unlikely.

In Fig. 4 and Fig. 5 we saw examples of colored nested words with matching edges è , these
are the monochromatic horizontal edges in the figure; and of recovered calls Ü , these are the
bi-chromatic edges that start horizontally and break upwards, e.g. the target of linear edge 9p3
to source of the linear edge 9p5 in Fig. 4. But we haven’t seen examples of pending returns ã ,
pending calls à and, recovered returns ß . Pending calls and returns, may seem less natural,
but they play an important role when considering prefixes of words, or suffixes of words, as well
as concatenation. For instance we can partition w “ (a 9b [c 9b d] e) into two words u “ (a 9b and
v “ [c 9b d] e) such that w “ uv. We have that u has a pending call, and v has a pending return.
To be able to reason about prefixes, suffixes and concatenation, we would like all of these words
to be legitimate.

For a similar reason, while recovering returns may not seem natural, we would like to allow
them in order to have closure under reversal. For instance the reversal of w “ a) b] 9c (d e) 9f [g (h i] [j
which has a recovered call ‘(h’, is wR “ j] [i h) g] 9f (e d) 9c [b (a which has a recovered return
‘h)’. The explicit representations of w and wR are given in Fig. 6. By convention matched edges
are dashed, and recovered/pending edges are dotted.

6

a)

b]

9c

(d e)

9f

[g

(h

i]
[j

(a

[b

9c

d)(e

9f

g]

h)
[i

j]

Figure 6: a colored nested word w “ a) b] 9c (d e) 9f [g (h i] [j and its reverse wR “ j] [i h) g] 9f (e d) 9c [b (a .

We can define a mapping from the explicit to the implicit representation by assigning closing
tags to linear edges whose target is a target of an hierarchical edge, and opening tags to linear
edges whose sources are a source of an hierarchical edge, and assigning other edges as internal.
This map would be a bjiection. The reverse map is more easily explained using the automata
model for colored nested words and is thus differed to Section 4. The fact that the map is a
bijection follows from Lemma 2 given in that section, which states that the operations on the
stack of a colored nested word automaton are totally determined by the colored nested word.

3. Regularity

Next, we define a notion of regularity for colored nested words. We would like to say that
a language of colored nested words is regular if the language obtained by inserting the missing
closing tags is a well-colored regular language of nested words. First we need to define this map-
ping from a colored nested word to the uncolored nested word obtained by adding the missing
closing/opening tags.

Assume our colored alphabet is Σ̂ “ A Y A ˆ C ˆ t`,´u. We can define the uncolored
alphabet Σ̃ “ xAC Y AC Y ACy where AC “ pA Y t uq ˆ C, xAC stands for AC ˆ t`u and ACy

stands for AC ˆ t´u. A letter a P Σ̂ can be mapped to a letter ã in Σ̃ as follows. An opening
letter (c a can be mapped to xpa, cq, an internal letter 9a to itself, and a closing letter ac) can be
mapped to pa, cqy. We will use letters of the form xp , cq and p , cqy to fill the gap of “missing”
opening and closing letters. We say that a language over Σ̃ is well-colored if it can be accepted
by a product of two nested word automata (nwa) A and Ac where Ac is a fixed two-state nwa that
upon reading (c a letters pushes the color c to the stack and upon reading bd) checks that the color
on the stack is d, and if it is not goes to its rejecting state.

Given a colored nested word w we say that w1 is a completion of w if w is a sub-string of
w1 and any letter of w1 that is not in w is closing/opening an unmatched opening/closing letter
of w. There are various ways in which one can complete w and have the resulting word well-
colored. Consider the alphabet t<,>, [,], (,)u where <,> are colored 3, [,] are colored 2 and
(,) are colored 1, and let w “ [u1(u2(u3] where u1, u2, u3 are well colored. The mapping f pq
that we define will result in f pwq “ w1 “ [u1(u2(u3))], though w2 “ [u1(u2)(u3)], for instance
is also a well colored completion of w. Intuitively, the reason w1 is the correct completion is
that] here recovers both the first and second (. Put otherwise, the explicit representation for

7

w2 will cause a crossing edge, violating requirement 2, while the explicit representation of w1

is fine. The mapping also needs to respect the order of colors. Consider v “ u1(u2>u3]. Both
v1 “ <u1(u2)>[u3] and v2 “ [u1(<u2>u3)] are well-colored completions of v, but the one we
want to map to is v1 since in v2 the letter > is recovered by the pair [] which is of smaller color,
violating the 4-th requirement of the explicit characterization.

Definition 1. Let w be a colored nested word over Σ̂. We let f pwq “ w1 be the word over Σ̃

satisfying the following criteria:

1. w1 is a well-colored completion of w.
2. an added closing letter is located as right as possible.
3. an added opening letter is located as left as possible.
4. an added letter of color j cannot be encapsulated within opening and closing letters of

color i ď j.

where “as right/left as possible” means without violating the other requirements.

Definition 2. A language L of colored nested words is regular if the language f pLq “ t f pwq |w P
Lu is a regular language of nested words.

Now that we have a definition of regularity in place, we can ask what machinery can we use
to process regular languages of colored nested words. If we can define a transducer machine
M that implements f then we can feed its output f pwq to a nested word automaton and process
it instead of w. But such a transducer machine M won’t be a finite state transducer, nor it will
be a nested words transducer (nwt) [Raskin and Servais (2008); Staworko et al. (2009); Filiot
et al. (2010, 2011); Filiot and Servais (2012)]. Intuitively, since it may need to map a return
letter to several return letters (or to none at all), in fact to an unbounded number of return letters,
dependent on the number of unmatched call letters, and while the stack can be used to store this
information, an nwt can only inspect the top symbol of the stack.

Therefore, we need new machinery to process colored nested words. We can either define a
new transducer model that will allow implementing the desired transformation or we can simply
define a new automata model that directly process colored nested words. We pursue the second
option, which generalizes nested words, and can serve as a base line for a respective transducer
model.

4. Colored Nested Word Automata

A colored nested word automaton (cna), is a pushdown automaton that operates in a certain
manner, capturing the colored nested structure of the read word. A cna over Σ̂ uses some set
of stack symbols P to record information on the hierarchical structure. As in the case of nested
word automata, the push and pop operations are completely determined by the read word. For
cnas, when a symbol is pushed to the stack, it is automatically colored by the color of the opening
letter. Formally on reading (j a a symbol in Pˆ t ju is pushed. When reading a closing letter b j)
the cna will pop from the stack symbol after symbol as long as their color is i ă j until reaching
the most recent stack symbol whose color k is bigger or equal to j, and make its final move on this
letter. If that symbol is colored j it is popped as well, otherwise it is not. We can see this move
as composed of several ε-transitions. Note, though, that these are the only possible ε-transitions;
the cna can and must apply an ε-transition only when reading a closing letter of color j, and until

8

a symbol colored k ě j is visible on the stack, but it may not apply an ε-transition at any other
time. Note also that on reading b j) in case the top symbol on the stack is colored with a color
k ą j nothing is popped.

Let C be a linearly ordered set of colors, e.g. C “ t1, 2, . . . , ku. We let cK denote a color
greater than all color in C and let K “ C Y tcKu. We use Γ to denote stack pairs, i.e. symbols in
Pˆ K. For c P K we use Γc, Γăc, Γąc and Γěc for Pˆtcu, Pˆtc1 | c1 ă cu, Pˆtc1 | c1 ą cu and
Pˆ tc1 | c1 ě cu, respectively. A configuration of the automaton is a string γq where q is a state
and γ P ΓcK

Γ˚. The frontier of a configuration s “ γq, denoted frntpγqq is the triple pq, pp, cqq
where pp, cq is the top symbol of γ. We use the term frontiers also for arbitrary pairs in Qˆ Γ.

Definition 3 (Colored Nested Word Automaton (CNA)). A cna over alphabet A Y A ˆ C ˆ
t`,´u is a tuple A “ pQ, P, I, F, δ(, 9δ, δ), δ

ε)q where Q is a finite set of states, P is a finite set of
stack symbols, I Ď Q ˆ ΓcK

is a set of initial frontiers, F Ď Q ˆ Γ is a set of final frontiers.
The transition relation is split into four components 9δ, δ(, δ), δ

ε) where the last three components
can be seen as further refined by the color. Letters in (cΣ and 9Σ are processed by δ(c and 9δ,
respectively. Letters in Σc) are processed by both δc) and δεc). The types of the different δ’s are as
follows:

• δ(c : Qˆ (cΣ Ñ 2QˆΓc ,

• 9δ : Qˆ 9Σ Ñ 2Q,

• δc) : Qˆ Σc)ˆ Γěc Ñ 2Q and

• δ
ε
c) : Qˆ Γăc Ñ 2Q.

From δ we can infer the evolution of the configuration of the automaton, η as follows.
• Case a P 9Σ: ηpγq, 9aq “ tγq1 | q1 P 9δpq, 9aqu

• Case a P (Σ: ηpγq, (c aq “ tγpp1, cqq1 | pq1, pp1, cqq P δ(cpq, (c aqu

• Case a P Σ):

ηpγq, a c)q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

γ1gq1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dk ě 0, q0, . . . , qk, p0, . . . , pk, c0, . . . , ck

s.t. qk “ q, c0 ě c, ck, . . . , c1 ă c,
γ “ γ1pp0, c0qpp1, c1q . . . ppk, ckq,

@0 ď i ă k : qi P δ
ε
c)pqi`1, ppi`1, ci`1qq,

q1 P δc)pq0, a c), pp0, c0qq and
g “ pp0, c0q if c0 ą c and g “ ε otherwise

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

A run of the automaton on a Σ̂-word w “ a1 . . . an is a sequence of configurations s0s1 . . . sn

such that s0 is an initial frontier and si`1 P ηpsi, ai`1q for every 0 ď i ă n. A run is accepting if
frntpsnq P F. The automaton accepts a word w if there exists an accepting run on w. We also
use pq, p, cq

w
ùñA pq1, p1, c1q if A starting from configuration pq, p, cq and reading w may reach

a configuration whose frontier is pq1, p1, c1q. Thus w is accepted by A if pq, p, cq
w
ùñA pq1, p1, c1q

for some pq, p, cq P I and pq1, p1, c1q P F. We use LpAq to denote the set of words accepted
by A . An automaton is deterministic if I is a singleton and the right hand side of all the δ’s are
singletons. We use dcna and ncna for deterministic and non-deterministic cnas, respectively.

Fig. 7 provides some examples of cnas. Push and pop transitions are colored by the respective
color, whereas internal transitions are colored black. Push edges have labels of the form (c b Ó p
signifying that p is pushed to the stack, pop edges have labels of the form bc) Ò p signifying that

9

div ol li text div ol li text

xdiv Ó d

divy Ò d

xol Ó o

oly Ò o

xli Ó l

liy Ò l

9Σ

xdiv Ó d

divy Ò d

xol Ó o

oly Ò o

xli Ó l

liy Ò l

9Σ

oly Ò o

Ò l

xli Ó l

even odd

(Ó e

) Ò e

) Ò o

9a

(Ó o

even odd

(, [Ó e

) Ò e

) Ò o
9a

(, [Ó o

] Ò e] Ò o

even odd

(Ó e

[Ó e

) Ò e

) Ò o
9a

(Ó o
[Ó o

] Ò e] Ò o

Ò eÒ e
Ò o

Figure 7: Some examples of cnas.

the top symbol of the respective color is p. To ease distinction between push and pop transitions,
pop edges are dashed. Finally, ε-pop transitions use grey dotted edges. The assignment of colors
is as follows: xdiv, divy have color 3, xol, oly, [,] have color 2, and xli, liy, (,) have color 1.

In the first line we have a cna recognizing a subset of htmlwith div, ol and li tags requiring
the document to be well matched (left), and a cna allowing li to be unmatched if recovered by
ol (right).

In the second line the left and middle automata are actually nested word automata — no
use of the color is made. The left recognizes all words over ta, (,)u where the number of a’s
within any () and within the outer level, is even. The middle recognized words over t[,], a, (,)u
where in addition the number of a’s between any [] is odd. When we say here “the number
of a’s in the word” we mean in the outer level of the word as defined in Sec. 2. The language
recognized by the right automaton allows also unmatched (if it is recovered by an encapsulating
[] in which case the number of a letters in between should be odd. For instance [a(a(aa(a]
should be accepted whereas [a(a(aa(aa] should not.

The following theorem states that the class of languages recognized by deterministic cnas are
exactly the set of regular languages of colored nested words as defined in Sec. 3.

Theorem 1. A language of colored nested words is regular iff it is accepted by a cna.

We will differ the proof of this theorem to Section 5 after we introduce some variations on
the definition of cnas and show that they are equivalent to the definition given here.

The following lemma states that the height of the stack and the colors on the stack are totally
determined by the read word. That is, any two runs of a non-deterministic cna will agree on the
height and colors of the stack, as will different runs of different cnas, on a same given word.

Lemma 2. Let C and C 1 be two cnas over the same augmented alphabet. Let s0s1, . . . , sn and
s10s11, . . . , s

1
n be runs of C and C 1 on a given word w. For 0 ď i ď n, let si “ γiqi and s1i “ γ1i , q

1
i .

10

Then for every 0 ď i ď n we have |γi| “ |γ
1
i | and for every 0 ď j ď |γi| we have γir js and γ1ir js

are of the same color.2

It follows that a cna can be seen as traversing the dag of an explicit representation of colored
nested word, and annotating the target node of each linear edge by the automaton state it reaches
after reading the corresponding word, and annotating the source of each hierarchical edge by the
symbol pushed to the stack when the corresponding letter is read. When traversing the target of a
hierarchical edge the cna can observe the latter annotation, which is equivalent to discovering the
symbol on the top of the stack after all symbols that were popped due to the current read closing
letter are removed from the stack.

Given a colored nested word in implicit representation we can deduce the explicit representa-
tion by following the stack operations the cna goes through when reading it, which by Lemma 2
are well defined per each word. The linear labeling and coloring follow exactly that of the im-
plicit word. For the hierarchical edges, a matching edge (è) is added on every closing tag, from
the opening tag of the same color for which all symbols of the stack above it are of smaller color,
if such exists; otherwise, a pending return (ã) is added to that closing tag; a recovered call edge
(Ü) is added to all symbols of the stack with color smaller than that of the closing tag, such that
all symbols above it are also of smaller color; a recovered return (ß) is added on closing tags
if the top symbol of the stack, is of higher color; and last, pending calls pà) are added to all
symbols that are left on the stack when the run ends.

5. Equivalent Models

One of the great properties of regular languages is that their deterministic and non-deterministic
models have the same expressive power. We will see in Section 5.2 that this is true for regular
languages of colored nested words as well.

Another interesting result shows that a model where the cna cannot read the symbols popped
from the stack on its ε-pop transitions has the same expressive power, despite the fact that the
content of the stack that it cannot inspect may be unboundedly large. We call this model a blind
cna and prove this in Section 5.3.

We start (in Section 5.1) by considering another variation of the model, one that also has
ε-push transitions. This model is in a sense more symmetrical, and it is convenient to use in
various proof, in particular the regularity theorem (Thm. 1).

5.1. A model with ε-push transitions

Colored nested word automata as presented in Def. 3 have ε-pop transitions but not ε-push
transitions. The ε-pop transitions are introduced to allows us to pop symbols from the stack in
the event they are recovered by a closing letter of bigger color. Their popping mimics reading the
missing closing letters. On the event of reading a closing letter that is recovered by an opening
letter of bigger color a cna simply changes the state without popping anything from the stack
as it normally does when reading a closing letter. We can think of a model that first allows the
automaton to push a letter to stack to mimic the missing opening letter and then, the δ) operation
will pop that symbol on consuming the read letter as it normally does.

2Where γr js refers to the j’th letter of γ.

11

Definition 4 (ECNA). An ecna is a tuple A “ pQ, P, I, F, δ(, 9δ, δ), δ
ε), δ(εq where the components

δ(, δ), δ
ε), δ(ε are refined by color. Transitions δ(εc : Q Ñ 2QˆΓc are ε-push transitions that are

executed when the ecna reads a closing letter ac) and the symbol at the top of the stack after
removing all symbols of color c1 ă c has color c2 ą c. All other components but δ) are as in a
cna. A δc) function maps Qˆ Σc)ˆ Γc to 2Q. That is, the difference between δc) in cna and ecna
is that the former considers elements in Γěc and the latter is restricted to Γc. The evolution of the
stack is defined the same for letters in 9ΣY (Σ and as follows for letters in Σ):

ηpγq, ac)q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

γ1gq2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dk ě 0, q0, . . . , qk, p0, . . . , pk, c0, . . . , ck

s.t. qk “ q, c0 ě c, ck, . . . , c1 ă c,
γ “ γ1pp0, c0qpp1, c1q . . . ppk, ckq,
@0 ď i ă k : qi P δ

ε
c)pqi`1, ppi`1, ci`1qq and

if c0 “ c then g “ ε and q2 P δc)pq0, ac), pp0, c0qq and
if c0 ą c then g “ pp0, c0q and Dq1, p1 s.t.
pq1, pp1, cqq P δ(εc pq0q and q2 P δc)pq1, ac), pp1, cqq

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

Note that here as well, while ε-push transitions are available, they do not add non-determinism:
it is prescribed exactly when they can and should be taken.

The following theorem states that ecna and cna recognize the same set of languages.

Theorem 3. An ecna can be converted into an equivalent cna, and vice versa.

Proof. The proof of the first direction follows from the fact that a δ(εc -transition is always imme-
diately followed by a δc) transition and thus the two can be summarized by one δc) transition in
the case of a cna. Formally, let E “ pQ, P, I, F, δ(, 9δ, δ), δ

ε), δ(εq be an ecna. We construct from it
the following cna C “ pQ, P, I, F, δ(, 9δ, δ)

C , δ
ε)q where δc)

C “ δc) Y δ1c) and q2 P δ1c)pq, ac), pp1, cqq
if Dq1, p1. pq1, pp1, cqq P δ(εc pqq and q2 P δc)pq1, ac), pp1, c, qq. Clearly E and A accept the same set
of words.

For the second direction, assume we have a cna C “ pQ, P, I, F, δ(, 9δ, δ), δ
ε)q. We build from

it an ecna E “ pQ, P, I, F, δ(, 9δ, δ1), δ1
ε), δ1(

ε
q where δ1c) is obtained from δc) by omitting the transi-

tions in which the stack symbol γ P Γąc; instead if q1 P δc)pq, ac), pp, c1qq and c1 ą c we add the
transition pq, pp, cqq P δ1(εc pqq and the transition q1 P δ1εc)pq, pp, cqq. It is easy to see that C accepts
the same words as E.

We can now prove Theorem 1 stating that the cna machine model recognizes exactly regular
language of colored nested words.

Proof of Theorem 1. According to Def. 2 a language of colored nested words L is regular, iff
f pLq is a regular language of nested words. Let C be an ecna, over Σ̂. By tracking a run of the
ecna on a given word w, and adding a xp , jq letter transition whenever C makes a δ(εj transition,
and adding a p , jqy letter whenever C makes a δ

ε
j) transition, we can obtain f pwq as provided

in Def. 1. Indeed, a sequence of letters p , j1qy, p , j2qy, . . . , p , jkqy will be added to match the
respective opening letters just before encountering a closing letter of color k bigger than ji for
i P r1.. js, which is the rightmost positions these closing letters can be without violating the
requirements. Likewise, a letter xp , jq will be added in the event an unmatched j-colored closing
letter is read, in which case it is added to the left of all the opening symbols popped from the
stack, and just to the right of an opening letter of bigger color (or the beginning of the word),
which is the leftmost position that does not violate the requirements. Note that in the event of

12

consecutive unmatched closing letters a ja), b jb), . . . k jk) the ecna C first makes an δ(εja transition
and immediately pops the added symbol, then makes a δ(εjb transition and so on, so the added
letters appear in the reverse order xp , jkq, . . . xp , jbq, xp , jaq.

Let C “ pQ, P, I, F, δ(, 9δ, δ), δ
ε), δ(εq be an ecna. We can define from C a nested word au-

tomaton N “ pQ, P ˆ C, I, F, δ(

N ,
9δ, δ)

N q over Σ̃ as follows. If pq1, p1q P δ(pq, (j aq then pq1, p1q P
δ(

N pq, xpa, jqq. In addition, if pq1, p1q P δ(εj pqq then pq1, p1q P δ(

N pq, xp , jqq. Similarly, if q1 P
δ)pq, a j), pp, j1qqq then q1 P δ)

N pq, pa, jqy, pp, j1qq. In addition, if q1 P δ
ε
j)
pq, pp, j1qq then q1 P

δ)

N pq, p , jqy, pp, j1qq. Clearly, A will recognize f pLq and thus f pLq is a regular language of
nested words.

For the other direction, assume f pLq is a regular language of nested words. Then there exists
a nested word automaton (nwa) A such that LpAq “ f pLq. Since A recognizes f pLq we can
assume that on reading a word, if a violation of the requirements of Def. 1 is observed, then A
goes to a sink rejecting state. In particular, since f pLq is well-colored, we can assume A “ A 1ˆAc

where Ac is the fixed nwa defined in Sec. 3 making sure words are well colored. Equivalently, we
can assume the set of stack symbols Γ of A is of the form PˆC, and it uses the color component
as Ac does. Assume A “ pQ,Γ, I, F, δ(, 9δ, δ)q. Recall that the alphabet of A is Σ̃ as defined in
Sec. 3. We use xΣ and Σ y for txp , cq | c P Cu and tp , cqy | c P Cu resp. We say that a word w
over Σ̃ has no pending calls (resp. no pending returns) if the word w1 obtained after omitting all
the xΣ letters (resp. Σ y letters) is a well matched nested word.

We would like to build from A a cna C accepting L. The idea is that as long as the word
has no xΣ letters, C can mimic A’s transitions one by one: when A pushes/pops a letter so does
C where if the popped letter is in Σ y then C uses a ε-pop transition for that. The challenge is
coping with xΣ letters, since while A pushes them on the read, a cna (or ecna) learns about them
being missing only when encountering the recovered closing letter. To cope with this C uses its
non-determinism to guess the xΣ letters of the word. The guesses are being made at the initial
states and on every push of a regular letter (in xpΣˆCq).

Formally, we define the cna C “ pQ, P, IC , F, δ
(

C ,
9δC , δ

)

C , δ
ε)

C q where IC “ tpq, p, cq | Dq0 P

I, γ P Γ˚,w with no pending returns s.t. Kq0
w
ùñA Kγpp, cqqu and the transitions are defined as

follows:

1. 9δC pq, 9aq “ tq1 | q1 P 9δpq, 9aqu

2. δc)

C pq, ac), pp, cqq “ tq1 | q1 P δ)pq, pa, cqy, pp, cqqu

3. δ
ε
c)

C pq, pp, c
1qq “ tq1 | q1 P δ)pq, p , c1qy, pp, c1qq, c1 ă cu

4. δ(c
C pq, (c aq “ tpq1, pp, cqq | pq1, pp, cqq P δ(pq, xpa, cqqu

5. δ(c
C pq, (c aq “

tpq1, pp1, cqq | Dγ P Γ˚,w with no pending returns s.t. Kq
xpa,cqw
ùñ A Kγpp1, c1qq1u

We can show by induction that there exists a run s0s1s2 . . . sn of C on w if and only if there
exists a run t0t1t2 . . . tm of A on f pwq and a set of indexes i0 ă i1 ă i2 ă . . . ă in such that for
every j P r0..ns we have s j “ ti j and im “ n. It follows that C recognizes L as required. ˝

5.2. Deterministic cnas are as expressive as non-deterministic cna
Before providing the deterministic model, we explore a couple of additional variations that

come in handy in other proofs. It is often is easier to work with a cna whose initial condition is a
13

set of states rather than a set of frontiers (that is, a default initial bottom of stack is assumed to be
the same for all initial frontiers) or a cna whose initial set of states is a singleton. The following
two lemmas state that these restrictions do not compromise the expressive power. The proofs of
these lemmas use standard techniques and are given in the appendix for completeness.

A cna pQ, P, I, F, δ(, 9δ, δ)q is said to be an scna if there exists p0 P P such that I Ď Qˆtp0uˆ

tcKu. In this case we often regard to I as a subset of Q.

Lemma 4. Every cna can be converted into an equivalent scna.

Lemma 5. Every cna can be converted into an equivalent cna with a single initial frontier.

The main result of this section is that as is the case in finite automata and nested word au-
tomata, non-determinism does not add expressive power.

Theorem 6. dcnas have the same expressive power as ncnas.

Proof. The determinization construction is a generalization of the subset construction following
that of [Alur and Madhusudan (2009)].3 Consider an ncna N “ pQ, P, I, F, δ(, 9δ, δ), δ

ε)q. By
Lemma 4 we can assume N is an scna. We build an expressively equivalent dcna D as follows.
The states of D collect pairs of states of N , so that a pair pq, q1q in the collected set captures that
on the current level of the hierarchy the ncna started at state q and reached state q1. Thus, upon
reading a letter 9a P 9Σ, if the current state is pq, q1q and the ncna can transit from q1 to q2 upon
reading 9a then pq, q2q will be a member of the collection in the next state of the dcna. When
reading a letter (c a the dcna will push the triple pS , a, cq where S is the current set of pairs. As
for the state at a call, it will consist of pairs pq2, q2q such that the automaton can get from q1 to q2

upon reading (c a. This corresponds to that in the current hierarchical level, the automaton starts
at q2 and since so far it processed just ε it is still in q2.

Upon reading a return letter ac) the dcna can connect the current state with the state the
automaton was at the corresponding call as follows. Suppose the current state is S and the upper-
most stack triple is pS 1, a1, c1q, there exists a state pq1, q2q P S and a state pq, q1q P S 1 and there
is a stack symbol p on which the ncna can transit from q1 to pq1, pq upon reading (c a1. Then if
c1 ă c and there exists an ε-transition on pq2, pq to q2 then pq, q2q should be a member of the
next state of the dcna. Similarly, if c1 ě c and when reading the current letter ac) the ncna can
move from q2 to q2 then pq, q2q will be a member of the next state of the dcna.

Formally, the states of D are Q1 “ 2QˆQ. The initial state of D is tpq0, q0q | q0 P Iu. A frontier
pS , gq P Q1 ˆ Γ is accepting if there exists a pair pq, q1q P S such that pq1, gq P F. The transition
relation is defined as follows:

3Please see the version in http://robotics.upenn.edu/„alur/Jacm09.pdf which fixes a bug in the journal version.

14

q q1

q1 q2

q2

(c a bc)

pp, cq
q q1

q1 q2

c1 ą c
q2

(c1 a

bc)

pp, c1q

(a) matched edge (b) recovered return

q q1 q2bc)

pp, cKq

q q1

q1 q2

q2

(c1 a c ą c1

pp, c1q

(c) pending return (d) recovered call

Figure 8: Illustration of the different cases considered in construction of transitions in the proof of Thm. 6

δc)

DpS , pS
1, a1, cq, bc)q “

$

’

’

&

’

’

%

pq, q2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dq1, q2, q1 P Q, p P P.
pq1, q2q P S , pq, q1q P S 1.
pq1, pp, cqq P δ(cpq1, (c aq,
q2 P δc)pq2, bc), pp, cqq

,

/

/

.

/

/

-

(see Fig. 8 (a))

Ť

$

’

’

&

’

’

%

pq1, q2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dq1, q2, P Q, p P P, c1 ą c.
pq1, q2q P S , pq, q1q P S 1,
pq1, pp, c1qq P δ(c1 pq1, (c1 aq,
q2 P δc)pq2, bc), pp, cqq

,

/

/

.

/

/

-

(see Fig. 8 (b))

δ
cK)

D pS , bc), pp, cKqq “
"

pq, q2q
ˇ

ˇ

ˇ

ˇ

Dq1 P Q. pq, q1q P S ,
q2 P δcK)pq1, bc)pp, cKqq

*

(see Fig. 8 (c))

δ
ε
c)

DpS , pS
1, a1, c1qq “

$

’

’

&

’

’

%

pq, q2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dq1, q2, q1 P Q, g P Γ, c1 ă c .
pq1, q2q P S , pq, q1q P S 1,
pq1, pp, c1qq P δ(c1 pq1, (c1 a1q,
q2 P δεc)pq2, pp, c1qq

,

/

/

.

/

/

-

(see Fig. 8 (d))

˝

5.3. Blind CNAs

We now consider a model where upon reading a return letter ac) the automaton does not have
the privilege to read all the stack until the most recent symbol of color greater or equal to c.
Instead it immediately jumps to the most recent stack symbol p colored c or greater, popping
and ignoring everything above it, and makes a move solely on the base of that p. We call this
model blind cna and show that blind cnas are as expressive as (sighted) cnas.4 Dependent on the

4Note that a blind cna is still different than a traditional nested word automaton, as it has the means to skip all the
unmatched calls of lower color and arrive to the matching call, if such exists, and a greater call otherwise.

15

application the blind or original (sighted) cna may be more natural. For instance, in the context
of software executions, one might prefer the sighted automata to allow modeling of operations
such as releasing allocated memory that are taken when an exception is thrown. In the context
of parsing Python programs, or recovering from unmatched html tags, the blind model may be
more natural.

Definition 5 (Blind Colored Nested Word Automaton (BCNA)). A bcna is a tuple B “ pQ, P,
I, F, δ(, 9δ, δ)q where all the components are as in the definition of a cna. The evolution of the
configuration of the automaton for 9δ and δ(is the same as in cnas. For δ) we have that

ηpγq, ac)q “
tγ1q1 | γ “ γ1pp, cqγ2, γ2 P Γ˚ăc and q1 P δ)pq, ac), pp, cqquY
tγ1pp1, c1qq1 | γ “ γ1pp1, c1qγ2, γ2 P Γ˚ăc, c1 ą c and q1 P δ)pq, ac), pp, c1qqu

As in cnas a run of a bcna is a sequence of configurations which adheres to η and whose first
element is an initial frontier.

Clearly every bcna can be simulated by a cna whose epsilon transitions do not change the
state of the automaton. Some cnas are naturally blind. For instance, the cna at the top right of
Fig. 7 can be made blind by omitting the ε-transition. Simulating the cna at the bottom right of
Fig. 7 by a blind cna requires adding more states to account for the computations done by the
ε-transitions. The proof of the following theorem provides a constructive way to perform such a
simulation. The idea is that the states and stack symbols carry an additional component recording
a function ϕ : QˆC Ñ Q such that ϕpq, cq dictates to which state the cna will get after popping
all c1-stack symbols for c1 ă c if the current state is q.

Theorem 7. Given a deterministic cna A with n states, k colors and m stack symbols, one can
effectively construct a deterministic bcna B such that LpBq “ LpAq with nkn`1 states and mnkn

stack symbols.

Proof. Let A “ pQ, P, q0, F, δ(, 9δ, δ), δ
ε)q. We simulate A by a blind cna that records in the stack,

for every possible current state, to which state A would get to after making all the ε-transitions
when reading a closing letter in Σc). Let Φ be the set of all possible functions from Q ˆ C to
Q. The set of stack symbols PB is P ˆ Φ and the set of states QB is Q ˆ Φ. The accepting
states of B are FB “ tppq, ϕq, pp, ϕ1qq | pq, pq P F, ϕ, ϕ1 P Φu. The initial state is pq0, ϕ0q where
ϕ0pqi, cq “ qi for every qi P Q and every c P C.

Suppose the current state of B is pq, ϕq and B reads ac) and the top symbol at the stack after
symbols with color smaller than c have been popped is pp, ϕ2q. Then, since the current state of B
is pq, ϕq then after popping all these symbols A should get to state ϕpq, cq. Let q1 “ ϕpq, cq thus
B will move to state pq2, ϕ2q where q2 “ δ)pq1, ac)q. Upon reading (c a, if δ(pq, (c aq “ pq1, p1q
then B will push ppp1, ϕ1q, cq to the stack where ϕ1pqi, c jq “ ϕpδ

ε)pqi, p1q, c jq for every qi P Q and
c j P C; and move to state pq1, ϕ1q. Upon reading a 9a letter, B will move to state pq1, ϕq where
q1 “ 9δpq, 9aq.

It is not hard to see that indeed if pq, ϕq is the current state, and A reads a letter in Σc), it will
reach ϕpq, cq after processing all the c1-pairs for c1 ă c, and thus B accepts the same language as
A . ˝

16

6. Boolean Closure and Decision Problems

Since regular languages of colored nested words can be recognized by deterministic cnas, as
per Theorem 6, it is easy to see that they are closed under complementation. Closure under union
and intersection is also straight forward, since as guranteed by Lemma 2, two cnas running on
the same word, preform exactly the same stack operations. Thus, running them in parallel can be
achieved by a simple product construction.

Theorem 8. Regular languages of colored nested words are closed under complementation, in-
tersection and union.

Proof. Let M “ pQ, P, I, F, δ(, 9δ, δ), δ
ε)q be a deterministic cna. Then by complementing the

set of final frontiers we can get an automaton for the complement of LpM q. That is, M 1 “

pQ, P, I, pQˆ PqzF, δ(, 9δ, δ), δ
ε)q accepts Σ̂˚zLpM q.

Let Mi “ pQi, Pi, Ii, Fiδ
(

i ,
9δi, δ

)

i , δ
ε)

i q for i P ti, iiu be two deterministic cnas. For their in-
tersection we can build the product automaton, and choose as accepting states the states whose
both components are accepting. Similarly, for union we can build the product automaton, and
choose as accepting states the states with at least one accepting component. Formally, MX “

pQiˆQii, Piˆ Pii, Iˆ, FX, δ
(

ˆ,
9δˆ, δ

)

ˆ, δ
ε)

ˆq and MY “ pQiˆQii, Piˆ Pii, Iˆ, FY, δ
(

ˆ,
9δˆ, δ

)

ˆ, δ
ε)

ˆq

where

• Iˆ “ tpqi, qiiq, ppi, piiq | pqi, piq P Ii, pqii, piiq, P Iii, u

• δ(

ˆppqi, qiiq, aq “ ppq
1
i , q
1
iiq, ppi, piiqq if δ(

ipqi, aq “ pq1i , piq for i P ti, iiu

• 9δˆppqi, qiiq, aq “ pq1i , q
1
iiq if 9δipqi, aq “ q1i for i P ti, iiu

• δ)

ˆppqi, qiiq, a, ppi, piiqq “ pq1i , q
1
iiq if δ)

ipqi, a, piq “ q1i for i P ti, iiu

• δ
ε)

ˆppqi, qiiq, ppi, piiqq “ pq1i , q
1
iiq if δ

ε)

i pqi, piq “ q1i for i P ti, iiu

• FX “ tppqi, qiiq, ppi, piiqq | pqi, piq P Fi for i P ti, iiu u

• FY “
tppqi, qiiq, ppi, piiqq | pqi, piq P Fi, pqii, piiq P Qii ˆ Pii, uY
tppqi, qiiq, ppi, piiqq | pqi, piq P Qi ˆ Pi, pqii, piiq P Fii, u

˝

The following theorem follows from the result on emptiness of pushdown automata and from
the closure under complementation and intersection.

Theorem 9. Emptiness of ncnas can be solved in polynomial time. Inclusion, universality and
equivalence of ncnas are exptime-complete.

Proof. The emptiness problem for pushdown automata is solvable in polynomial time. Since
cnas are a special type of pushdown automata, we can decide on their emptiness using the same
procedure. This procedure can be applied to non-deterministic (or deterministic) cnas. Having
a procedure for emptiness we can decide on inclusion using complementation and intersection,
since L1 Ď L2 iff L1 X Lc

2 is empty (where Lc denotes the complement of L) and cnas are
closed under all Boolean operation (Thm. 8). Since the construction used in the proof assumed
deterministic cnas, and the determinization construction (Thm. 6) involved an exponential blow
up, we can conclude that inclusion can be solved in exptime. Deciding equivalence follows from
inclusion; and universality from emptiness and complementation. The lower bound follows from
the lower bound of the respective problems for nested words.

17

The membership problem for non-deterministic pushdown automata too is solvable in poly-
nomial time. It thus follows that we can decide on ncna’s membership in polynomial time.

In some contexts, it makes sense to ask about the complexity of membership when the given
cna is fixed. This is the case, for instance, in parsing programs in a given programming language.
A cna for this will stay valid as long as the programming language syntax has not changed. If A is
fixed, we can construct the equivalent deterministic automaton D using the method in Theorem 6
and then simulate it on the given membership query w. This yields a streaming algorithm — an
algorithm which reads the input in one pass from left to right (and cannot traverse it again). Thus,
this would take Op|w|q time and Opdpwqq space where dpwq is the hierarchical nesting depth of
the colored nested word w.

Theorem 10. Membership of ncnas can be solved in polynomial time. For a fixed cna A and
colored nested word w of length ` and depth d, the membership problem can be solved in time
Op`q and space Opdq.

7. Additional Closure Properties

We shall see that regular languages of colored nested words enjoy additional closure prop-
erties. In particular, in Section 7.1 we shall see that they are closed under concatenation, finite
iterations of concatenation (i.e. Kleene-*) as well as under the operations of prefixes, suffixes
and reversal. In Section 7.2 we shall see that they are closed under color-respecting substitution,
homomorphism and inverse homomorphism.

7.1. Closure under words operations
Theorem 11. Regular languages of colored nested words are closed under concatenation and
Kleene-*.

Proof. As per Lemma 4 we assume there is a unique bottom of stack symbol K “ ppK, cKq P Γ.
Recall that color cK is greater than any color of the considered alphabet.

Let L1 and L2 be two languages of colored nested words, and let A1 and A2 be non-deterministic
cnas accepting them, respectively. An ncna B for their concatenation can work by guessing a split
of the given word w into two words w1 and w2 that should be in L1 and L2, respectively. The
automaton B starts by simulating A1 and at any accepting frontier can decide to start simulating
A2. Note that when simulating A2 it will never pop K out of the stack since its color is bigger
than any that of any read letter, thus A2 will never encounter stack symbols that A1 pushed to the
stack.

For Kleene-* the idea is similar. Given an ncna A for a language L the constructed ncna, K
should guess a split of the given word w to w1, . . . ,wk for some k such that for each i, wi is in L.
As in the case of concatenation, whenever the constructed ncna C reaches a final frontier it can
non-deterministically move to an initial frontier of A . Again since K is of color greater than that
of any read letter, when simulating a run on w j the cna will never pop K and never reach a stack
symbol pushed upon simulating wi for i ă j. ˝

For a letter a P Σ̂ we define its dual a as follows: 9a “ 9a, (c a “ ac), and ac) “ (c a. If
w “ a1a2 . . . an then an . . . a2a1 is the reverse of w, and is denoted wR. Note that pwRqR “ w. For
a set of colored nested words L we define LR to be the set tv | Dw P L s.t. v “ wRu and refer to it
as the reverse of L.

18

Theorem 12. Regular languages of colored nested words are closed under the operations of
reverse.

Proof. Let A “ pQ, P, I, F, δ(, 9δ, δ), δ
ε), δ(εq be an ecna. We can build an ecna R for LpAqR

by switching the roles of initial and accepting frontiers, and dualizing the transition relation.
Formally, R “ pQ, P, F, I, δ(

R ,
9δR , δ

)

R , δ
ε)

R , δ
(ε

R q where the transitions of R are defined as follows:

1. if q1 P 9δpq, 9aq then q P 9δR pq1, 9aq
2. if pq1, p, cq P δ(cpq, (c aq then q P δc)

R pq
1, ac), p, cq

3. if q1 P δc)pq, ac), pp, cqq then pq, p, cq P δ(c
R pq

1, (c aq

4. if q1 P δεc)pq, pp, c1qq then pq, p, c1q P δ
(ε
c1

R pq
1q for every c1 ă c

5. if pq, p, cq P δ(εc pq1q then q P δεc)pq1, p, cq

The first three items are straight forward. The fourth item deals with ε-pop transitions on color
c. In this case the considered colors c1 on the stack are smaller than c. This corresponds to A
allowing an unmatched (c1 a to be rescued by some closing letter of color c ą c1. Therefore, for
every c1 ă c, R needs to allow an unmatched ac1) from the state q1 that A arrived at, and it should
take it to q the state that A started at. The transition pq, p, c1q P δ

(ε
c1

R pq
1q does exactly this. The

rational behind the fifth item is similar.
We can show by induction on the length of the word that pq, p, cq

w
ùñA pq1, p1, c1q iff

pq1, p, c1q
wR

ùñR pq, p, cq. Indeed the base case follows from switching roles of initial and fi-
nal frontiers, and the induction step follows from the dualization of the transitions as per items 1
to 5. ˝

A word u is a prefix of w if there exists v such that w “ uv. In this case we also say that v is
a suffix of w. For a set of colored nested words L we define prefpLq and suffpLq to be the sets of
prefixes and suffixes of words in L, respectively.

Theorem 13. Regular languages of colored nested words are closed under the operations of
prefix and suffix.

Proof. We show closure under suffix. Closure for prefix follows from Thm. 12 since prefpLq “
psuffpLRqqR.

Let A “ pQ, P, I, F, δ(, 9δ, δ), δ
ε)q be a dcna recognizing L. We first note that given a pair

of frontiers pq, p, cq and pq1, p1, c1q we can compute whether Dw : pq, p, cq
w
ùñA pq1, p1, c1q

by answering the emptiness question for A 1 which is obtained from A by making the initial
frontiers tpq, p, cqu and the finals tpq1, p1, c1qu. Checking emptiness can be done in polynomial
time as stated in Theorem 9. It follows that we can compute in polynomial time the set R “

tpq, p, cq | Dpq0, p0, c0q P I and Dw : pq0, p0, c0q
w
ùñA pq, p, cqu of frontiers that are reachable

from an initial frontier. We construct an ncna C that is equivalent to A in all components but the
initial frontiers. The initial frontiers of C are the reachable frontiers R of A .

If C accepts a word v it means that there is a word u that leads A to reachable frontier pq, p, cq
from which C started, and thus A accepts uv. If v is a suffix of some word in A , say w “ uv is
accepted by A , then there is a run of C on v starting from the frontier A reaches after reading u.
Since the run follows that of A on v from the point it finished reading u, and A accepts w, C will
accept v. ˝

19

7.2. Closure under substitution, homomorphism and inverse homomorphism
Let Σ̂ and Σ̂1 be two colored alphabets. We can assume w.o.l.g. that they use the same set of

colors C. For every a P Σ̂ let Hpaq be a language of colored nested words over Σ̂1. We call H
a substitution. We say that substitution H is color-respecting if the following three conditions
hold: (1) for every 9a P 9Σ any word w1 P Hp 9aq is weakly-matched, (2) for every (c a P (Σ any
word w1 P Hp(c aq is of the form (c b v where v is weakly-matched (3) for every ac) P Σ) any word
w1 P Hpac)q is of the form v bc) where v is weakly-matched. When H maps every a to a singleton
set, we refer to H as an homomorphism, and usually denote it with small h. A homomorphism
thus maps letters to strings. If h is a homomorphism from Σ̂ to Σ̂1, given a language L1 over Σ̂1

we can define its inverse-homomorphic image as h´1pL1q “ tw | Dw1 P L1. hpwq “ w1u. For a
tuple d “ pd1, d2, . . . , dkq we use d|i for its projection on the ith element — that is, d|i “ di.

Theorem 14. Regular languages of colored nested words are closed under color-respecting sub-
stitution and homomorphism.

Proof. Since homomorphism is a special case of substitution we only need to show closure under
under color-respecting substitution.

Let L be a regular language of colored nested words over Σ̂ and H a color-respecting substi-
tution from Σ̂ to Σ̂1 that is characterizable by a cna. Given a cna M for L, and cnas Ma for Hpaq
for every a P Σ̂ we can build an ncna for HpLq as follows. The constructed ncna M 1 has three
components in its states. The first component records the state of M , the second component
records the state of the currently simulated Ma, and the third component records a letter a that is
the current guess of processed letter. The stack symbols of M 1 is the set pΓM Yt uqˆpYaPΣ̂ ΓMaq.
The ncna works as follows. Roughly speaking, M 1 starts by guessing a letter a P Σ̂, recording it
on the third component, and continues by simulating M on this letter in the first component of
the state and stack, and Ma in the second component of the state and stack. When Ma reaches an
accepting frontier M 1 may switch to guess a new letter b and continue with simulating M on b
and Mb on the next read letters.

When the guessed letter a is in 9Σ Y (Σ the simulation of M is done with the first processed
letter of Hpaq, when a P Σ) it is done with the last letter processed for Hpaq (i.e. when Ma

reached a frontier and before the next guess is made).
Note that when a P 9Σ, since Hpaq is weakly-matched, it will never encounter a foreign stack

symbol, and the stack after processing Ma will be the same as before processing it. When a P (Σ,
again no foreign stack symbol will be encountered and after processing Ma the stack consists
of one symbol more than before (whose first component corresponds to M and second to Ma).
When a P Σ) after processing all letters but the last, Ma stack’s will be same as before processing
it, and the last processed letter should incur a pop. As the resulting frontier is accepting M 1 will
proceed with simulation of M on the guessed a. If a recovers some earlier pending calls in the
guessed Σ-word then more than one symbol will be popped before the next guess begins. At any
case, the last transition of both M and Ma took into account the correct stack symbol(s) (where
for Ma it is the bottom of the stack, since that is what it would have encountered on the last letter
of Hpaq). ˝

Theorem 15. Regular languages of colored nested words are closed under color-respecting in-
verse homomorphism.

Proof. Given a cna M over Σ̂ recognizing a language L and a color-respecting homomorphism
h : Σ̂1 Ñ Σ̂, we can build a cna M 1 recognizing h´1pLq as follows. Basically, M 1 on reading

20

a1 P Σ̂1 simulates M on hpa1q. Note that if a1 P (cΣ
1 then M 1 can (and must) push only one

symbol to the stack, but M can push and pop many symbols to the stack on reading hpa1q.
However, since h is color-respecting we know that hpa1q is of the form (c b w where w is weakly-
matched. Thus, at the end of processing hpa1q the stack of M will consist of just one more
symbol, of the same color as the symbol M 1 pushed. Similarly after reading a letter in 9Σ1 the
stack of M will be of same size as when starting, and finally after reading a letter in Σ)1 the stack
of M will consist of one less elements, even if the last letter was a recovering one. We can thus
define a mapping ζ : (Σ1 Ñ P that returns for each opening letter a1 the stack symbol p that is on
the top of the stack when M finishes processing hpa1q. Then δ(

M 1pq, a1q “ pδ(pq, hpa1qq|1, ζpa1qq
and for a1 P 9Σ1YΣ)1 we define simply 9δM 1pq, a1q “ δ̃pq, hpa1qq, and δ)

M 1pq, a1, pq “ δ̃pq, hpa1q, pq
where δ̃ is the natural extension of δ to words. Finally, δ

ε)

M 1pq, pq “ δ
ε)pq, pq. ˝

8. Grammar Characterization

In the following we provide a grammar characterization for regular languages of colored
nested words. We first recall some basic definitions. A context-free grammar over an alphabet
Σ is a tuple G “ pV, S , Prodq, where V is a finite set of variables, S P V is the start variable,
and Prod is a finite set of productions of the form XÝÑα where X P V and α P pV Y Σq˚. The
semantics of the grammar G is defined by the derivation relation ùñ over pV Y Σq˚: for every
production XÝÑα and for all words β, β1 P pV Y Σq˚ we have βXβ1ùñ βαβ1. The language
LpGq of the grammar G is the set of all words w P Σ˚ such that S ùñ˚ w (i.e. the set of words
that can be derived from G by a finite sequence of derivations).

Definition 6. A grammar pV, S , Prodq is said to be a cnw grammar w.r.t a set C “ tc1, c2, . . . , cku

of colors if its variables can be partitioned into setsV(,V),Vc1 ,Vc2 , . . . ,Vck such that the pro-
duction rules of the grammar are in one of the following forms, where X(,Y(,Z(P V(, X) P V),
Y)(,Z)(P V) YV(, Xc,Yc,Zc P Vc and X P V:

´ XÝÑ ε ´ XcÝÑ 9a Y(

´ X)ÝÑ a Y)(for a P Σ)Y 9Σ ´ XcÝÑ 9a Yc

´ X)ÝÑ (c a Yc bc) Z)(´ XcÝÑ (c1 a Yc1

bc1) Zc

´ X(ÝÑ a Y(for a P 9ΣY (Σ ´ XcÝÑ (c1 a Yc for c1 ă c
´ X(ÝÑ (c a Yc bc) Z(´ XcÝÑ ac1) Yc for c1 ă c

Intuitively, variables in V) and V(derive words with no pending calls and no pending returns,
respectively, and variables in Vci derive weakly matched ci-rooted words. In general a colored
nested word w can be seen as the concatenation of three words w1w2w3 (some of which may be
empty) such that the root variable deriving w1 is inV), the root variable deriving w2 is inVc and
root variable deriving w3 is in V(. The grammar characterization of (uncolored) nested words
partitions the grammar variables into two categories, one that disallows pending calls and one
that disallows pending returns. For colored nested words, we have additional categories, one per
each color. The variables in the category of color c derive weakly matched c-rooted words, thus
define the boundaries for allowed recovered calls/returns of color c1 ă c.

Theorem 16. A language L is derived by a cnw-grammar iff L is recognized by a cna.

Proof. Let pV, S , Prodq be a cnw-grammar. We define an ecna recognizing its derived language
as follows. We extend the set of colors is C with an additional color cK greater than any other

21

color in C. The set of states is V, the set of stack symbols is pΣ ˆ Vq Y pK ˆ Cq. Here we
implicitly assume variables in Vc are colored c and variables in V(and V) are colored cK. We
use Vąc for the union of the sets Vc1

for c1 ą c. The initial frontier is pS , pK, cKqq. The final
frontiers are those whose state is a nullable variable (i.e. a variable X with production XÝÑ ε).
The transition relations are defined as follows.

1. If XÝÑ 9a Y is a production then Y P 9δpX, 9aq
2. If XÝÑ (c a Y bc) Z is a production then pY, pbc),Zqq P δ(pX, (c aq
3. If XÝÑ ε is a production then Z P δ)pX, bc), pbc),Zqq for every Z.
4. If XÝÑ (c a Y is a production then pY, pK, cqq P δ(pX, (c aq and

Vc1

P δ
ε
c)pVc1

, pK, cqq for every Vc1

P Vąc.
5. If XÝÑ ac) Y is a production then Y P δ)pX, ac), pK, cqq and

pVc1

, pK, cqq P δ(εc pVc1

q for every Vc1

P Vąc.

The first rule corresponds to consuming an internal letter. The second rule correspond to a c-
rooted word, and records on the stack what the closing letter should be and to which state the
ecna should transition when it is read. The third rule says that the automaton should move to
the variable recorded on the stack, if the recorded closing letter occurred and the variable for the
current state was consumed. The fourth rule corresponds to pending/recovered calls and the fifth
to pending/recovered returns. Both can occur within a c-rooted word, and the forth (fifth) can
also occur at the end (beginning) of the word (resp.). Thus, they add both push/pop transitions as
well as ε-pop/push transitions that can be performed from states corresponding to color c1 ą c.

Let E “ pQ, P, tpq0, p0qu, F, δ(, 9δ, δ)q be an ecna for L. We build a cnw-grammar pV, S , Prodq
deriving it as follows. The cnw-grammar variables V are partitioned to V(ŸV)ŸVc1Ÿ...ŸVck

where V(“ tXq | q P Qu, V) “ tYq | q P Qu and Vci “ tZci
q,q2 | q, q2 P Qu for every ci P C.

Intuitively, Xq variables correspond to E being in state q and expecting no pending returns, Yq

variables correspond to E being in state q and expecting no pending calls; and variables Zc
q,q2

correspond to E being in state q and reaching q2 when finishing to process a weakly-balanced
c-rooted word.

The start variable is Xq0 . The productions are defined as follows.

1. For every q P Q and c P C we have Zc
q,qÝÑ ε.

2. For every q P F we have XqÝÑ ε and YqÝÑ ε.
3. If q1 P 9δpq, 9aq then XqÝÑ 9aXq1 ,

YqÝÑ 9aYq1 and
Zc

q,q2 ÝÑ 9aZc
q1,q2 for every q2 P Q and c P C.

4. If pq1, pp, cqq P δ(pq, (c aq and q3 P δ)pq2, bc), pp, cqq then
XqÝÑ (c a Zc

q1,q2 bc) Xq3 ,
YqÝÑ (c a Zc

q1,q2 bc) Yq3 and
Zc1

q,rÝÑ (c a Zc
q1,q2 bc) Zc1

q3,r for every c1 P C, r P Q.

5. If q1 P δ
ε
c1)
pq, pp, cqq then YqÝÑ (c a Yq1 and

Zc1

q,q2 ÝÑ (c a Zc1

q1,q2 for every c1 ą c, q2 P Q.
6. If pq1, pp, cqq P δ(εc pqq then XqÝÑ ac) Xq1 and

Zc1

q,q2 ÝÑ ac) Zc1

q1,q2 for every c1 ą c, q2 P Q.

The first rule corresponds to case when a derivation of weakly-matched c-rooted sub-word was
complete. The second rule correspond to when derivation of a leading or a trailing or a recovered

22

sub-word is complete. The third rule corresponds to consuming an internal letter. The forth
rule summarizes derivation of weakly-matched c-rooted words. The fifth rule correspond to
consuming a pending/recovered opening letter, and the sixth to consuming a pending/recovered
closing letter. ˝

9. Conclusions

We have augmented the data model of nested words with a notion of colors (or ranks). The
augmented model which we refer to as colored nested words allows capturing nested words
seemingly impaired with abnormal termination. Examples of such data include executions of
programs with exceptions and programs written in programming languages using whitespace to
delimit program blocks. We argue that colored nested words cannot be transformed to properly
matched nested words using nested words transducers, thus calling for a new automata model.

We define two automata models over colored nested words, cna and blind cna (bcna). Both
cnas and bcnas can be viewed as labeling the input data — the explicit graph representation. Each
linear edge is labeled with the state the automaton is at when scanning it and each hierarchical
edge is labeled by the stack symbol the automaton pushes when scanning its entrance point,
where the stack symbol is colored by the color of the opening letter. In the case of a blind cna
we view the recovered pending calls as disconnected from the recovering point (and thus the
automaton does not get to inspect the pushed symbols while popping them), whereas in the case
of (sighted) cnas we view the recovered pending edges as connected to the recovering point as
in Fig. 4 (and thus the automaton does get to inspect the pushed symbols while popping them).
We show that the two models have the same expressive power in spite of the fact that there can
be unboudendly many stack symbols that the blind cna cannot inspect while the sighted cna can.

The grammar characterization of colored nested words offers an alternative view on the way
colored nested words generalize nested words. The grammar characterization of nested words
partitions the grammar variables into two categories, one that disallows pending calls and one
that disallows pending returns. For colored nested words, we have additional categories, one per
each color. The variables in the category of color c derive weakly matched c-rooted words, thus
allowing recovered calls/returns of any color smaller than c.

The motivation for introducing this model is to allow program verification of procedural code
with exceptions. In a sense it also provides a theoretical model for handling software exceptions,
and might be of use in discussions about variations of software exceptions mechanisms, their
pros and cons.

References

Alur, R., Bouajjani, A., Esparza, J., 2016. Model checking of procedural programs. In: Handbook of Model Checking.
Springer, to Appear.

Alur, R., Chaudhuri, S., 2010. Temporal reasoning for procedural programs. In: VMCAI. pp. 45–60.
Alur, R., Chaudhuri, S., Madhusudan, P., 2006. A fixpoint calculus for local and global program flows. In: POPL. pp.

153–165.
Alur, R., Chaudhuri, S., Madhusudan, P., 2011. Software model checking using languages of nested trees. ACM Trans.

Program. Lang. Syst. 33 (5), 15.
Alur, R., Madhusudan, P., 2004. Visibly pushdown languages. In: STOC. pp. 202–211.
Alur, R., Madhusudan, P., 2009. Adding nesting structure to words. J. ACM 56 (3),

http://robotics.upenn.edu/„alur/Jacm09.pdf.
Caucal, D., Hassen, S., 2008. Synchronization of grammars. In: CSR. pp. 110–121.
Chaudhuri, S., Alur, R., 2007. Instrumenting C programs with nested word monitors. In: SPIN. pp. 279–283.

23

Crespi-Reghizzi, S., Mandrioli, D., 2012. Operator precedence and the visibly pushdown property. J. Comput. Syst. Sci.
78 (6), 1837–1867.

Debarbieux, D., Gauwin, O., Niehren, J., Sebastian, T., Zergaoui, M., 2013. Early nested word automata for xpath query
answering on XML streams. In: CIAA’13. pp. 292–305.

Driscoll, E., Burton, A., Reps, T. W., 2011. Checking conformance of a producer and a consumer. In: SIGSOFT/FSE.
pp. 113–123.

Filiot, E., Gauwin, O., Reynier, P.-A., Servais, F., 2011. Streamability of nested word transductions. In: Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science, FSTTCS. pp. 312–324.

Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M., 2010. Properties of visibly pushdown transducers. In:
In Proc. 35th MFCS. pp. 355–367.

Filiot, E., Servais, F., 2012. Visibly pushdown transducers with look-ahead. In: SOFSEM 2012: Conf. on Current Trends
The. and Prac. of CS. pp. 251–263.

Hague, M., Murawski, A. S., Ong, C. L., Serre, O., 2008. Collapsible pushdown automata and recursion schemes. In:
LICS. pp. 452–461.

Madhusudan, P., Viswanathan, M., 2009. Query automata for nested words. In: MFCS. pp. 561–573.
Mozafari, B., Zeng, K., Zaniolo, C., 2012. High-performance complex event processing over xml streams. In: SIGMOD

Conference. pp. 253–264.
Nowotka, D., Srba, J., 2007. Height-deterministic pushdown automata. In: MFCS. pp. 125–134.
Raskin, J.-F., Servais, F., 2008. Visibly pushdown transducers. In: Automata, Languages and Programming, ICALP

2008. pp. 386–397.
Staworko, S., Laurence, G., Lemay, A., Niehren, J., 2009. Equivalence of deterministic nested word to word transducers.

In: In Proc. 17th FCT. pp. 310–322.
Thomo, A., Venkatesh, S., 2011. Rewriting of visibly pushdown languages for XML data integration. Theor. Comput.

Sci. 412 (39), 5285–5297.

Appendix A. Proofs of lemmas of Section 5.2

Lemma 4 states that every cna can be converted into an equivalent scna. Here is its proof.

Proof of Lemma 4. Let A “ pQ, P, I, F, δ(, 9δ, δ), δ
ε)q be a cna. We define an scna B “ pQB , PB ,

IB , FB , δ
(

B ,
9δB , δ

)

B , δ
ε)

B q as follows. Let pK be a fresh stack symbol, and recall that cK is bigger
than all colors in C. The stack symbols PB are P Y tpKu, thus ΓB “ PB ˆ C. The set of states
QB is Qˆ ΓB . We use gK for ppK, cKq and g, g1, g2 for arbitrary elements of ΓB . The idea is that
B records in the state the initial stack symbol. If B encounters gK on a pop operation, it proceeds
as A would if the current stack symbol was what is recorded in its state. Formally, the initial
frontiers IB are tppq, gq, gKq | pq, gq P Iu. The final frontiers are FB “ tppq, g1q, gq | pq, gq P
Fu Y tppq, gq, gKq | pq, gq P F X Iu. For the transition relation we have:

• pq1, gq P 9δBppq, gq, 9aq if q1 P 9δpq, 9aq

• ppq1, gq, g1q P δ(

Bppq, gq, (c aq if pq1, g1q P δ(pq, (c aq

• pq1, gq P δ)

Bppq, gq, ac), g1q if g1 ‰ gK and q1 P δ)pq, ac), g1q

• pq1, gq P δ)

Bppq, gq, ac), gKq if q1 P δ)pq, ac), gq

• pq1, gq P δ
ε)

B ppq, gq, g
1q if g1 ‰ gK and q1 P δε)pq, g1q

• pq1, gq P δ
ε)

B ppq, gq, gKq if q1 P δε)pq, gq

˝

Lemma 5 states that every cna can be converted into an equivalent cna with a single initial
frontier. Here is its proof.

24

Proof of Lemma 5. By Lemma 4 we can convert the given cna into a cna A with A “ pQ, P, I, F, δ(, 9δ, δ), δ
ε)q

where I Ď Qˆ tpKu for some pK P Γ. Let B “ pQ, P, tqIu, FB , δ
(

B ,
9δB , δ

)

B , δ
ε)

B q where qI is
a fresh state, FB is same as F if F X I “ H and otherwise FB “ F Y tpqI , pKqu. For
the transition relations we connect qI to the states that are reachable from one of the initial
states, thus 9δBpqI , 9aq “ YqPI 9δpq, 9aq, δ

(

BpqI , (c aq “ YqPIδ
(pq, (p aq, δ

ε)

B pqI , pq “ YqPIδ
ε)pq, pq and

δ)

BpqI , ac), pq “ YqPIδ
)pq, a p), pq. ˝

25

	Introduction
	Colored Nested Words
	Regularity
	Colored Nested Word Automata
	Equivalent Models
	A model with -push transitions
	Deterministic cnas are as expressive as non-deterministic cna
	Blind CNAs

	Boolean Closure and Decision Problems
	Additional Closure Properties
	Closure under words operations
	Closure under substitution, homomorphism and inverse homomorphism

	Grammar Characterization
	Conclusions
	Proofs of lemmas of Section 5.2

