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We present a novel approximation scheme, termed unified colored noise approximation 
(UCNA), for colored Gaussian noise driven nonlinear systems with inertia. This approxi- 
mation allows one to evaluate static (stationary distributions, moments) as well as dynam- 
ical quantities (correlation functions) for small-to-moderate-to-large values of the correla- 
tion time. The approximation replaces a three-dimensional Markovian process by a 
reduced, two-dimensional Markovian dynamics with new drift and diffusion coefficients. 
For a harmonic potential the stationary moments are reproduced exactly. Most impor- 
tantly, we present a criterion involving the noise strength D, the friction strength 7 
and the noise color % which describes the region of validity of UCNA in the parameter 
space given by (D, z, 7). At small z-values we contrast the UCNA with the well-known 
small ~ approximation. In order to have a comparison on analytical grounds, we test 
the static and dynamical predictions of UCNA versus the well-known analytical results 
obtained from a three-dimensional Ornstein-Uhlenbeck process. 

1. Introduction 

The study of noise driven nonlinear dynamical sys- 
tems is attracting rapidly growing interest. Especially 
in the theory of non-equilibrium systems, where the 
macrovariables obey some nonlinear equations of 
motion [1], noise plays an important role. Only in 
the presence of noise the system can surmount poten- 
tial barriers and is thus able to explore the whole 
potential landscape, thereby attaining different mac- 
rostates [2]. For the realistic modeling of physical 
systems, however, it is necessary to take into account 
finite (but not necessarily small) correlation times of 
the noise. Such a noise with a frequency dependent 
spectral density is termed "colored noise". 

Recently the importance of colored noise in non- 
equilibrium quantum optical systems like dye lasers 
[3], laser gyros [-4] and bistable optical devices [5] 
was emphasized in a large number of papers. The 
majority of these papers assumes a situation where 
one relevant variable obeying an overdamped equation 
of motion is coupled to a colored noise force. Because 
of the non-Markovian (and non-equilibrium) proper- 
ties even this situation is difficult to describe in analyt- 

ical form. Approximation schemes have thus been de- 
veloped for the limiting cases of vanishing small [6] 
and extremely large [7] correlation times of the noise. 
For the relevant regime of correlation times of the 
order of the typical time scale of the system variables 
the "decoupling-theory" [8] as well as the recently 
developed "unified colored noise approximation 
(UCNA)" [3 m, 9] are applicable besides numerical 
methods [10, 11]. 

In a number of systems (e.g. the resistively shunted 
Josephson-junction [12]), however, the simplifying as- 
sumption of an overdamped dynamics of the relevant 
variable is not valid, i.e. the effects of finite inertia 
must be accounted for. For the particular case of a 
bistable potential a system has been studied recently 
by Moss et al. [13] using analog simulation tech- 
niques. Local approximative solutions for this case 
were reported in [14, 15] in the case of small z. Fron- 
zoni et al. [16] have worked out an extended version 
of the decoupling theory [-8] for inertial systems and 
demonstrated good agreement between the analog 
simulation experiments and the theory. Very recently 
Marchesoni et al. [17] have considered the weak 
damping limit of a bistable system driven by colored 
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noise. In contrast to [13] and [16], they focus on 
dynamical quantities as e.g. the spectral densities, cor- 
relation functions and escape times. In the present 
paper we discuss an approximation scheme for nonlin- 
ear systems with inertia which are driven by an exter- 
nal Gaussian colored noise. This objective presents 
an extension of the overdamped UCNA discussed 
previously [9]. The novel approximation scheme re- 
duces a three-dimensional Markovian process to an 
approximate two-dimensional Markovian process. 
For its regime of validity we give an explicit condition 
in the three-dimensional parameter space consisting 
of the noise strength D, the noise correlation time 
z and the damping 7. In contrast to the small correla- 
tion time expansions [6], the validity of our novel 
scheme is not restricted to small values of ~, but also 
allows a study of small, moderate and large -c values. 
Furthermore, being a Markovian approach to a non- 
Markovian process, our approximation scheme en- 
ables one to calculate dynamical quantities such as 
correlation functions and relaxation times. 

Because exact analytical solutions for non-linear 
three-dimensional Markovian processes which lack 
detailed balance symmetry are not available, we test 
our novel approximation scheme for the exactly solv- 
able case of a parabolic potential. Our paper is orga- 
nized as follows: In the next section we introduce 
the system and discuss its physical relevance in the 
context of equilibrium and non-equilibrium systems. 
In Sect. 3 we present our novel approximation scheme 
for a nonlinear three-dimensional system leading to 
an approximate two-dimensional Markovian process. 
The exact results for the parabolic potential with iner- 
tia are discussed in Sect. 4. The UCNA is then tested 
in Sect. 5 against the exact analytical results for the 
three-dimensional Ornstein-Uhlenbeck dynamics by 
comparing moments, correlation functions and eigen- 
values of both processes. Moreover, the high friction 
limit is discussed in Sect. 5.4. 

2. Colored noise with inertia 

The Brownian motion in a potential V(x) is properly 
described in terms of Langevin equations, which are 
Newton's equations of motion supplemented by a sto- 
chastic force. Assuminga correlated stochastic force 
obeying the fluctuation-dissipation-theorem we are 
forced to include memory-damping for equilibrium 
systems, where the noise stems from the same heat 
bath into which excess energy from the system dissi- 
pates, i.e. 

t 

mY(t)+ ~ fl(t--s)5c(s) d s+ V'(x(t))=mF(t), (2.1 a) 
0 

where the Gaussian noise F(t) of vanishing mean 
obeys the fluctuation-dissipation-theorem 

<r(t) F(s)> = k T f l ( t - s ) .  (2.1 b) 
m 

Hereby we assume the notation m for the mass, T 
for the temperature, V(x) is the potential and k den- 
otes the Boltzmann constant. 

In non-equilibrium systems noise and dissipation 
may have a different origin such that no fluctuation- 
dissipation relation holds. Thus, following the concept 
of an external noise force driving the motion in the 
potential V(x) the Langevin-equation reads [13, 16] 

m 5i (t) + fl 2 (t) + V' (x (t)) = mF(t) 

(F(t)F(t')}=O~exp~-lIt-t'[}m k "c 

(r(t)> =o. (2.2) 

Here we have already specified the correlation func- 
tion to be of exponential form with the correlation 
time denoted by z and the noise strength by t1)- Olin. 

In the present paper we discuss the nonequili- 
brium system (2.2). In contrast to equilibrium systems 
(2.1 a), possessing the well known canonical equilibri- 
um distribution 

V(x) m~] (2.3) 
P~q(X, 2 = v ) = Z  - i  exp k r  2 k r J '  

the stationary distribution of (2.2) is generally not 
known analytically. In the overdamped case (7 o oe) 
it has been demonstrated, that the stationary distribu- 
tion can change its shape qualitatively (new peaks 
[3 f], shifted peaks [-3m, 10a, d] formation of craters 
[7 c, 18]) upon varying the correlation time v, thereby 
changing drastically [7 c] also the dynamical proper- 
ties such as e.g. the escape times (via the escape path). 
All these phenomena are also expected to occur in 
systems with inertia, such as (2.2). 

The non-Markovian stochastic process (2.2) can 
be embedded into a three-dimensional Markovian dy- 

0 /~ 
namics, which after a normalization, i.e. D ----, 7 = 

m m '  

U(x) = V(x) and with the force-field f (x )=  U'(x) reads 
m 

f~ = - T v  + f ( x ) + e  

1 1 
= - - ~ + - l f f S ~ ( t ) ,  

T T 
(2.4a) 



with the Gaussian white noise ~(t) obeying 

(~ (t) ~ (t')) = 2 6 ( t - -  t') 

(~(t)) =0.  (2.4 b) 

The corresponding Fokker-Planck equation (FPE) for 
P(x, v, e, t), i.e. 

1 0 D O  2 
(2.5) 

does not obey detailed balance in general. However, 
it may be solved numerically using for example finite 
difference methods (a point of future investigations). 
The approximation scheme presented in the next sec- 
tion provides an approximate two-variable Fokker- 
Planck equation, which in principle may be solved 
numerically with the matrix continued fraction 
(MCF) technique developed by Risken and Vollmer 
[113. 

For a parabolic potential U(x) = 1/2 0322 x 2 the sta- 
tionary probability distribution P~t(x, v, e) of (2.5) can 
be calculated explicitly, yielding 

p~t(x,v,e)=Z_l exp ( ~(x,v,e))D ' (2.6a) 

where Z is a normalisation constant and 4~(x, v, e) 
is given by 

(x, v, e)= �89 7 0322 (1 + z 2 032) X 2 ..}_ 72 T2 032 X V 

+ �89 Y ((1 + y z)2 + ~2 032) v 2 

+�89 + T J  e 2 - ? z (  1 +?z)  ~ v -  ?'c2 0322 x~. 
(2.6b) 

Introducting a new variable q, defined by 

3. The approximation scheme 

4 7 3  

The approximation scheme presented in this section 
is closely related to that proposed in [9] for the over- 
damped case (? ~ oo). For  a nonlinear force-field f(x), 
we introduce the new variable 

?zf(x)  
q = - ? v + e +  1 + ? ~ '  (3.1) 

which coincides with (2.7) in the linear case. This 
transformation (3.1) follows from [-19, 20], wherein 
factorizations of the steady state probability are inves- 
tigated. In particular, for a parabolic potential the 
stationary probability factorizes exactly in the vari- 
ables x, q and v. An adiabatic elimination scheme for 
q yields already the exact stationary probability in x 
and v (see below). In the case of a nonlinear force-field 
the factorization is not exact, and an adiabatic elimi- 
nation does no longer provide the exact probability. 
The error of the adiabatic approach, however, is only 
due to the non-linearity of the force-field. Thus for 
our adiabatic approximation scheme the set of vari- 
ables {x, v, q} is more suitable than {x, v, ~}. 

Using (3.1), (2.4a) can be recast into the following 
form 

2 = v (3.2 a) 

f (x)  
,3 = q-t- 1 + ? ~  (3.2b) 

,~ -C 2 , 

With a time scale transformation, i.e. t-= t/]/~, (3.2c) 
reads 

- ( ?  z 1 7 z2 , 

+ ga-~(t) 

7T032X 
- , (2.7) where q=- 7v+e l + T z  

(2.6b) can be recast into a cross-correlation-free form, 
i.e. 

1 2 1 2 2 2 
~(x,v,q)=-2~(l+Tz)q + ~ ( l + 7 z + z  03o)7V 

1 2 / .c2 .2  \ 
(2.8) 

(3.3 a) 

<~(t) r =2 8(t- t ' ) .  (3.3b) 

The dots in (3.3a, b) indicate the derivative with re- 
spect to t. In contrast to [-9] the damping coefficient 
F - z - ~ / z + 7 ~ l n  in (3.3a) is independent of the state 
variables x and v. Note that F becomes large in the 
limiting cases of both small and large correlation times 
z of the noise. Thus ~ can be neglected in both limiting 
cases (i.e. q is eliminated adiabatically, both for z ~ 0 
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and v-ooe). After rescaling to the original time scale 
t (3.3 a) becomes (with ~ set equal to zero) 

q= l~7~ [ l ~--~ f '  (x)- l] V + l~@7 z ~(t). (3.4) 

Using (3.4), (3.2a, b) can be written as 

~= l+Tz 1 

(3.5 a) 

~--~f'(x)]v+l+7rf(x) + ~/D ~ ( t ) l + T z  

(3.5b) 

being valid on times t-> F-1, i.e. for small and large 
~, or more precisely 

"c 
t > - -  (3.6 a) 

l + 7 z '  

and in regions of parameter space (D, z, 7) obeying 
(see Appendix C) 

(D-c)1/2 3~ 
(1 +7~) 3/z ~ 1. (3.6b) 

A contour plot in the 7 - z  place for different values 
of (3.6b) is shown in Fig. 1. 

The corresponding two-variable FPE 

f (x) 0 D 82 
P + - -  P (3.7) 

l + T z  0v ( l+~z)  z dv 2 

may be solved for a general potential f(x) in terms 
of matrix continued fractions [11]. 

Our main results (3.5 a, b, 3.7) approximate a two- 
dimensional non-Markovian process (2.2) by a two-di- 
mensional Markovian process. Thus, this approxima- 
tion does not only allow the calculation of stationary 
distributions and moments, but in addition describes 
correctly (within its regime of validity) the dynamical 
properties of the non-Markovian process (2.2). 

In the overdamped limit (7~oe)  ~3 can also be 
neglected (i.e. is eliminated adiabatically) in (3.5). This 
is seen best after performing a time scale transforma- 
tion t'=t/]//1 +7~ in (3.5). In the original time scale 
we obtain the result of [9], i.e. 

2= f(x) 4 ~ ~(t), (3.8 a) 
7--'cf'(x) 7 - z f ' ( x )  

which is valid in regions of x-space satisfying [9] 

D 1/2 If'(x)/f(x)[ ~7"c- 1/2 _zl/2f,(x). (3.8 b) 

Our novel approximation scheme, covering the results 
of [9] in the overdamped limit (7 ~ oe), presents there- 
by an extension of the "Unified Colored Noise Ap- 
proximation" (UCNA) put forward in [9]. 

4. Exactly solvable test model 

For the parabolic potential 

g(x) =lzo)o2 x 2 (4.1) 

the stochastic process (2.4a, b) becomes a three-di- 
mensional (N--3) Ornstein-Uhlenbeck process (OU- 
process) which is exactly solvable [21]. In the follow- 
ing we consider moments, correlation functions, ei- 
genfunctions and the eigenvalues of the FPE (2.5). 
For the eigenvalues we solve in Appendix A the more 
general case of a N-dimensional OU-process and ap- 
ply the results to our special three-dimensional case. 

4.1. Moments and stationary correlation functions 

The stationary moments of the distribution (2.6a) 
may be calculated without solving the full FPE (2.5) 
for the stationary distribution by using the identities 

(L*vvx"v"el)st=O, n,m,l=0,1,2 .... (4.2) 

The index "s t"  at the right bracket indicates an aver- 
age over the stationary distribution of (2.5). L*Fv den- 
otes the adjoint Fokker-Planck-operator. 

For the moments (x2)s,, (/)2)st, (X/3)s t and (xv)st 
we find the exact results (see also (2.8)), 

= ~ ( 1 -  ~2 c~ ) (4.3 a) (x2Lt 
7 C 0 o \  1 +?Z+COo2 Z 2 ' 

D/y (4.3b) (v2)~t = l+Tz+COo 2 z 2' 

D 
(xeF~t =~ 1 + 7 ~ + e )  2 ~z (4.4) 

(xv)s t=0 .  (4.5) 

The moments (4.3a, b) and (4.5) are also recovered 
from the approximative process (3.5) (see Sect. 5). 
Equation (4.4) is needed for the calculation of the 
correlation function ~xx(t). 

The temporal decay of fluctuations is described 
by correlation functions. The normalized stationary 
position-position correlation function defined by 

(x(t) x(0))~ 
qSxx(t ) -- (x2)~t , q~x(0) = i, (4.6) 



is given by [21] 

r ;0) sin (o~ t) + cos (co t)) 

.exp(__~ 0_ t (~X)st +,02) 

"[exp(-- l t ) - -exp(--2t ) (~s in(o) t )+cos(o) t ) )]  

for y < 2O)o. (4.7 a) 

In the overdamped case (y > 2O)o)0) has to be substi- 
tuted by i0). 

In the aperiodic limit case (7 = 20)o) we find: 

�9 [exp ( -  177 0 - e x p  ( - 2  0 (c~t + 1)] (4.7b) 

where 

7 1 ] /  1 
e = - -  and 0 ) =  ( D 2 - - ~  7 2 . (4.7c) 

V 2 77 q 

4.2. Eigenvalues 

The eigenvalues and eigenfunctions of a N-dimension- 
al OU-process cannot be found in reviews or standard 
text-books [2, 11 c, 28] and are thus derived explicitly 
in Appendix A. Specifying the results for the three- 
dimensional FPE (2.5) with the parabolic potential 
(4.1) we obtain 

2l;m; n = --(lA 1 + mA2 + nA3), 

where 

l ,m,n=0,1,2 ... 
(4.8a) 

1 
A1 - , (4.8 b) 

77 

and 

7+]/U2 
V 4 - -  " 

(4.8 c) 

Though it is also possible to determine the corre- 
sponding eigenfunctions, we restrict ourselves to the 
eigenvalues. 
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5. UCNA versus exact results of the test model 

In this section we compare stationary probability 
densities, eigenvalues and correlation functions of the 
OU-process discussed in Sects. 2 and 4 versus the 
corresponding approximative, but analytic results ob- 
tained by using the approximation scheme in Sect. 3. 
The UCNA-Fokker-Planck equation (3.7) with the 
parabolic potential (4.1) corresponds to a two-dimen- 
sional OU-process and is thus exactly solvable. 

5.1. Eigenvalues 

The dynamical characteristics of a stochastic process 
described by an autonomous FPE (i.e. no external 
time dependend coherent excitation present) may be 
expressed by the eigenvalues and eigenfunctions of 
the Fokker-Planck operator and its adjoint operator. 
The agreement between the eigenvalues presents 
therefore an important benchmark for the quality of 
a lower dimensional Fokker-Planck approach like the 
UCNA. The eigenvalues of the UCNA-FPE with the 
parabolic potential (4.1) may be determined using the 
technique presented in Appendix A. We find 

/l UCNA/'"g'l = - -  ( m S 2  (77) -+- t/X3 ('c)) m ; n  '. ! (5.1) 

where 

s2;3(77) = 

7 (O + z2 0)o2 + ] / ( Q  + 772 0)2)2- 403 ~-2~ ) , 
2(22 

(5.2a) 

and f2 is defined as 

f2 = 1 +777. (5.2b) 

Note that with (4.8 c) 

A2;3 = $ 2 ; 3  (77=0). (5.3) 

For small correlation times 7720)~ ~ 1 and moderate 
damping y ~ 1/77 (for instance 77=0.1 and 7= 1 in nor- 
malized units [23]), we recover a part of the spectrum 
of the exact solution (see (4.8)), i.e. 

UCNA 2Z=0;m;. for 772 COo 2~1 and ? ~ l / t .  (5.4) m;n --~ 

The eigenvalues 2z;,, = o;, = o = 1/77 (4.8 a) are large in the 
limit 77 ~ 0 and thus influence only the short-time be- 
havior of dynamical observables. On the short-time 
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scale t <z/(1 +7z), see (3.6a), our adiabatic approach 
is of course not valid. The behavior for moderate-to- 
large times is governed by the relevant eigenvalues 
21= o;,,;, having a smaller real part. 

In the case z ~ >> 1, e.g. small z and large ~ or large 
and moderate-to-large 7 (for instance z = 0.1, y = 100 

or z = 100, 7 = 1), we obtain for the approximated ei- 
genvalues 

2~CNA~I__ + n 0 9 .  _ 1 ~ for z?>>l.  (5.5) 
z 7 

The exact eigenvalues for high friction read 

, . .  1 e) 2 . [ co~\ 
2 t ; m ; , = l ~ + n ~ - + m l T - ~ -  ) ,  as 7> i .  (5.6) 

Again we find that the largest eigenvalues 2o;m; 0 (more 
precisely those with the largest real part governing 
the short time behavior) are not covered by UCNA; 
the other eigenvalues 2t;O;n, however, governing the 
moderate-to-large time behavior of dynamical quanti- 
ties, are well approximated by UCNA. In contrast 
to the case z--,O, i.e. 2~;,=o;,,=o =l/z the asymptotic 
z-dependence, for 7z>> 1 is correctly reproduced by 
UCNA. 

The regions of validity of (5.4) and (5.5) are in 
agreement with the conditions (3.6a, b) under which 
UCNA is derived. Fig. 1 shows a schematic plot of 
the region of validity of UCNA in the 7 -  z parameter 
plane. This plot can be taken as a guide in checking 
the reliability of UCNA results of nonlinear systems 
for different parameter values. 

Eigenvalues of the "small z expansion ". Applying the 
small-z expansion to the FPE (2.5) with the parabolic 
potential U(x)= 1/2 co2 x 2 one obtains in first order 
of z a two-dimensional effective Fokker-Planck equa- 
tion, see Appendix B and [13, 29]. Besides the disad- 
vantage of being incompatible with the standard 
small z expansion of the overdamped dynamics [16, 
22] as ~ ~ 0% the eigenvalues do not depend on z at 
all, i.e. 

)?,t;m = -- (nA2 + mA3), (5.7) 

where A2; 3 a re  given in (4.8c). Even in higher-orders 
of the small z expansion (see Appendix B) the eigen- 
values would remain uneffected by the noise correla- 
tion time z. As a consequence, dynamical quantities 
such as correlation functions do not exhibit a v-de- 
pendence. This is in clear contradiction to the exact 
solutions presented in Sect. 4. 

5.2. Stationary probability density and moments 

The stationary probability pfCNA(x, V) belonging to 
(5.1) is defined by 

( ~UcNA(x' v) ) (5.8) 
Pst UCNA (X, /)) = Z - I exp D ' 

where Z is a normalisation constant and cUCNA(x, V) 
is given by 

(x, v) = 1 (1 + ~ z + z 2 cog) 7 ~ U C N A  V 2 

+1{1. z2092~ 2 2  I [ D D 2 

x =51<7 7  x 2 + , T  v], 2\ (v)~t /(5.9 ) 

which coincides with the exact two-dimensional prob- 
ability Pst(x, v)=~ dePot(x, v, e) where Pst(X, v, ~) is given 
in (2.6a, b). In contrast, using a small correlation time 
approximation scheme (see Appendix B) only the 
asymptotic small z behavior is reproduced correctly. 

5.3. Correlation functions 

The normalized position-position correlation func- 
tion (r of the approximated process (3.7) 
with the parabolic potential (4.1) is given by 

UCNA q~= ( t)= 

cos (09 t) 

cosh (09 t) + ~ -  

r - 2 -  
+ ~  sin (09 t) exp 

r < 2 0 9 o / g q T ~ z  

sinh (09 t)) exp ( - F  0 

r > 2 0 9 o / V i T ~ z  

(1 + 2" t) exp ( - - 2 0  

_r = 209o/1/T7 ~ 

(5.1o) 

where 

09 = (  092--1 F2(1 +z7 ) / (1+7z ) )  1/2 

and 

/"=(7/(1 § § (z2 092/(1 + yz))]. 

In Figs. 2-4 the exact position-position correla- 
tion functions are plotted (in normalized units [23]) 
against the approximations (5.10) for z = 0.1 (Figs. 2), 
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Fig. 1. Equation (3.6b) is shown as a contour-plot in the 7 -z  pa- 
rameter space for several values of the condition, i.e. we set for 
Dz72(l+Tz) -3 the values (a) 0.5, (b)0.1, (c) 0.04, (d)0.02, (e)0.01, 
(1) 0.005 and draw the corresponding closed contourlines in the ) ' -  z 
parameter space. Note that for the smallest value (f) in Fig. 1 the 
validity of the UCNA is obeyed best, because )' and z are large 
(upper right corner) and again along the z-axis for small )' and 
along the ),-axis for small 

z =  10 (Figs. 3) and  z =  1 (Fig. 4) for var ious  values 
of  the d a m p i n g  7. 

In  the small  z regime (Fig. 2) we find excellent 
ag reement  for 7 = 5  and  7 = 1  and for 7=0 .1 .  This  
behav io r  is well under s tood  in view of the condi t ion  
for the val idi ty (3.6b) of  the U C N A ,  see also Fig. 1. 

F o r  large cor re la t ion  t imes z (Figs. 3), the agree- 
men t  is excellent for 7 = 5 and  7 = 1. F o r  decreasing 
7 the ag reement  remains  excellent for the long- t ime 
tail. F o r  in te rmedia te  t imes the osci l latory fine-struc- 
ture of  the exact  corre la t ion  funct ion is not  repro-  
duced by  U C N A .  As is best seen in Fig. 3c ( T z = l ) ,  
the U C N A  still provides  a coarse-gra in ing of the fine 
s t ructured exact  cor re la t ion  function. 

F o r  m o d e r a t e  z-values (Fig. 4) we also find excel- 
lent agreement  for 7 = 5. F o r  decreasing d a m p i n g  7 
the U C N A  becomes  invalid (see Fig. 1) and  the agree- 
men t  becomes  worse. But even for 7 = 1 and  z = 1 the 
agreement  is not  very bad.  

In  conclus ion the corre la t ion  funct ions are well 
a p p r o x i m a t e d  by U C N A  in those p a r a m e t e r  regions 
where  the relevant  eigenvalues are well app rox ima ted ,  
or  likewise, in p a r a m e t e r  regions of  the p a r a m e t e r  
space where  the condi t ion  (3.6b) is obeyed  (see Fig. 1). 

5.4. High friction limit 

F o r  large values of  the friction cons tan t  7 the velocity 
v can be e l iminated adiabat ica l ly  in (2.4 a) (for precise 
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50 t 
Fig. 2a and b. The exact correlation functions (4.7) (solid) and the 
approximations (5.10) (dotted) are shown for z=0.1 at 7 = 1 (a) and 
7= 5(b) in a and at 7=0.1 in b 

condi t ions  see [24]). Per forming  a t ime scale t ransfor-  
ma t i on  t '=  t/y, ~= z/7 we obta in  the two-d imens iona l  
M a r k o v i a n  process  

d x  
d t" = f ( x )  + 

d c  1 l / ~  ~(t-) 
d r  �9 z 

(P(?) •(?)> = 2 6 (?-  ?). (5.1 l) 

F o r  the parabol ic  potent ia l  (4.1) the OU-process  (5.11) 
can be solved exactly. The  general  case of  a nonl inear  
force-field f ( x )  has  been discussed in [9] in terms 
of a numer ica l  compar i son ,  leading to the approxi -  
ma te  Markovian process (3.8 a). In  the following we 
c o m p a r e  the analyt ical  results for the eigenvalues,  sta- 
t ionary  corre la t ion  funct ions and  re laxat ion t imes of 
the OU-process  with the results of  the U C N A  (3.8a). 
The  s ta t ionary  dis t r ibut ion reproduced  by U C N A  is 
exact  for the case of  a parabol ic  potential .  
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Fig. 3a--e. The exact correlation functions (4.7) (solid) and the 
U C N A  approximations (5.10) (dotted) are shown for z = 10 at 7 = 1 
(a) and 7 = 5  (b) in a. In b (4.7) and (5.10) are presented for 7=0.5  
and in c for 7 =0.1 
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Fig. 4. The correlation functions (4.7) (solid) and (5.10) (dotted) are 
shown for �9 = 1 and for y = 1 (a), 7 = 2.5 (b), 7 = 5 (c) 
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Fig. 5a  and b. The exact correlation function in the overdamped 
case (5.14) (solid) and the U C N A  approximation (5.15) (dotted) are 
shown for f=0 .1  (a) and ~=  10 (b) in normalized units (co o = 1) 



5.4.a. Eigenvalues. Using our technique in Appen- 
dix A the eigenvalues read 

1 
2,;,, = n : +  mco02, m, n=0, 1,2, .... (5.12) 

"C 

The one-dimensional UCNA approach provides 

1 
2~JCN*= hoo2 ] +(n~ ~ , _  l=0, 1, 2, .... (5.13) 

For { ~ 0 2~ cnA approaches the smalles exact eigen- 
values 2,=o;m=~. Also in the limit ~ 2~ cNA ap- 
proaches the smallest exact eigenvalues which are in 
this case given by )~,=z;~=0. In both limits, ~ 0  and 

~ o% UCNA picks out those eigenvalues which gov- 
ern the moderate-to-long-time behavior. 

5.4.b. Correlation functions. The normalized exact 
position-position correlation function of (5.11) equals 
the sum of two exponentially decaying contributions 
and is given by 

1 
~b~(~ = exp ( -  ~176 ~) +~m2 :~o2_i 

�9 [exp ( - 1  t) - exp ( -  co02 })]. (5.14) 

The UCNA provides instead the single exponential 
correlation function approximation 

2 1 (5.t5) 

The exact correlation function (5.14) has a vanishing 
initial slope 4;~(0) = 0 which is typical for a non-Mar- 
kovian process (see for example [25]). This initial be- 
havior can of course not be reproduced by our adia- 
batic (Markovian!) approach (5.15). Nevertheless the 
relaxation time defined as the integral over the nor- 
malized correlation function, i.e. 

Tx,= ; qS,x(t)d7 (5.16) 
13 

is reproduced exactly by UCNA 

1 
T f x  T M  = Yxx  : "~-~ ('002 . (5.17) 

In Figs. 5a, b the exact correlation function (5.14) is 
plotted against the approximation (5.15) for ?=0.1 
and ~= 10. For ?=0.1 (Fig. 5a) the agreement is excel- 
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lent. For moderate f the agreement becomes worse, 
whereas for large ~ ( f=  10, Fig. 5b) the agreement 
is excellent again. 

6. Conclusions 

In this paper we have presented a novel approxima- 
tion scheme (UCNA) for colored noise driven nonlin- 
ear systems with inertia. This scheme approximates 
the originally three-dimensional Fokker-Planck equa- 
tion by a two-dimensional Markovian FPE. In con- 
trast to the approximations in [16, 29] our novel 
UCNA (a Markovian approach) also reproduces rea- 
sonable well the dynamical quantities. We have ap- 
plied the UCNA to the analytically solvable case of 
a parabolic potential. The stationary distribution co- 
incides exactly, while eigenvalues and correlation 
functions agree excellently for a wide range of param- 
eters, including small, moderate and large noise corre- 
lation times. For a nonlinear force-field, the error in 
the UCNA-approximation of stationary probabilities 
and moments originates thus solely from the non- 
linear part of the force. Furthermore, the solution pro- 
vides a good approximation for the local dynamics 
of all those nonlinear systems for which the potential 
U(x) exhibits a parabolic curvature within one or pos- 
sibly several regions of state space (x, v) exhibiting 
an attracting fixed point. 

As a byproduct we presented the exact eigenvalues 
and eigenfunctions of the N-dimensional Ornstein- 
Uhlenbeck process (Appendix A). A point of further 
investigations is the application of our novel UCNA 
to a nonlinear force-field. A test of the UCNA, how- 
ever, includes the numerical solution of the full three- 
dimensional Fokker-Planck equation with natural 
boundary conditions, a task that is far from being 
trivial and which is beyond our present numerical 
capabilities. The numerical solution of the two-dimen- 
sional Fokker-Planck approach using our novel 
UCNA (3.7) may be obtained by the matrix contin- 
ued-fraction technique [11]. 

Appendix A: Eigenvalues and eigenfunctions 
of the N-dimensional Ornstein-Uhlenbeck process 

To calculate the eigenvalues of a N-dimensional OU- 
process we start from the associated non-Hermitian 
Fokker-Planck operator_L 

_ xj+Dij ~ (A.1) L= ~ -- Mi2 t3xidxfl 
i ; j  = 1 



4 8 0  

with the constant drift matrix M and the positive 
semi-definite diffusion matrix /2). The eigenvalues 2 
and the right-hand eigenfunctions q~ are defined by 

where d(_m) are the transformed expansion coeffi- 
cients, and the new variables Y_=(Yt,Y2,Y3 . . . .  ) are 
defined by 

_L~oa= -2~0~. (A.2) _y= T_x. (A.10) 

The adjoint Fokker-Planck operator_L t 

u [ 0 c9 2 \ 
L t = ~ I M i j x j - - + D i j  l (A.3) 
- \ ~ x~ ~ xi ~ x J  

i ; j  = 1 

has the same eigenvalues 2, but different eigenfunc- 
tions ~o~ (left-hand eigenfunctions), i.e. 

_/.,* (p*~=-2~0]. (A.4) 

Since the left hand eigenfunctions ~otz are simple po- 
lynomials, (A.4) is more advantageous for the compu- 
tation of the eigenvalues. For q)~* the following Ansatz 
is used 

N 

~ol=R(_x)+ ~ c(_m) H xT", (A.5) 
m i = 1  

where 

(A.6) _m=(mx . . . . .  mi, ..., ms), m,=0, 1, ... 

and the constraint 

N 

m~ = C > 1. (A.7) 
i = i  

The second term on the right-hand side of (A.5) is 
a sum over monomials of order C, the first is a poly- 
nomial of order C -  1. The drift operator of_L* maps 
a monomial of order C onto another monomial of 
the same order. The diffusion operator maps the same 
monomial onto a monomial of order C - 2 .  Since 
monomials are linear independent [26] we may disre- 
gard all monomials of lower order than C and finally 
obtain the equation for the monomial of order C 

N 0 n N 
Z Mijxj~u-~ 2c(m-)H x'f'=--2~c(m_) H ~ 

i ; j = l  t / ' ~ J  m i = 1  _m i = 1  

(A.8) 

where the constraint in (A.7) is obeyed. 
If we assume that =M can be brought to a diagonal 

form by a similarity transformation =MDiag= =T=M T -  1 
(this is possible if the eigenvalues A, of =M are not 
degenerate) (A.8) may be written as 

(A.9) 
N N N 

AiZd(-m)m~ I--[ Y r k = - - 2 Z d ( -  m) H ym~, 
i = l  _m k = l  _m i = 1  

The eigenfunction ~o corresponding to the eigenvalue 
2 contains only one monomial of order C, therefore 
only one set of coefficients d (_m = _n) in (A.9) is correct; 
other eigenfunctions correspond to different sets 
(_m = n (2)). 

Choosing respectively correct sets of coefficients 
d(_m) (which are determined below) and comparing 
equal powers in (A.9) yields 

N 

2nln2n3...n~v= -- ~ niAi, ni=0 , 1,2,3 . . . . .  (A.11) 
i = 1  

If some of the eigenvalues of M are degenerate, M 
can be brought to a Jordan form [27] by a similarity 
transformation, i.e. =Mjoraa, = TM=T=- 1. Performing the 
similarity transformation of (A.8) we are led to an 
equation for the variables y = T_x similar to (A.9), but 
with additional terms due to the non-diagonal contri- 
butions of the drift operator. These additional terms, 
however, do not contribute to the leading powers in 
Yl. Again we find the same eigenvalues given in (A.11), 
our main result of this appendix. 

Besides the eigenvalues we can also determine the 
eigenfunctions of the N-dimensional OU-process. For 
a certain eigenvalue 2, the left-hand eigenfunction ~0~ 
is calculated by inserting a polynomial (A.5) into (A.4) 
and comparing equal powers. The order of the poly- 
nomial is given by the index of the eigenvalue 2 (com- 
pare (A.7) and (A.9)). 

Since generalized detailed balance is valid for the 
N-dimensional OU-process [28 a] the right-hand side 
eigenfunctions ~o~(x) and the left-hand eigenfunctions 
are (apart from a sign) related by 

P~t(- x) q ~ z ~  = (p~ (_x), (A.12) 

where P~t(_x) is the stationary probability density and 
e(~) are the time reversed coordinates. Thus the right- 
hand side eigenfunctions can be calculated from the 
stationary probability density and the left-hand side 
eigenfunctions. 

Appendix B: Small correlation time expansion 
for colored noise driven systems with inertia 

Starting from the FPE (2.5) 

8P 
0t =(A+eB+L~)  P 



with 

A = -~xV+7 v--f(x)~v, 

8 
B -  

8v' 

1 8  D 8 2 

L ~ = 7 ~ - ~  172 8e2, (B.1) 

we apply the technique of Appendix A.1 in [11c] 
(generalized to three-dimensional Fokker-Planck 
equations). As the result one finds for large times up 
to the order •2 (extension to higher orders is straight- 
forward) the two-dimensional Fokker-Planck ap- 
proach for P(x, t) ((A 1.32a) of [11 c]) 

8P 
= L P  8t 

where 

L =  A +DB2 + z D B [ A ,  B] +D17ZB[A, [A, B] ]  

+ D z z 2 (B [[B, A], B ] B  + �89 B 2 [[B, A], B]) + O(z 3) 
(B.2) 

and [A, B] = A B - - B A .  
The commutators in (B.2) read 

8 8 
[A, B] = --~xx +7 ~vv , 

8 2 0  f, 8 
[A ' [A 'B]]=78X-x-7  ~ v -  8v '  

[n, [A,  B]] = 0. (B.3) 

The same result could also be obtained by extending 
the functional technique of [8 b] to this higher dimen- 
sional model. In first order of 17 this has already been 
done in [16], and recently in [29]. 
The operator L in (B.2) is explicitely given by 

a a a 
L=--Sx v+7 v--f  (x) 8~ 

62 
+D(I  --717 + 172f, .~_ .~2 ])2) ~_v2 + 17D (1 --177) 

82 
- - +  0(173). 
8x8v (B.4) 

In contrast du UCNA this FPE does not correspond 
to a Markovian process due to the possibly negative 
diffusion coefficients in (B.4), which do not follow 
from a corresponding Markovian stochastic differen- 
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tial equation. Nevertheless the stationary probability 
density can be calculated in first order of 17 [16], i.e. 

1 Y 7 
Ps~l)(x,v)=~exp{--~U(x) 2D(l_Tt) v2}. (B.5) 

Note, that the truncation of the 17 expansion is only 
valid for small z and small 7. In first order of 17, P~t(x) 
=~dvP~,(x; v) is not affected by the correlation time 
17 [16]. 

In second order of z the stationary distribution 
of (B.4) does not factorize into position and velocity 
distributions for a general potential U(x). For the 
parabolic potential U (x) = 1/2 co 2 x 2, however, the sta- 
tionary solution is readily found and reads 

1 ( (D 2 7 (x, v ) = Z  exp x 2 
2D(1 -co 2 z 2) 

2D(1-717-COo 2 172+72"62) /)2 �9 (B.6) 

In order z 2 the probability density in x is affected 
by the correlation time 17. The variance 

2 D ax = ~ (1 - COo 2 172) + O (173) (B.7) 

exhibits the same behavior as (4.3a) for small 17. For 
larger values of 7, however, z is not the shortest time 
scale any more. As a consequence one has to take 
into account all higher order terms ocz" in the 
Fokker-Planck approach in order to make the alter- 
nate series in the denominator of the second exponent 
of (B.6) convergent. 

The eigenvalues of (B.4), determined by its drift- 
matrix (see Appendix A), are not affected by the 17- 
corrections. From the exact eigenvalues (4.8) we find 
that this is correct only if 7z < 1. Then all terms pro- 
portional to exp ( -  t/17) will decay faster then all other 
exponentials and merely result in an initial slip. To 
use (B.4) as a starting point of the adiabatic elimina- 
tion of the velocity v appears to be rather doubtful 
because then Y must become large, and 717 < 1 cannot 
be maintained for finite though small 17. 

Appendix C: Condition for the validity of UCNA 

To start out let us consider first the situation for the 
Kramers problem, i.e. we consider the nonlinear 
Brownian motion of a particle of unit mass 

f) : - -  T v - -  K (x)  + ( y  O)l/2 ~(t) ,  (C.1)  
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where 0 = k T, and ~(t) is Gaussian white noise with 
mean zero and correlation (~(t) ~ ( s ) )=  2 6 ( t - s ) .  We 
shall now focus on the regime of large damping 7, 
yielding the Smoluchowski limit. For large 7, the ve- 
locity rapidly settles down to a limit value Vo(X) which 
is slaved by the slow variable x(t). Thus we adiabati- 
cally eliminate the velocity v by setting ~=0,  i.e. 
vo(x)=--K(x)/7.  The relaxation of the velocity vari- 
able occurs on the length scale Io, given by the 
"brake-path" 

01/2 
Io - (C.2) 

7 

For a consistent adiabatic elimination the force K ( x )  
should vary only little on the length scale lo, since 
otherwise Vo (x) is not attained on the relaxation time 
scale zr = 1/7. Working within appropriate dimension- 
less variables (2, ~, ?, ~7, ~7, To), this condition reads 

[R'l•o ~ 1. (C.3) 

In the original variables the above condition reads, 
with an appropriate length-scale 

IK'[ 1o ~ 1 [dimension K]. (C.4) 

Applying the above reasoning to (3.2a, b, c) we obtain 
with z = q + f (x ) / (1  + 7 z) 

~ = z  

e =  - ! (1  r (c.5) 
"c 1; "c 

Hereby, we have neglected the change in the force 
field induced by (Of/Ox) 2, since x varies slowly com- 
pared to v(t) and q(t). Thus the term f(x)vTz/(1 +yz) 
in (3.2c), which stems from the time-derivative of (3.1) 
has to be neglected consistently. Hence the effective 
force-field K (v, x) reads 

K (v, x) = -- 7 v + f ( x ) .  (C.6) 

the time-scale transformation ?-= t/]//z Performing we 

obtain with ~ = f 

D1/2 '/2) (C.7a) 

or  

iS+~fJ-K(v, x) = (0~7) 1/2) ~({) (C.7b) 

with ~7 = (z - t/2 + 7 z 1/2) and 0 =  D (1 + 7 z) - 1. Therefore, 
we find from (C.2) 

to = Dzl/z(1 +7z) -  3/2. (C.8) 

Combining (C.4) and (C.8) we achieve an expression 
for the region of validity of the UCNA in the 7 - z  
plane, i.e. 

7(D27) 1/2 
(1 --[- 7 ~) 3/2 ~ l .  (C.9) 

For a graphical representation of (C.9) see Fig. 1. 
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