
This journal is c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 11753–11762 11753

Colored noise, folding rates and departure from Kramers’ behavior
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Recent experiments have shown that, for several proteins, the dependence of folding and

unfolding rates on solvent viscosity does not obey Kramers’ theory. Such a departure from

standard Kramers’ behavior is often attributed to the existence of internal friction, related to

the structure of a polypeptide chain. In this paper, we propose an entirely different mechanism

leading to violation of Kramers’ theory. Using the generalized Langevin equation with

time-dependent friction and a Ca-Go model, we demonstrate that this effect may be caused by the

colored Gaussian noise which is characterized by correlation time t. Surprisingly, the dependence

of folding time tf on t is non-trivial: the plot tf vs t exhibits two minima at low and intermediate

values of t. The appearance of one more additional minimum is in sharp contrast to one

dimensional barrier crossing dynamics. We argue that it is a generic signature of entropy of

activation in a multidimensional problem.

1. Introduction

Despite numerous advances in recent years,1,2 the protein

folding problem remains one of the biggest challenges in

molecular biology. It is well known that in addition to the

intrinsic sequence properties, the external conditions like

temperature, pH, salt concentration, confinement, viscosity

of the medium, etc. have a profound effect on protein folding

rates.3,4 For example, from computational studies it follows

that the dependence of the folding time, tf, on temperature,5–7

viscosity8–10 and size of confinement11 has a U-shape. In the

temperature dependence case, at low temperatures (energy-

driven regime), tf is large due to energetic traps and it becomes

smaller as T is increased. However, at sufficiently high T

(entropy-driven regime), tf grows again as the entropy factor

dominates over the energetic one. The effect of environment

crowding,12 viscosity,13–17 and temperature18 on the folding

kinetics was studied experimentally. However, the U-shape

behavior has not been observed by experiments because they

were performed for restrict intervals of parameters.

Protein folding kinetics is an example of thermally activated

barrier crossing dynamics in a multidimensional system.

Experimental studies in eighties19,20 imply that Markovian

dynamics can not accurately account for the effect of viscosity

on the barrier crossing phenomenon in the solution phase.

However, the theory developed focusing on non-Markovian

dynamics (NMD)20–23 shows a fair agreement between

theoretical and experimental results. It is particularly relevant

when the motion near the top of the barrier takes place on a

picosecond or subpicosecond time scale, the solvent forces at

two different times can become correlated; i.e., memory effects

become important and Kramers’ theory can break down

(experimental work has given evidence for such failure24–26).

The contribution from the NMD may be meaningful if the

barrier crossing time is of the order of solvent relaxation time

(picosecond). In other words, for large barrier crossing time

compared to picosecond order this contribution may be

negligible and then Kramers’ approximation should be good.

Thus for the folding kinetics of a large protein molecule

(whose free energy barrier is high) at high viscosity Kramers’

approximation may be very accurate. For small protein

molecule and low viscosity there may be deviation from it.

However, another more likely reason for the breakdown of

one dimensional Kramers’ theory for the multi dimensional

barrier crossing problem is the non-Markovian configura-

tional diffusion.31 The NMD of protein chains may have an

important role in the folding kinetics of the native state and

lead to deviations in the barrier crossing rate from Kramers’

theory. We will discuss it in more detail during the explanation

of our results. Since protein folding time depends on the

viscosity,8–10 studying the effect of NMD on protein folding

kinetics in the condensed phase should be a worthy issue.

Much of the investigation of the role of friction on protein

folding and unfolding has been based on examining the effect

of solvent viscosity on rates of structural transitions using

Kramers’ theory.27 Assuming that barrier crossing occurs

through Brownian motion of a polypeptide chain, this theory

predicts that, in the high friction regime, the folding rate, kf, is

inversely proportional to the solvent friction, g0 , i.e., kf ¼ C
g0
,

where C is a constant. This prediction has been confirmed by

simulations8 using Markovian dynamics for model proteins as

well as by experiments for some proteins.28,29 However, for

other proteins,13,14 a modification of Kramers’ theory is

required to describe the dependence of folding rates on the

friction. Namely, in order to get good fitting to experimental

data, one uses the following formula:13–17

kf ¼
C

g0 þ x
: ð1Þ
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The nature of the adjustable parameter x remains controversial.

From unfolding rates obtained for the protein barstar,14 it

follows that x o 0. However, the folding experiments on the

36-residue villin headpiece subdomain,15 the tryptophane

cage,16 and myoglobin17 suggest that x 4 0. One of possible

reasons for reduction of viscosity, described by negative values

of x, is that the local viscosity at the protein–solvent interface is

lower than the bulk solvent viscosity.30 In the experiments of

Pradeep et al.14 the change in the folding barrier by viscogen is

compensated by addition of denaturant, the variation of folding

rates is, therefore, solely defined by the viscosity. Based on this,

it was also assumed that the violation of Kramers’ theory with

x4 0 is due to internal friction.13,14 The nature of this friction is

presumably related to the fact that only small parts of a

polypeptide chain are involved in the rate-limiting step of folding.

In the experiments by Cellmer et al.,15 chemical denaturants

were not used, but the folding and unfolding barriers of the

ultra-fast folding villin headpiece subdomain are not affected

by viscogen remaining constant within experimental error. In

this very special case, the negative value of x is attributed to

the increase of the effective viscosity, which is probably

associated with a shift of the transition state along the reaction

coordinate toward the native state.15 In other words, the

reduction of the diffusion coefficient is due to increased free

energy landscape roughness.

To our best knowledge, at a quantitative level, no theoretical

attempts has been undertaken to understand the nature of

parameter x thus far. This is probably because the calculation

of viscosity experienced by a protein during folding process from

first principles is not an easy task. Therefore, the question we ask

is whether the departure from Kramers’ behavior (eqn (1))

observed in folding/unfolding experiments is caused by a noise

memory effect. This is a main motivation for studying the protein

folding in the presence of colored noise. It should be noted that

the influence of noise correlation on folding kinetics was studied

before,31 but this important question was not addressed.

Using the Ca-Go model32 and the generalized Langevin

equation with colored noise,20we have shown that the deviation

from Kramers’ behavior (eqn (1)) is due to NMD. This key

result of our work is very important as we are the first to point

out that the noise correlation is responsible for non-Kramers

unfolding kinetics observed in experiments with x o 0.13,14

Our second interesting result is that the dependence of

folding time tf on the memory time t displays the double

U-shape (two minima), opposed to the standard single

U-shape mentioned above. Employing several model systems,

we have demonstrated that one of these minima occurs due to

the interplay of the frequency corresponding to the curvature

of the potential well, damping and the noise correlation time,

while the other one is due to the interplay of damping, color

noise and entropy of activation. Moreover, at optimal values

of t, the folding speeds up by nearly a factor of two.

2. Models and methods

Coarse-grained model for proteins

The conformation of a polypeptide chain in a coarse-

grained representation is specified by a set of coordinates

~ri(i = 1,. . .,N) of the Ca-carbon atoms where N is a number

of amino acids. The energy of a conformation for the Ca-Go

model is32

E ¼
X

bonds

Kr

2
ðri � r0iÞ2 þ

X

angles

Ky

2
ðyi � y0iÞ2

þ
X

dihedral

fKð1Þ
f ½1� cosðfi � f0iÞ�

þ K
ð3Þ
f ½1� cos 3ðfi � f0iÞ�g

þ
X

NC

i4jþ3

eH 5
r0ij

rij

� �12

�6
r0ij

rij

� �10
" #

þ
X

NNC

i4jþ3

eH
C

rij

� �12

;

ð2Þ

where ri, yi, and fi are the bond length between i and i � 1

residues, the bond angle between (i � 1,i) and (i,i+1) bonds

and the dihedral angle around the ith bond, respectively.

Subscript 0 and superscripts NC and NNC refer to native

conformation, native contacts and non-native contacts,

respectively. Beads i and j are in native contact, if they are

within a cut-off distance dc = 6.5 Å. During simulation a

contact between residues i and j is formed when rij is less than

1.2 dc. We used the same set of parameters as for Go modeling

of ubiquitin,33 Kr = 100eH/a
2, Ky = 20eH/rad

2, K(1)
f = eH,

K(3)
f = 0.5eH, e1 = e2 = eH and C = 4 Å, where the hydrogen

bond energy eH = 0.98 kcal mol�1.

For illustration we will show the results obtained for the

16-residue peptide b-hairpin (C-terminal from protein G,

PDB ID: 2gb1), 36-residue villin (PDB ID: 1vii), 76-residue

protein ubiquitin (PDB ID: 1ubq) and protein barstar

(PDB ID: 1brs). The PDB structures of these proteins are

shown in Fig. 1. The main computations were carried out at

T = 0.53eH/kB = 285 K, which is equal E 0.86TF, where

TF=332.5 K is the melting temperature of ubiquitin.34 At this

temperature the folding of ubiquitin follows a two-state

scenario.33 The same also holds for the b-hairpin, villin and

barstar (data not shown).

Langevin dynamics with colored noise

The dynamics of a polypeptide chain in presence of a thermal

bath can be described by the following generalized Langevin

equation of motion,20

m
€
r
! ¼ F

!
c �

Z t

0

gðt� t0Þ _r!ðt0Þdt0 þ zðtÞ: ð3Þ

Here m is the mass of a bead and ~Fc = �rE, the energy of the

system E is given by eqn (2). The frictional kernel g(t) is

connected to internal Gaussian noise z(t) by the well-known

fluctuation-dissipation relationship (FDR)

hz(t)z(t0)i = mkBTg(t � t0). (4)

kB and T are Boltzmann’s constant and the temperature of

the system respectively. To capture essential features of the

non-Markovian dynamics, we consider an exponentially
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decaying frictional memory kernel.23,35,36 Therefore, g(t � t0)
in the present model can be represented as,

gðt� t0Þ ¼ g0
t
e�

jt�t0 j
t ; ð5Þ

where t is the memory time of the NMD and g0 is the frictional

coefficient in the Markovian limit t = 0. For the frictional

memory kernel (4) the integro-differential (3) can read as

m
€
r
! ¼ F

!
c þ zðtÞ ð6aÞ

_z ¼ �z=t� g0
_
r
!
=tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

g0kBT
p

t
xðtÞ: ð6bÞ

Here x(t) is a Gaussian white noise term. The second-order

differential eqn (6a) is similar to the standard Langevin

equation with white noise, except that z(t) obeys eqn (6b).

To solve eqn (6a), we have tried the second-order velocity

Verlet37 as well as corrector-predictor algorithms.38 Since both

of them give the same results, we chose the first one because of

its higher efficiency. Using the Euler method and eqn (6b), z(t)

is updated as follows

zðtþ DtÞ ¼ zðtÞ � zðtÞ=tþ g0
_
r
!ðtÞ=t�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

g0kBT
p

t
xðtÞ

" #

Dt:

ð7Þ

The friction g0 is measured in the unit of ma

tL
.37 Here tL =

(maa
2/eH)

1/2
E 3 ps, where the characteristic bond length

between successive beads a E 4 Å and the typical mass of

amino acid residues ma E 3 � 10�22 g.37 As in previous

works,33,37,39–44 we have chosen the time step Dt = 0.005tL =

15 fs. The same folding times were obtained with a shorter

time step (5 fs) (data not shown). In order to prepare initial

conformations for the folding simulations, we heated a system

up to T = 450 K and performed unfolding simulations at this

temperature, starting from the native state, until one obtains

unfolded conformations with no native contacts. The folding

simulation is initiated from these unfolded conformations and

it is terminated when all of the native contacts are formed. The

folding time is defined as the averaged value of first passage

times which are needed to reach the native state starting from

random conformations.

We define the unfolding time, tuf, as the average of first

passage times to reach a extended conformation with no native

contacts. Different trajectories start from the same native

conformation but with different random number seeds. To

obtain good statistics, we have generated 50–1000 independent

trajectories for each set of parameters.

Typical values of noise correlation time

Since the correlated noise is related to the vibrational

dynamics of water and proteins, typical values of t at which

the NMD becomes relevant should be of the same order of

magnitude as characteristic time scales of these processes. The

characteristic time scale for the protein vibration

tpv � 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma=K
p
r

p

, where the spring constant Kr
p is defined by

the covalent bond energy. Using a typical value Kp
r E 100eH/a

2

we obtain tpv E 2 ps. Assuming water is a system of beads

connected by hydrogen bonds with the spring constant

Kw
r = eH/Å

2, we obtain the vibrational time scale for water,

twv � 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mw=Kw
r

p

� 1:2 ps, where the mass of the water

molecule mw E 18 g mol�1
E 3 � 10�23 g. Our rough

estimates are consistent with protein45 and water46 dynamics

experiments which showed that tpv and twv are of order of

picoseconds. Therefore, the NMD is relevant if tB (tpv, t
w
v ), or

t should be of a few picoseconds. These typical values of t are

used in our simulations. To make it physically more clear we

note that in the Brownian motion the tagged particle is

coupled to the bath modes of vibration and their collective

effect on the particle is the Langevin equation of motion. The

Fourier transform of the two time correlation functions of

the random force depends upon the frequency distribution of

the bath modes.20 It is obvious if the medium is incompres-

sible, like water, then the frequency distribution must have a

cut-off; the noise process is then called colored noise and

dissipation in the Langevin equation should be present as a

memory kernel (eqn (3)). It is also then obvious that the

memory time depends on the collective dynamics of the

constituents of the medium. Therefore, for water as a thermal

bath the memory time should be of same order of magnitude

as that of twv .

Grote–Hynes theory

Extending Kramers’ approach to the time-dependent friction

case, Grote and Hynes21 developed the rate theory for

non-Kramers dynamics. They obtained the following approxi-

mate expression for the barrier crossing rate

k ¼ o1o2

2p lr þ fðlrÞ
m

� � exp � Ea

RT

� �

; ð8Þ

Fig. 1 The PDB structures of three proteins studied in this work. For

the cutoff distance dc = 6.5 Å, the total number of native contacts is

equal Qmax = 13, 26, 99, and 104 for hairpin, villin, ubiquitin and

barstar, respectively.

D
o
w

n
lo

ad
ed

 b
y
 I

n
st

y
tu

tu
 F

iz
y
k
i 

P
o
ls

k
ie

j 
A

k
ad

em
ii

 N
au

k
  

o
n
 0

9
 S

ep
te

m
b
er

 2
0
1
0

P
u
b
li

sh
ed

 o
n
 2

0
 A

u
g
u
st

 2
0
1
0
 o

n
 h

tt
p
:/

/p
u
b
s.

rs
c.

o
rg

 | 
d
o
i:

1
0
.1

0
3
9
/C

0
0
4
1
1
3
K

View Online

http://dx.doi.org/10.1039/C004113K


11756 Phys. Chem. Chem. Phys., 2010, 12, 11753–11762 This journal is c the Owner Societies 2010

where

fðlrÞ ¼
1

kBT

Z 1

0

hzðtÞzð0Þi expð�lrtÞdt: ð9Þ

Parameter lr reflects the unstable reactive motion in the

barrier region.21 Ea is the energy barrier, o1 and o2 the

curvatures at the reactant bottom and at the barrier top,27

respectively. Using eqn (4) and (5) in the above equation

we have

fðlrÞ ¼ m
g0

1þ lrt
ð10Þ

Substituting this equation into eqn (8), we obtain

k ¼ o1o2

2p lr þ g0
1þlrt

� � exp � Ea

RT

� �

: ð11Þ

This formula will be used to understand the experimental and

simulation results on the qualitative level.

In fitting simulation data, obtained at a given value of T, we

use the following form of the formula (11):

k ¼
~k0

lr þ g0
1þlrt

;

~k0 ¼
o1o2 exp � Ea

RT

� �

2p
;

ð12Þ

where lr and k̃0 are treated as two free parameters.

3. Results and discussions

Dependence of folding times on noise correlation time displays

two minima

The dependence of tf on t is shown for the b-hairpin (Fig. 2)

and ubiquitin (Fig. 3) for friction g0 = 0.1,2 and 5 ps�1. For

large damping (g0 = 50 ps�1), the result is demonstrated in

Fig. 4. For g0 = 0.1 ps�1, at the first minimum the folding of

ubiquitin speeds up about two-fold compared to Markovian

dynamics (t=0). The maximum enhancement of folding rates

of the hairpin is smaller than that of ubiquitin (results not

shown). The effect is expected to become more pronounced as

the size of proteins increases, because it would lead to an

increase in folding times.41,47 Thus, for all values of g0, we have

observed the surprising result that there exist two minima.

This result also holds for the 89-residue titin domain I27

(results not shown). In the next section, we will show that

the result is robust for all the proteins.

Nature of two minima

Since the double U-shape of dependence of tf on external

parameters was not reported in any previous studies, it is vital

to understand the origin of two minima in Fig. 2 and 3. For

this we invoke the barrier crossing problem in a one-degree-of-

freedom (ODF) system using the same non-Markovian

thermal bath. Here, we consider a single particle moving in a

two dimensional phase space with the FDR kept constant.

This system will be referred to as model A. The folding

time, defined as a mean first barrier crossing time,

was obtained by solving the Langevin equation of motion,

m _v = q � q3 �
R

t
0 g(t � t0) _v(t0)dt0 + z(t),20 where q and v are

the coordinates and velocity of a Brownian particle. Model A

displays only one minimum (Fig. 5, solid curve). Since the

frequency factor of the barrier crossing rate very much

depends on the characteristic of damping, the interplay of

Fig. 2 Plot of the renormalized folding time tf/tf(0) vs. the noise

correlation times for hairpin, where tf(0) is the folding time in the

Markovian limit, t = 0. We choose g0 = 0.1 (solid curve), 2 (dashed

curve) and 5 (dotted curve) and T = 285 K. tf(0) for g = 0.1, 2 and 5

are 0.23 ns, 1.6 ns and 4.1 ns respectively. The upper inset shows the

results for g0 = 0.1 at small values of t. The results are averaged over

500 trajectories, and the error bars are smaller than the data symbols.

The lower inset is the same as in the upper inset, but for g0 = 5.

Fig. 3 Plot of the renormalized folding time tf/tf(0) vs. the noise

correlation times for ubiquitin, where tf(0) is the folding time in the

Markovian limit, t = 0. We choose g0 = 0.1 (solid curve), 2 (dashed

curve) and 5 (dotted curve) and T = 285 K. tf(0) for g0 = 0.1, 2 and 5

are 20.01 ns, 110.1 ns, and 261.085 ns respectively. The inset shows the

low t results for g0 = 2.
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frequency corresponding to the curvature of the potential well

and the noise correlation time explains the minimum of the

solid curve of Fig. 5.20,21 It generally appears at low noise

correlation time (Fig. 5). Then we may expect the first

minimum in the protein folding kinetics due to the above

reason. In other words, the first minimum occurs due to the

interplay between the damping and the noise correlation time.

In order to make this point more convincing, let us consider an

ODF system where, in contrast to model A, the damping and

colored noise are not related through FDR (eqn (4)) or the

FDR is violated. We refer to this system as model B. For this

model, we know that the mean lifetime increases as the noise

correlation time grows for fixed noise strength when damping

and colored noise have different origin.48,49 This is because the

frequency factor decreases and the effective barrier height

increases.50,51

To demonstrate the variation of mean folding time with t

for model B, tf was calculated by solving the Langevin

equation,48,49,51

m _v = q � q3 � g0v + Z (13)

and

_Z ¼ � Z

t
þ

ffiffiffiffi

D
p

t
xðtÞ: ð14Þ

Here Z(t) is colored Gaussian noise, hZ(t)Z(t0)i =

D exp(�|t � t0|/t)/t, where D is the noise strength which is

independent of g0. The result is plotted in Fig. 5 (dashed

curve). It shows that mean folding time increases monotoni-

cally with the noise correlation time. Here it is to be noted that

the typical noise Z(t) had been considered for activated barrier

crossing problem and other aspects.52–60 Thus, the results

shown in Fig. 5 for models A and B support our conjecture

that the first minimum at low t occurs as a result of interplay

between the damping and color noise.

Now we come to the second minimum. The distinct feature

of the protein folding kinetics and the barrier crossing

dynamics in the ODF system is that in the former case the

barrier crossing dynamics is associated with the entropy of

activation. Since the variance of the noise decreases with

increase of noise correlation time (see the FDR, eqn (4)), the

fluctuations in configurational entropy during the barrier

crossing may decrease as t grows. It leads to a search for the

native state with short folding time. Thus one would expect an

additional minimum in protein folding kinetics to connect of

damping, entropy and frequencies of multi-dimensional

potential energy well. If it is really true then one may expect

a single minimum in the protein folding kinetics in the

presence of damping and colored noise such that they are

not related through FDR. To check this expectation we

consider protein folding kinetics in the presence of the same

kind of environment as in model B (eqn (13) and (14)). Then

the equation of motion becomes

m
€
r
! ¼ F

!
c � g0

_
r
! þ ZðtÞ; ð15Þ

where Z(t) obeys eqn (14). This is a Go model for proteins,32

but we assume that the FDR given by eqn (4) does not hold.

We refer to this model as model C. One of possibilities for

violation of FDR is that the random and dissipative forces

become independent having different origins. To convince it

let us take a simple example. There is an electrical instrument

which is associated with obvious mechanical damping and it

can be driven by an electrical current. The current may be

noisy in both direction and magnitude. The auto correlation

time of electrical force or noise intensity may be varied by an

experimentalist keeping fixed mechanical friction since the

noise and damping have different origin. This kind of

environment (absence of FDR relation) was considered in

ref. 48, 49, 52–60. It may be found in biological system if an

additional fluctuating force appears other than from a thermal

origin. Effective dynamical contribution of biomolecules in the

surroundings to the biosystem may be considered as the

additional fluctuating force. Then total fluctuating force and

damping should not follow the FDR relation. Furthermore, if

Fig. 4 Plot of the renormalized folding time tf/tf(0) vs. the noise

correlation times for the hairpin, where tf(0) is the folding time in the

Markovian limit, t = 0. We choose g0 = 50 and T = 285 K. tf(0) for

g = 50 is 37.6 ns.

Fig. 5 Plot of the re-normalized folding time tf/tf(0) vs. the noise

correlation times for the ODF system both in the presence (model A)

and the absence (model B) of FDR, and for b-hairpin in the absence of

FDR (model C). Here tf(0) is the folding time in the Markovian limit,

t = 0. tf(0) = 0.13 ps, 0.19 ps and 2.56 ps for model A, B, and C,

respectively. Results for the ODF systems at large values of t are not

shown as tf increases monotonically in that region. We choose g0 =3.0

and D = 2.0.
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the temperature is very low then it should exactly correspond

to the above example. However, we invoke the model C as the

hypothetical one for the present context. It does not mean that

in the original system the breakdown of FDR is possible.

Therefore we have considered it just to demonstrate whether

the interplay of damping, noise correlation time and

configurational entropy can set up a minimum in the absence

of FDR. Solving eqn (15) for model C, we observed a single

minimum (dotted curve in Fig. 5) for the plot of tf vs. t. It is

really a surprising result with respect to the observation in

model B where entropy of activation is absent. This observa-

tion can only be explained if we consider the configurational

diffusion which may reduce the mean folding time as

mentioned above. It implies that depending upon the

difference between g0 and t the interplay of damping, noise

correlation time and configurational entropy can set up a

minimum for a given noise strength. This kind of interplay

one would expect in the present study also and the extent of

the deviation (of the mean folding time from Kramers’ theory)

may depend on that. Thus the appearance of one more

additional minimum in the variation of mean folding time

with noise correlation time in the presence of a non-Markovian

thermal bath is due to the interplay between damping, colored

noise and entropy of activation. The dynamics of a multi-

dimensional protein chain may experience the non-Markovian

thermal bath in the following way. Progress toward the folded

state relies on a large number of independent dihedral angle

isomerization, each of which can be thought of as a single,

elemental barrier-crossing event. Simulation showed10 that

the dynamics of these individual events are quite complex.

Dihedral isomerization in longer peptides remains diffusional

but the isomerization rate did not vary inversely with solvent

damping strength, g0. This occurs because dihedral angle

transition in neighboring residues are interdependent processes

that occurs roughly on similar time scales which are of the

order of picosecond (solvent relaxation time). This leads to

complex (non-Markovian) diffusional dynamics,31 which may

not obey Kramers’ theory. Thus an experimentalist would

observe a mean folding time corresponding to collective non-

Markovian dynamics around both minima for a given protein

and make an explanation based on Fig. 2 and 3 to rationalize

any deviation in mean folding time from Kramers’ theory.

Departure from Kramers’ behavior: evidence from folding

simulations

Having used several viscogens, including glucose and glycerol

to monitor the viscosity, Cellmer et al.15 have shown that the

thermal folding rate of the ultrafast-folding protein villin

obeys eqn (1) but with parameter x 4 0. The increase of the

effective viscosity was attributed to the internal friction which

reduces the diffusion coefficient due to increased free energy

landscape roughness.

Here we want to examine how the colored noise modifies the

effective solvent viscosity. In order to get unbiased results we

have performed simulations not only for villin, but also for

barstar and the hairpin. Fig. 6 shows the viscosity dependence

of the folding rate, kf = 1/tf, obtained for the protein barstar

using the Markovian and NMD. One can show that the best fit

is given by eqn (1), where the constant C = 0.004, and x = 0,

�0.15 and �0.2 ps for t = 0, 2 and 3 ps, respectively. The

dashed lines in Fig. 6 show the fit by eqn (12) with two free

parameters lr and k̃0 the values of which are given in the figure

caption. It shows that the approximate rate theory accounts

for the deviation from Kramers’ result relatively well.

Fig. 7a shows the viscosity dependence of the folding rate of

b-hairpin for various values of t and 1r g0 r 30 ps�1. Again,

as in the barstar case, the empirical formula (1) provides a

better fit compared Grote–Hynes theory. The fitting para-

meters are C = 0.7 and x = 0, �0.17, �0.25 and �0.3 ps for

t = 0, 0.3, 2 and 3 ps, respectively.

Since the departure from Kramers’ behavior shown in Fig. 6

and 7a was obtained in the low enough friction regime, it is not

clear if this remains valid in the overdamped limit, where the

experiments14 were performed. To check this, we calculated

folding rates for the b-hairpin using viscosity values which are

close to the experimental ones (Fig. 7b). For t = 0, 5, and

10 ps, we obtained x = 0, �2.02 and �3.31 ps, respectively.

Therefore, non-Kramers’ behavior also occurs in the high

viscosity regime for this short protein. Since the departure

from Kramers’ behavior in the overdamped limit is notably

weaker than in the low-viscosity regime, our data, obtained

from the Go model, do not rule out a possibility that the

non-Kramers’ behavior in this limit may be not related to the

colored noise. It would be interesting to verify whether a more

realistic model with non-native interactions could lead to the

stronger effect.

Fig. 8 shows the viscosity dependence of the folding rate for

villin, where 1 r g0 r 100 ps�1. For this interval of friction,

the white noise results obey Kramers’ theory (black solid line).

The fit by eqn (1) (solid red line) works pretty well for t= 5 ps

with x= �0.34 ps. Similar to the barstar and hairpin case, the

Grote–Hynes gives a nearly linear dependence (dashed line).

Fig. 6 The dependence of the folding rate kf = 1/tf on g0 for barstar

in the relatively low friction regime, 0.75 r g0 r 7.5. The circles refer

to the Markovian dynamics (t= 0). Other legends correspond to non-

Markovian dynamics (t a 0). The solid lines refer to the fit given by

eqn (1), where C= 0.004. The departure fromMarkovian dynamics is

characterized by nonzero values of the parameter x, as shown by

squares. t and x are measured in ps. The dashed lines correspond to

the fit by eqn (12). For t=2 ps, we have fitting parameter k̃0 =0.0047

and lr = 1.5 � 10�9 ps�1. For t = 3 ps, we have k̃0 = 0.005 and

lr = 5 � 10�7 ps�1. The results are averaged over 100 trajectories.
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Our results shown in Fig. 6–8 were obtained at T = 285 K,

where the folding is fast. The question we now ask is if the

departure from Kramers’ behavior remains valid at conditions

which do not favor folding. To verify this, we have performed

simulations at high temperatures (T = 664 K) which are

believed to mimic these folding conditions. It turns out

that the non-Kramers behavior (eqn (1)) remains valid in

this case (Fig. 9). Thus, the NMD in the Go model can

capture the departure from Kramers’ behavior for any folding

conditions.

The results from our thermal folding simulations (Fig. 6–9)

unambiguously show that the effect of colored noise on

folding kinetics may be described by eqn (1) with the

negative phenomenological parameter x. This result is not

compatible with the experimental results of Cellmer et al.15

However, our simulation result is in accord with Grote–

Hynes theory21 because, as is evident from eqn (11), the

folding rate should grow as t increases at least for some

interval of viscosity and this results in negative values

of x. The disagreement between the theory and the

experiments15 probably implies that the nature of departure

from Kramers’ theory with x4 0 is not related to the memory

effect.

Departure from Kramers’ behavior: evidence from unfolding

simulations

Recently, using two viscogens, xylose and glycerol to vary the

viscosity, Pradeep and Udgaonkar,14 e.g., have shown that

even in the overdamped limit the unfolding rate of the small

protein barstar does not show an inverse dependence on the

viscosity, g0, as expected from Kramers’ theory. Instead, it is

found to follow eqn (1), where the adjustable parameter

x = �0.7 cP and x = �0.5 cP for xylose and glycerol cases,

respectively. The reduction of solvent viscosity was assumed to

be related to an internal friction.13,14

It should be noted that computation of non-Markovian

unfolding rates of the 89-residue protein barstar in the over-

damped limit is beyond our facilities. Let us explain this in

Fig. 7 (a) The same as in Fig. 6, but for b-hairpin in the low friction

regime, 1 r g0 r 30 ps�1. The solid lines refer to the fit given by

eqn (1), where C = 0.7. The departure from the Markovian dynamics

is characterized by nonzero values of parameter x, as shown in boxes.

The dashed lines are fits to eqn (12). The fitting parameter k̃0 = 0.8,

0.87 and 0.92 for t = 0.3,2, and 3 ps, respectively. lr = 7.8 � 10�6,

5 � 10�7, and 5 � 10�7 ps�1 for t = 0.3,2, and 3 ps, respectively. (b)

The same as in (a) but for the high viscosity interval 30 r g0 r

100 ps�1. The results are averaged over 1000 trajectories, and the error

bars are smaller than the data symbols.

Fig. 8 The dependence of the folding rate kf on g0 for villin and 1 r

g0 r 100. Circles and squares refer to t = 0 (Markovian dynamics)

and 5 ps (NMD), respectively. The solid lines refer to the fit given by

eqn (1), where C=0.7 and x=0 and�0,34 ps. The dashed line is a fit

to eqn (11) for t= 5 ps, where l= 1.1 � 10�6 ps�1 and k̃0 = 0.00013.

Fig. 9 The viscosity dependence of the folding rate for b-hairpin at

T=664 K (disfavored folding conditions). Fitting the simulation data

to eqn (1) we obtain C E 0.03, and x = 0 and �0.38 for t = 0 and

3 ps, respectively.
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more detail. To study protein Markovian kinetics we have to

solve the Langevin equation,

m
d2r

dt2
¼ Fc � g0

dr

dt
þ zðtÞ;

where z(t) is white noise. In the underdamped limit

(g0 o 30 ps�1) we can use, say, the Verlet algorithm with the

time step Dt = 0.005tL (see Models and Methods section). In

the overdamped limit (g0 4 30 ps�1), one can neglect the

inertial term and the Langevin equation becomes
dr
dt
¼ 1

g0
ðFc þ zÞ. This equation may be solved using the simple

Euler method which gives the position of a biomolecule at the

time t + Dt as

xðDtþ tÞ ¼ xðtÞ þ Dt

g0
ðFc þ zÞ: ð16Þ

Due to the large value of g0 we can choose the time step Dt =

0.1tL which is 20-fold larger than the low viscosity case.

Unfolding times in the overdamped limit are about two orders

of magnitude larger than those in the low friction limit.

However, the computation of tuf in the former case is not

much more CPU time demanding compared to the second one

due to the use of the Euler method with the bigger time step Dt.

The situation becomes very different if the dynamics are not

Markovian. Because of the time dependence of the friction

kernel (eqn (5)), in the overdamped limit, only for the corre-

sponding Langevin equation cannot be rewritten in the form

similar to eqn (16). As a result, we must also use the time step

as small as in the low viscosity limit, Dt = 0.005tL, and the

computation of tuf slows down by about two orders of

magnitude compared to the Markovian case. Having relatively

modest computational facilities, we are not able to obtain

reliable results for barstar for many values of g0 and t within

reasonable amount of time. Therefore, we leave this problem

for future studies.

Instead, we have studied the thermal unfolding of the

shorter polypeptide chain b-hairpin at T = 450 K. The

unfolding rates, obtained for different values of t, are

presented in Fig. 10. As in the folding case, perfect Kramers’

behavior is observed for the white noise case (solid black line).

Fitting to the eqn (1), gives x = �4.89 and �4.59 for t = 5

and 10 ps, respectively. This result agrees well not only with

Grote–Hynes theory but also with the experimental data.14

Eqn (12) gives almost the linear fit (Fig. 10), which is a little bit

worse compared to the empiric formula (1).

Although computation of non-Markovian unfolding rates

of barstar in the overdamped limit were not carried out yet, the

non-Kramers behavior is also expected to hold for this protein

as it should not depend on the number of amino acids.

Therefore, our theoretical results support the scenario that

the non-trivial behavior comes from the memory effect which

speeds up the folding/unfolding process.

The folding experiments of Cellmer et al.15 suggested that

the internal friction enhances the free energy landscape rough-

ness leading to x 4 0. This result contradicts the picture

proposed in ref. 14, where the effective viscosity is reduced. It

is not entirely clear what scenario is superior as results

probably depend on experimental conditions used by different

groups. In our Go model, the relative thermodynamic stability

of a protein does not depend on the viscosity, but the colored

noise changes the folding kinetics in such a way that it can

mimic the negative internal viscosity, if any. Fitting simulation

results, obtained by Zagrovic and Pande9 and Best and

Hummer10 to eqn (1) for the white noise, yields a negligible

internal friction.15 This also points to the important role of

colored noise in non-Kramers folding/unfolding kinetics.

Before leaving this aspect we would like to note that in

Fig. 6–10 we assume the same noise correlation for a range of

viscosities for a particular curve. Practically, for each g0 we

should consider two different noise correlation times corres-

ponding to two minima (Fig. 2 and 3). The smaller of them is

independent of viscosity, since it is solely governed by the

dynamics around the barrier top. But the bigger one may vary

with the viscosity as discussed in the context of Fig. 2 and 3.

However, it is difficult to include the effect of both the noise

correlation times simultaneously in a theoretical model.

Therefore, to check whether the breakdown of Kramers’

theory is due to NMD or not, we have studied mean folding

times considering a noise correlation time for a wide range.

However, our calculation implies that the breakdown of

Kramers’ theory may be due to NMD and it may qualitatively

account the experimental results obtained for different

viscosity of the solvent. Another point to be mention here is

that by fitting our result with eqn (1) for x o 0 we mean that

the effective frictional force may be reduced due to NMD.

In other words the NMD is the origin of negative damping x.

Now we come to the point how this is possible? Kramers’

theory is based on the ordinary Langevin equation which

neglects the correlation time of the solvent forces acting on

the reactive motion. But when the motion takes place on a

picosecond or subpicosecond time scale, the solvent forces at

two different times can become correlated, i.e., memory effects

become important and Kramers’ theory can break down.

Under these circumstances, bath modes of high frequency

have an important role and there should be a cut-off in the

frequency distribution. This corresponds to the NMD. Then

Fig. 10 The viscosity dependence of the unfolding rate for b-hairpin

at T = 450 K. The Kramers’ theory holds for the white noise case

(circles). Fitting the simulation data to eqn (1) (solid lines) we obtain

C E 0.04, and x = �4.89 and �4.59 for t= 5 and 10 ps, respectively.

The fit by eqn (12) (dashed lines) gives k̃0 = 0.047 and lr = 1.1 �
10�5 ps�1 for t = 5 ps, and k̃0 = 0.047 and lr = 1 � 10�5 ps�1 for

t = 10 ps.
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dynamics does not experience damping from bath modes of

low frequency region and effective friction is less (which may

be one of the reasons for the breakdown of Kramers’ theory)

compared to Markovian dynamics. Thus NMD bears a

signature of negative damping with respect to Markovian

one. Our calculation also supports that. But it does not mean

that NMD may be frictionless. Therefore, to avoid any

confusion regarding divergence of eqn (1) one may comment

that this equation is not valid for small damping, because in

this case the barrier crossing rate is proportional to damping.27

Conclusions

Using a generalized Langevin equation of motion for protein

chains, we have investigated the role of NMD on their folding

kinetics for both short and long proteins. Our observations

imply the following points:

(a) The correlated noise may lead to the departure from the

prediction of Kramers’ theory for the viscosity dependence of

folding and unfolding rates. Our results do not only explain

experimental findings,13,14 but also open a new way to solve

this non-trivial problem.

(b) Surprisingly, the plot of tf vs. t shows a double minima

for proteins at any viscosity range. This implies that the

protein folding dynamics experiences two different kind of

frequency distribution of bath modes—one of them corres-

ponding to fast dynamics around the barrier top and another

one corresponding to the time scale which accounts how fast

structural correlation varies with time. These observations

have been obtained with the help of simple Go modeling.

Inclusion of non-native contacts and other factors like side

chains and water may lead to quantitative changes, but we

believe that they will qualitatively remain valid for all

biomolecules.

To our best knowledge, in this paper, we have made a first

theoretical attempt to explain the violation of Kramers’ theory

for the dependence of protein folding rates on viscosity, using

the colored noise theory. Our study has led to qualitatively

novel results which are potentially interesting for experts from

various fields of research.
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