
Colored Petri Nets for Systems Biology

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

vorgelegt von

PhD Engineering

Fei Liu

geboren am 24. 11. 1976 in Pingdu, China

Gutachter: Prof. Dr.-Ing. Monika Heiner

Gutachter: Prof. Dr. rer. nat. Wolfgang Marwan

Gutachter: Prof. David Gilbert

Tag der mündlichen Prüfung: 31.01.2012

Acknowledgements

Firstly, I wish to express my deep gratitude to my supervisor Professor Monika Heiner
for giving me this research opportunity and for her constant support and advice during
this work.

Secondly, I would like to thank Professor Wolfgang Marwan and Professor David
Gilbert for their careful reviews and valuable discussions and comments. I also thank
all the other members in my defence committee.

Next, I am very grateful to all members in the Data Structure and Software Dependabil-
ity Chair for their daily help, assistance and discussions, including Mrs Sigrid Schenk
and Mostafa Herajy, Christian Rohr and Martin Schwarick. Special thanks go to Mary
Ann Blätke for her kind help and discussions about systems biology.

Further, my warmest thanks belong to my family for their support. I am grateful to
all the other people and friends who helped me during this work.

Last but not least, I acknowledge the financial support of German Federal Ministry of
Education and Research (BMBF) grand 0315449H.

Cottbus
Fei Liu

iii

iv

Abstract

Modeling plays a crucial role in Systems Biology in order to provide a system-level
understanding of biological systems. With the rapid development of systems biology,
modeling of biological systems has shifted from single scales to multiple scales. This
introduces a series of challenges that should be addressed, e.g. repetition of compo-
nents such as genes and cells, variation of components, or hierarchical organization of
components. Traditional modeling approaches, e.g. Petri nets, can not afford to cope
with these challenges, which, however, can be tackled using colored Petri nets.

This thesis aims to present a technology based on colored Petri nets and associated
techniques to address challenges introduced by multiscale modeling in systems biology
and to implement them in our modeling tool, Snoopy.

To this aim, we present a colored Petri net framework for systems biology, which relates
three modeling paradigms: colored qualitative Petri net (QPN C), colored stochastic
Petri net (SPN C) and colored continuous Petri net (CPN C). Using this framework, we
can model and analyze a biological system from three different perspectives: qualitative,
stochastic and continuous by converting them into each other.

We implement this framework in our modeling tool, Snoopy, and therefore in this thesis
we explore three key problems concerning the implementation of colored Petri nets.
For animating/simulating colored Petri nets, we present an efficient algorithm for the
computation of enabled transition instances. In order to utilize the analysis techniques
of Petri nets we present an efficient unfolding algorithm for large-scale colored Petri
nets. In addition, we discuss three special cases for automatic folding (colorizing):
colorizing T-invariants, master nets and twin nets in order to reduce the amount of
work for folding Petri nets.

Petri nets offer a large variety of analysis techniques ranging from informal techniques,
e.g. animation/simulation to formal techniques, e.g. model checking. We summarize
those analysis techniques that can be used for colored Petri nets, e.g. structural analysis,
numerical and simulative model checking from the application point of view.

We discuss some scenarios to illustrate the potential capability of colored Petri nets
to cope with challenges in systems biology. Moreover, we apply our colored Petri net
technology and techniques to three case studies, C. elegans vulval development, coupled
Ca2+ channels and membrane systems. These case studies not only demonstrate how
to use the colored Petri net framework and related analysis techniques for modeling and
analyzing biological systems, but also show how to address the challenges of systems
biology.

Keywords Systems Biology; colored Petri nets; stochastic Petri nets; continuous Petri
nets; unfolding; folding; analysis techniques

v

vi

Zusammenfassung

Die Modellierung ist für die Systembiologie von zentraler Bedeutung, um biologische
Systeme ganzheitlich auf einer Systemebene zu verstehen. Mit der rasanten Entwick-
lung der Systembiologie hat sich die Modellierung biologischer Systeme von single-
skalen zu multi-skalen Systemen verschoben. Dies führt zu einer Reihe von Heraus-
forderungen, die bewältigt werden müssen, unter anderem die Modellierung der Verviel-
fältigung, Variation und hierarchischen Organisation von Komponenten, z. B. Gene
und Zellen. Traditionelle Modellierungsansätze, wie z. B. Petrinetze, sind diesen Her-
ausforderungen nicht gewachsen; sie können jedoch mit gefärbten Petrinetzen in Angriff
genommen werden.

Das Ziel dieser Arbeit besteht in der Einführung einer Technologie, die auf gefärbten
Petrinetzen und zugehörigen Techniken beruht, um den Herausforderungen in der Sys-
tembiologie durch Multiskale-Modellierung zu begegnen, und deren Implementierung
in unserem Modellierungswerkzeug Snoopy.

Für diesen Zweck präsentieren wir für die Systembiologie ein Framework, das auf
gefärbten Petrinetzen beruht und drei Modellierungsparadigmen umfasst: gefärbte
qualitative Petrinetze (QPN C), gefärbte stochastische Petrinetze (SPN C) und gefärbte
kontinuierliche Petrinetze (CPN C). Mit diesem Framework können wir ein biologisches
System aus drei Perspektiven modellieren und analysieren: qualitativ, stochastisch und
kontinuierlich, unterstützt durch deren Umwandelbarkeit untereinander.

Wir implementieren dieses Framework in unserem Modellierungswerkzeug Snoopy und
untersuchen dazu in der vorliegenden Arbeit drei wesentliche Probleme bei der Umset-
zung der gefärbten Petrinetze. Zur Animation/Simulation gefärbter Petrinetze stellen
wir einen effizienten Algorithmus zur Berechnung von schaltfähigen Transitionsin-
stanzen vor. Um die Analyse-Techniken von Petrinetzen zu nutzen, stellen wir einen
effizienten Algorithmus zur Entfaltung sehr großer gefärbter Petrinetze vor. Um den
Aufwand für die Färbung von Petrinetzen zu reduzieren, diskutieren wir außerdem drei
Sonderfälle für die automatische Faltung (Färbung): Färbung von T-Invarianten, von
Master-Netzen sowie von Twin-Netzen.

Petrinetze bieten eine große Vielfalt von Analysetechniken an, die von der informellen
Analyse, z. B. Animation/Simulation, bis zu formalen Techniken, z. B. Modelchecking,
reichen. Wir geben aus Anwendersicht einen Überblick über die Analysetechniken, die
für gefärbte Petrinetze verwendet werden können, z. B. Strukturanalyse sowie analytis-
ches und simulatives Modelchecking.

Wir diskutieren einige Szenarien, in denen gefärbte Petrinetze weiterhelfen, um ihr
Potential bei der Bewältigung der Herausforderungen in der Systembiologie zu illustri-
eren. Um die Anwendbarkeit unseres Ansatzes zu demonstrieren, wenden wir unsere
Methode der gefärbten Petrinetze auf drei Fallstudien an, C. Elegans, gekoppelte Ca2+-
Kanäle und Membran-Systeme. Diese Fallstudien zeigen nicht nur, wie das Framework

vii

der gefärbten Petrinetze und der zugehörigen Analyse-Techniken für die Modellierung
und Analyse praktischer biologischer Systeme genutzt werden kann, sondern zeigen
auch, wie man den Herausforderungen der Systembiologie begegnen kann.

Freie Schlagwörter Systembiologie; gefärbte Petrinetze; stochastische Petrinetze;
kontinuierliche Petrinetze; Entfaltung; Faltung; Analyse-Techniken

viii

Contents

Abstract v

Zusammenfassung vi

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 4

1.2.1 Petri Nets . 4
1.2.2 Colored Petri Nets . 7
1.2.3 Systems Biology . 9

1.3 Contributions . 14
1.4 Organization of Thesis . 16

2 A Colored Petri Net Framework 17
2.1 Overview . 17
2.2 Colored Petri Nets . 19

2.2.1 Multiset . 19
2.2.2 Definition . 20
2.2.3 Dynamic Behavior . 21

2.3 Colored Qualitative Petri Nets . 22
2.3.1 Extended Petri Nets . 22
2.3.2 Colored Qualitative Petri Nets 25

2.4 Colored Stochastic Petri Nets . 28
2.4.1 Stochastic Petri Nets . 29
2.4.2 Deterministic and Stochastic Petri Nets 30
2.4.3 Colored Stochastic Petri Nets 31

2.5 Colored Continuous Petri Nets . 32
2.5.1 Continuous Petri Nets . 33
2.5.2 Colored Continuous Petri Nets 34

2.6 Scenarios for Using Colored Petri Nets in Systems Biology 35
2.7 Encoding Components of Systems as Colors 37
2.8 Closing Remarks . 39

3 Some Implementation Aspects 41

ix

Contents

3.1 Computation of Enabled Transition Instances 42
3.1.1 Patterns . 43
3.1.2 Binding Process . 46
3.1.3 Algorithms . 48
3.1.4 Optimization Techniques . 53
3.1.5 Related Work . 56
3.1.6 Conclusions . 56

3.2 Unfolding of Colored Petri Nets . 57
3.2.1 Equivalent Standard Petri Nets 58
3.2.2 Unfolding Algorithm . 59
3.2.3 Algorithms for Computing Transition Instances 59
3.2.4 Optimization Techniques . 66
3.2.5 Experimental Results . 66
3.2.6 Related Work . 68
3.2.7 Conclusions . 68

3.3 Folding of Petri Nets . 68
3.3.1 Colorizing T-invariants of Petri Nets 69
3.3.2 Colorizing Master Petri Nets . 71
3.3.3 Colorizing Twin Nets . 75
3.3.4 Conclusions . 77

3.4 Closing Remarks . 77

4 Analysis Techniques 79
4.1 Structural Analysis . 79
4.2 Model Checking . 80

4.2.1 Linear Temporal Logic . 81
4.2.2 Computation Temporal Logic . 81
4.2.3 Model Checking of QPN C . 82

4.3 Numerical Model Checking . 82
4.3.1 Continuous Stochastic Logic . 83
4.3.2 CSL Model Checking of SPN C 83

4.4 Simulative Model Checking . 84
4.4.1 Probabilistic Linear Temporal Logic with Numerical Constraints 85
4.4.2 PLTLc Model Checking of SPN C 86

4.5 Analysis of QPN C Using CPN Tools . 88
4.5.1 CPN Tools . 88
4.5.2 Transformation from QPN C Models to CP-Net Models 88
4.5.3 Analysis of QPN C Models with CPN Tools 89

4.6 Discussions . 90
4.6.1 Comparison of Two Approaches: Folded versus Unfolded 90
4.6.2 Partial Unfolding - Tackling Dynamic Color Sets 92

x

Contents

4.7 Closing Remarks . 92

5 Case Studies 93
5.1 Modeling C. Elegans Vulval Development 94

5.1.1 C. Elegans Vulval Development 94
5.1.2 Modeling . 95
5.1.3 Structural Analysis . 99
5.1.4 Determining the Fate of VPCs Using Simulative Model Checking 101
5.1.5 Results and Discussions . 103
5.1.6 Conclusions . 109

5.2 Modeling Coupled Ca2+ Channels . 109
5.2.1 Ca2+-Regulated Ca2+ Channels 111
5.2.2 Modeling . 113
5.2.3 Analysis and Validation . 115
5.2.4 Discussions . 122
5.2.5 Conclusions . 123

5.3 Modeling Membrane Systems . 123
5.3.1 Membrane Systems . 124
5.3.2 Modeling Using Petri Nets . 127
5.3.3 Modeling Using Colored Petri Nets 132
5.3.4 An Example: the Viral Infection 134
5.3.5 Conclusions . 139

5.4 Closing Remarks . 139

6 Conclusions and Outlook 141
6.1 Conclusions . 141
6.2 Outlook . 142

Bibliography 145

xi

Contents

xii

List of Figures

1.1 A Petri net model for the repressilator 6
1.2 A colored Petri net model for the repressilator 8
1.3 A diagrammatic representation of some biological scales. 10

2.1 A colored Petri net framework . 18
2.2 Special arcs drawn in Snoopy . 23
2.3 An extended Petri net . 25
2.4 A QPN C model for Figure 2.3 . 27
2.5 A Petri net model for circadian rhythms. 27
2.6 A QPN C model for circadian rhythms 28
2.7 A CPN C model for circadian rhythms 35
2.8 An arrangement of M components in a line. 38
2.9 An arrangement of M ×N components in a two dimensional lattice. . . 39

3.1 Demonstrating patterns . 43
3.2 Demonstrating the partial binding - partial test principle 55
3.3 Demonstrating the constraint satisfaction approach 61
3.4 A colored Petri net for computing transition instances. 64
3.5 The unfolded Petri net for Figure 3.4. 65
3.6 A diffusion model for testing the unfolding efficiency. 67
3.7 A Petri net model for colorizing T-invariant 70
3.8 A colored Petri net model for Figure 3.7 71
3.9 A colored Petri net model for the hypoxia response network 72
3.10 Two Petri net models for demonstrating master nets 73
3.11 A colored Petri net model for Figure 3.10 73
3.12 A Petri net model for the sensory control of sporulation 74
3.13 A colored Petri net model for the sensory control of sporulation 74
3.14 The signaling subnetwork for one plasmodium 75
3.15 A colored Petri net model for Figure 3.14 76
3.16 A colored Petri net model for Figure 3.14 with a coarse node 76

4.1 Stochastic simulation result for the repressilator model 86
4.2 A colored Petri net model for cooperative ligand binding 89
4.3 A CP-net model for Figure 4.2 . 90

xiii

List of Figures

5.1 Spatial patterning of VPCs of vulval development 95
5.2 A SPN C model for C. elegans vulval development 97
5.3 Stochastic simulation result averaged over 38,000 runs for VPC 3. 105
5.4 Stochastic simulation result averaged over 38,000 runs for VPC 4. 105
5.5 Stochastic simulation result averaged over 38,000 runs for VPC 5. 106
5.6 Stochastic simulation result averaged over 38,000 runs for VPC 6. 106
5.7 Stochastic simulation result averaged over 38,000 runs for VPC 7. 107
5.8 Stochastic simulation result averaged over 38,000 runs for VPC 8. 107
5.9 A two-state channel with Ca2+ activation. 111
5.10 A six-state channel with Ca2+ activation and inactivation. 112
5.11 Two instantaneously coupled two-state channels 112
5.12 SPN models for two-state Ca2+ channels 113
5.13 A SPN model for the six-state channel 114
5.14 SPN C models for two-state Ca2+ channels 116
5.15 A SPN C model for coupled six-state Ca2+ channels 117
5.16 Stochastic simulation result for the model of 19 two-state channels . . . 120
5.17 Stochastic simulation result for the model of 4 two-state channels 121
5.18 Stochastic simulation result for the model of 19 six-state channels 121
5.19 A basic membrane system. 126
5.20 A dynamic membrane system. 127
5.21 Petri net models for typical evolution rules 129
5.22 A Petri net model for the basic membrane system 129
5.23 A Petri net model for the dynamic membrane system 131
5.24 A colored Petri net model for the basic membrane system 133
5.25 A colored Petri net model for the dynamic membrane system 134
5.26 The viral infection process . 135
5.27 A SPN model for the viral infection. 136
5.28 A SPN C model for the virus infection. 137
5.29 Stochastic simulation result with 1 initial virus molecule 138
5.30 Stochastic simulation result with 10 initial virus molecule 138
5.31 Stochastic simulation result with 100 initial virus molecule 139

xiv

List of Tables

2.1 Rate functions of the SPN C model for Circadian rhythms 32

3.1 Declarations for the diffusion model in Figure 3.6. 67
3.2 Comparison of the size of the diffusion model and unfolding runtime . . 68
3.3 The minimal T-invariants of the hypoxia response network model. 71

5.1 Descriptions of some transitions in the SPN C model 98
5.2 Descriptions of some places in the SPN C model 99
5.3 The T-invariants in the MAPK pathway of each VPC 100
5.4 The T-invariants in the LIN-12/Notch signaling pathway of VPC 4 . . . 100
5.5 Fate patterns to be validated, excerpted from [LNUM09] 104
5.6 Detailed statistical results of 50 simulations for the unstable patterns . . 108
5.7 The minimal T-invariants of the one six-state channel model 118
5.8 The minimal P-invariants of the two coupled six-state channels model . 118
5.9 The minimal T-invariants of the two coupled six-state channels model . 119
5.10 Comparison of the state space construction 120
5.11 The size of the Ca2+ model and its unfolding and simulation runtime . . 123

xv

xvi

1 Introduction

1.1 Motivation

Systems Biology [Ade05], [IWL06], [Kit02], [SW05] is an emerging scientific discipline
in bioscience research, which aims to understand the behavior of a biological system at
the system level by means of investigating the behavior and interactions of all of the
components in the system. To achieve the system-level understanding, modeling plays a
crucial role in systems biology [FHL+04]. Modeling is a widely used scientific approach
to represent, explain, analyze and predict the system behavior, thus facilitating the
understanding of a (biological) system from a holistic viewpoint. Usually modeling
follows some standard steps, e.g. construction, simulation, validation and analysis.
With the increasing magnitude and complexity of interactions in biological systems
and the rapid growth of data being generated in the biological field, an overwhelmingly
increasing number of challenges are introduced to modeling of biological systems.

A large variety of modeling approaches, e.g. Petri nets, Boolean networks and ordinary
differential equations, have already been applied to modeling a wide field of biological
systems (see [BCMS10], [HK09] for a review). Among them, Petri nets are particularly
suitable for representing and modeling the concurrent, asynchronous and dynamic be-
havior of biological systems. Since Reddy et al. [RML93] introduced qualitative Petri
nets to model metabolic pathways, a large variety of applications of Petri nets (e.g.
stochastic Petri nets, timed Petri nets, continuous Petri nets and hybrid Petri nets)
have been developed for modeling and simulating different types of biological systems
[BCMS10], [GH06]. For example, due to inherently stochastics in biological processes,
stochastic Petri nets have recently become a popular modeling paradigm for captur-
ing their complex dynamics, which can help to understand the behavior of complex
biological systems by integrating detailed biochemical data and providing quantitative
analysis results, see e.g. [GP98], [PRA05].

Petri nets offer a number of attractive advantages for modeling biological systems
[HGD08]:

• intuitive graphical and executable modeling formalisms,

• rich mathematically founded analysis techniques, covering structural and behav-
ioral properties,

• integration of qualitative and quantitative analysis techniques and methods, and

1

1 Introduction

• a wealth of computer tool support.

However, standard Petri nets do not easily scale. So attempts to simulate biological
systems by standard Petri nets have been mainly restricted so far to relatively small
models. Standard Petri nets tend to grow quickly for modeling complex systems, which
makes it more difficult to manage and understand the nets, thus increasing the risk of
modeling errors. Two known modeling concepts improving this situation are hierarchy
and color. Hierarchical structuring has been discussed a lot, e.g. in [MWW11], while
the color has gained little attention so far.

Colored Petri nets [GL79], [GL81], [Jen81] are a colored extension of standard Petri
nets, where a group of similar components are represented by one component, each
of which is defined as and thus distinguished by a color. Colored Petri nets provide
parameterized and compact representations of complex biological systems; however
they do not lose the analysis capabilities of standard Petri nets, which can still be
supported by automatic unfolding. Moreover, another attractive advantage of colored
Petri nets for a biological modeler is that they provide the possibility to easily increase
the size of a model consisting of many similar subnets just by adding new colors.

While there is a lot of reported work on the application of different classes of standard
Petri nets to a variety of biochemical networks, see [BCMS10] for a recent review, there
are only a few which take advantage of the additional power and ease of modeling
offered by colored Petri nets. To our knowledge, the existing applications of colored
Petri nets in systems biology can be summarized as follows.

The approach taken in [GKV01], [LZLP06] to use colored Petri nets is to encode the
concentration of species as colored tokens in order to implement continuous simulation
in the given net annotation language ML in Design/CPN or CPN tools. While this is
a nice exercise in demonstrating the power of the annotation language, the burden to
implement standard simulation algorithms is left to the modeler.

Colored Petri nets have been used for qualitative modeling and analysis in [PGA02] to
predict pathological phenotypes based on genetic mutations and in [TMK+06] to model
signal transduction networks. Here, colors encode mutations of the modeled molecules
or distinguish between different molecules via their identifiers (colors). Colors have also
been used to discriminate metabolites which follow different T-invariants (elementary
flux modes) [HKV01], [Run04], [VHK03].

Benefits of colored Petri nets in a stochastic setting were first demonstrated in [BP03]
using a very simple epidemic model. The host population is divided into at-risk classes,
which are modeled as places, and color is used to encode the serological state of indi-
viduals (e.g. susceptible, infected, removed).

From this evaluation of related work, we can see that existing studies usually resort
to Design/CPN [CJK97] or its successor CPN tools [RWL+03] in order to model and

2

1.1 Motivation

analyze biological systems. However neither tool was specifically designed with the
requirements of systems biology in mind. Thus they are not suitable in many aspects,
e.g. they do not directly support stochastic or continuous modeling, nor the simulative
analysis of the models by stochastic or deterministic simulation.

In addition, due to the ability to produce data of the same phenomenon at different
scales, modeling of biological systems shifts from single scales to multiple scales, e.g.
from the molecular scale to the cell level, the tissue level and the whole organism
level [Dal10], [MFV10]. Modeling biological systems beyond one spatial scale (multi-
scale modeling) introduces a series of challenges which should be addressed. In the
following a component can be a gene, a molecule, a cellular compartment, a cell, a
multicellular complex, a tissue, an organ, an organism, a population etc. in the biolog-
ical context. Systems biology is distinguished by the following challenges according to
[Dal10], [GLG+11], [MFV10]:

• Repetition of components – for example in the tissue modeling there may be the
need to describe multiple cells each of which has a similar definition.

• Variation of components – sets of similar components with defined variations,
e.g. mutants. For example, variations may exist among cells in a multicellular
biological system.

• Organization of components – for example how cells are organized into regular
or irregular patterns over spatial networks in one, two or three dimensions in the
tissue modeling.

• Communication between components – for example, quorum sensing takes place
among cell populations in one, two or three dimensional space.

• Movement of components – some components have the ability to move in a certain
region, e.g. molecules within an individual cell or cells within a tissue.

• Hierarchical organization of components – enabling the description of (possibly
repeated) components which contain repeated sub-components. For example, in
the tissue modeling, tissues contain a number of cells and cells contain several
compartments.

• Differentiation of components – for example, differentiation of embryonic stem
cells or immune cells makes a less specialized cell more specialized.

• Replication of components – e.g. cell division.

• Deletion of components – e.g. cell death.

3

1 Introduction

• Pattern formation of components – organizing a number of cells in appropriate
one, two or three dimensional structures in space and time.

Moreover, in modeling of multiscale biological systems, we usually can not just consider
one of those aspects but a combination of some aspects. All these challenges potentially
could be tackled by colored Petri nets. This thesis will particularly explore how to use
colored Petri nets to address these challenges in systems biology.

This thesis aims to present a technology based on colored Petri nets and
associated techniques to address challenges introduced by multiscale mod-
eling in systems biology and offer a solution to perform multiscale modeling
and analysis of biological systems.

In order to implement this aim, we extend our software tool Snoopy [RMH10], building
upon the lessons learned so far, by specific functionalities and features to support
editing, simulating and analyzing of biological models based on colored qualitative,
stochastic and continuous Petri nets [LH10a].

This technology and associated techniques can be applied to all fields where colored
Petri nets have a long tradition, e.g. technical systems.

Specifically they can be applied to other kinds of biological systems, e.g. synthetic
biology [CBW08], [LLZ11], although all case studies in this thesis are about systems
biology.

Besides, systems biology as well as synthetic biology can take advantage of biomodel
engineering to systematically design, construct and analyze biological systems using
computational tools and techniques in a principled way [BDGH10]. Our technology
and associated techniques can be immediately integrated into biomodel engineering to
offer a solution for multiscale modeling of biological systems.

1.2 Background

1.2.1 Petri Nets

Petri nets originating from the dissertation of Carl Adam Petri [Pet62], are an excel-
lent modeling formalism for describing and studying systems that are characterized
as being concurrent, asynchronous, distributed, parallel or nondeterministic. The for-
malism combines an intuitive graphical notation with a number of advanced analysis
techniques with a firm mathematical foundation. Petri nets are applied in practice by
industry, academia, and other fields to the analysis of systems arising in asynchronous
circuit design, communication protocols, distributed computing, production systems,
flexible manufacturing, transportation, systems biology etc. Particularly in systems bi-
ology different classes of Petri nets have been used to model a large variety of biological
systems, see [BCMS10] for a recent review.

4

1.2 Background

Petri nets are weighted, directed, bipartite graphs, consisting of places, transitions and
arcs that connect them. Places usually represent passive system components like condi-
tions or resources, while transitions represent active system components like events. In
systems biology, places may represent species or any kind of chemical compounds, e.g.
genes, proteins or proteins complexes, while transitions represent any kind of chemical
reactions, e.g. association, disassociation, translation or transcription. For a chemical
reaction, its precursors correspond to the preplaces of a transition while its products
to the postplaces of the transition. The arcs lead from places to transitions, or from
transitions to places, whose weights indicate the multiplicity of each arc, reflecting e.g.
stoichiometries for chemical reactions. The arc weight 1 is usually not labeled explicitly.
A place may contain an arbitrary (natural) number of tokens, represented as black dots
or a natural number. A distribution of tokens over all places of a Petri net represents
a state of it, which is called a marking.

A transition is called enabled if each of its preplaces contains at least the number of
tokens specified by the weight of the corresponding arc. An enabled transition may
fire and the firing of a transition transfers tokens from its preplaces to its postplaces
according to their weights. The firing of a transition updates the current marking to
a new reachable one. The repeated firing of transitions establishes the behavior of
a net. The set of markings reachable from the initial marking constitutes the state
space of the net. These reachable markings and transitions between them constitute
the reachability graph of the net.

Petri nets can be characterized by some important structural and behavioral properties.
Examining these properties is usually a key step in the analysis of Petri nets. Below
we give an informal characterization of several of the most useful properties.

• Reachability. Reachability answers the question: is there a firing sequence for a
given marking executable from the initial marking and finally reaching it. Reach-
ability is fundamental for studying the dynamic behavior of Petri nets.

• Boundedness. Boundedness describes how many tokens a place may hold for a
set of reachable markings. If all places of a net are bounded, the net is bounded.
If it is bounded in any initial marking, it is called structurally bounded.

• Liveness. Liveness describes the possibility for a transition to be enabled and
then to fire infinitely often. If each transition of a net is live, the net is live.

• Reversibility. Reversibility describes the possibility of a net being able to come
back to a previous state. If a Petri net can reach its initial marking again from
any reachable marking, the net is reversible.

Petri nets offer rich mathematically founded analysis techniques, which can be used to
check their structural and behavioral properties. We briefly describe some important
analysis techniques.

5

1 Introduction

• Graph-based structural analysis techniques. These analysis techniques can be used
to analyze graph properties of Petri nets, e.g. connectedness or strongly connect-
edness, which is an efficient preliminary consistency check.

• Linear algebra-based analysis techniques. A Petri net can be (partly) represented
by an incidence matrix, which describes the change of the number of tokens in
places due to the firing of transitions. Using it, P-invariants and T-invariants
can be obtained through linear algebra operations.

• State space analysis techniques. These techniques are based on the construction
of the reachability graph for a Petri net. When the reachability graph has been
constructed, different behavioral properties can be decided through state space
search.

We have introduced some basic background of Petri nets. For more details see, e.g.
[HGD08] and [Mur89].

Now we give a simple Petri net model (illustrated in Figure 1.1) that is adapted from a
stochastic π-machine model in [BCP08], modeling the well-known repressilator [EL00].
The repressilator is a regulatory cycle of three genes, e.g. denoted by Ga , Gb and
Gc. Each gene generates its protein, e.g. Pa, Pb and Pc, respectively, by means of
transcription and translation and proteins can degrade. Each protein represses the
expression of its successor’s gene, namely, Pa inhibits Gb, Pb inhibits Gc, and Pc inhibits
Ga by binding to the gene to form a complex species, e.g. Gb_Pa, Gc_Pb and Ga_Pc,
respectively. Each complex species can be unbound.

�����

��

��

�����

��

��

�����

��

��

��	
��

��	
��

��
�
�

�	��	

��	�
���

��
�
�

�	��	

��	�
���

��
�
�

�	��	

��	�
�����	
��

��	
��

��	
��

��	
��

Figure 1.1: A Petri net model for the repressilator. In this model, the highlighted tran-
sitions are logic transitions to facilitate the readability of the net, e.g. the
two transitions named bind_a are in fact the same transition with two
graphic representations.

In this model, places represent such species as genes, proteins and complex species, and
transitions represent such reaction rules as generation (transcription and translation),

6

1.2 Background

degradation, binding and unbinding. Initially, there is a token for each gene respectively.
As there are enough tokens, each of these three generation transitions can be fired. For
example, when the transition for generating Pa fires, it will remove one token from and
then return one token to place Ga, and add one token to place Pa.

1.2.2 Colored Petri Nets

Colored Petri nets [GL79], [GL81], [Jen81] are a colored extension of standard Petri
nets. Since 1970s, both the theory and applications of Petri nets have been extensively
researched. A number of analysis techniques, modeling tools and extensions of Petri
nets have been proposed, one of which are colored Petri nets.

Since the introduction of colored Petri nets, several types of variants have been pro-
posed by adding special restrictions to colored Petri nets. Regular nets [Had87] put a
restriction on the color domains and on the arc functions, so that the existing algo-
rithms for the computation of flows and reductions and the definition of the symbolic
reachability graph can be applied. Unfortunately, these restrictions are so strong that
they can only be used in very few scenarios. To alleviate these restrictions, the well-
formed nets [CDFH93] have been proposed to implement the same purpose, the use of
symbolic reachability graphs for performance evaluation.

Like standard Petri nets, colored Petri nets are also an excellent formalism for spec-
ifying, designing and analyzing concurrent systems, which also combine an intuitive
graphical notation with a set of mathematically founded analysis techniques. They
have been applied to protocols and networks, software, workflows and business pro-
cesses, hardware, manufacturing systems and systems biology.

Colored Petri nets are a discrete event modeling formalism combining the strengths of
Petri nets with the expressive power of programming languages. Petri nets provide the
graphical notation and constructions for modeling systems with concurrency, commu-
nication and synchronization. The programming languages offer the constructions for
the definition of data types, then used for creating compact models. This is the most
important advantage of colored Petri nets.

Colored Petri nets consist, as standard Petri nets, of places, transitions and arcs. In
systems biology, places also represent species or any kind of chemical compounds, while
transitions represent any kind of chemical reactions or transport steps. Additionally,
a colored Petri net model is characterized by a set of color sets with data types. A
data type in a programming language is a set of values that obey some properties
[CW85]. Examples of data types are integer, Boolean, and string. Each place gets
assigned a color set and may contain distinguishable tokens colored with a color of this
color set. For example, in Figure 1.2 that illustrates a colored Petri net model for the
repressilator in Figure 1.1, we define a color set Gene of the enumeration type with
three colors, a, b and c, distinguishing three genes. We use one place to represent three

7

1 Introduction

similar objects, e.g. representing three protein objects as one colored place P . Each
place gets assigned the color set, Gene. As there can be several tokens of the same
color on a given place, the tokens on a place define a multiset over the place’s color set.
For example, in Figure 1.2, we denote the initial marking for the place P by a multiset
expression 1‘a++1‘b++1‘c, which means one token of each color of Gene. A specific
distribution of tokens on all places together constitutes a marking of a colored Petri net.
Each transition has a guard, which is a Boolean expression over defined variables. The
guard must be evaluated to true for the enabling of the transition. The trivial guard
"true" is usually not explicitly given. For example, in Figure 1.2, all colored transitions
have the trivial guard "true". Each arc gets assigned an expression; the result type of
this expression is a multiset over the color set of the connected place. For example,
in Figure 1.2, we define a variable x on Gene, which is used in arc expressions. The
predecessor operator "-" in the arc expression −x returns the predecessor of x in an
ordered finite color set. If x is the first color, then it returns the last color. The result
type of all expressions is a multiset over Gene.

G_P

Gene

P
Gene

G

3

1`a++

1`b++

1`c

Gene

bind

degrade

unbind

generate

x

x
x

x

x
xx

x

-x

-x

Figure 1.2: A colored Petri net model for the repressilator in Figure 1.1. The declara-
tions: colorset Gene = enum with a, b, c and variable x : Gene.

The variables associated with a transition consist of the variables in the guard of the
transition and in the expressions of adjacent arcs. Before the expressions are evaluated,
the variables must be assigned values with suitable data types, which is called binding
[JKW07]. A binding of a transition corresponds to a transition instance. Enabling
and firing of a transition instance are based on the evaluation of its guard and arc
expressions. If the guard is evaluated to true and the preplaces have sufficient and
appropriately colored tokens, the transition instance is enabled and may fire. When a
transition instance fires, it removes colored tokens from its preplaces and adds colored
tokens to its postplaces, i.e. it changes the current marking to a new reachable one.
The colors of the tokens that are removed from preplaces and added to postplaces are

8

1.2 Background

decided by the arc expressions. For example, in Figure 1.2, for the colored transition
generate, there is only one related variable, x, which can be assigned the value, a, b or
c, so it obtains three bindings, x = a, x = b and x = c, i.e. it has three instances. As
each binding has enough tokens for enabling, any of these three transition instances
can be fired. For example, if we fire this transition under the binding x = a, one token
with the color a is removed from and then added to place G and one token with the
same color is added to place P . The set of markings reachable from the initial marking
constitutes the state space of a given net. These reachable markings and instances of
transitions between them constitute the reachability graph of the net.

There are also a variety of structural and behavioral properties for colored Petri nets,
such as reachability, boundedness, liveness and reversibility. They have a similar mean-
ing as in standard Petri nets. Most properties can be decided by analyzing the state
space of a colored Petri net. For more details see [JKW07] and [JK09].

In addition, please note that the colored model in Figure 1.2 when unfolded yields the
uncolored Petri net model in Figure 1.1. From Figure 1.2, we can see that the colored
Petri net model reduces the size of the original Petri net model to one third. More
importantly, when other similar subnets have to be added, the model structure does
not need to be modified; what has to be done is only to add extra colors by changing
the color set definition.

1.2.3 Systems Biology

Systems Biology originated from the molecular biology and genomic biology revolutions
[IWL06]. With their revolutions, the study of biological systems is recognized not only
to focus on isolated components, but to consider also the interactions of all these
components. Systems biology has an important impact on understanding living systems
and on giving rise to advances in diagnosis, treatment, prevention and relieving of
human diseases.

There is no widely accepted definition of systems biology, although several definitions
have been proposed. For example, Ideker et al. [IGH01] defines that systems biology
"does not investigate individual genes or proteins one at a time", but "investigates the
behavior and relationships of all of the elements in a particular biological system while
it is functioning". Kitano [Kit02] describes systems biology as that "to understand
biology at the system level, we must examine the structure and dynamics of cellular
and organismal function, rather than the characteristics of isolated parts of a cell or
organism". Popel et al. [PH09] define systems biology "as a field of study that takes
into account complex interactions in biological systems at different scales of biological
organization, from the molecular to cellular, organ, organism, and even societal and
ecosystem levels".

As described by all those definitions, the study of systems biology shifts from com-

9

1 Introduction

ponents of a system to the structure and dynamics of that system, so it gives the
system-level understanding of the system with the use of mathematical and compu-
tational techniques. With the increasing magnitude and complexity of interactions in
biological systems and the rapid growth of quantitative biological data, modeling plays
a more and more important role in the study of systems biology.

Accordingly, due to the ability to produce data of the same phenomenon at different
scales, modeling of biological systems shifts from single biological scales to multiple
scales (multiscale modeling), e.g. from the molecular scale to the cell, tissue, and the
whole organism level [Dal10], [MFV10], [PH09]. See Figure 1.3 for a diagrammatic
representation of some different biological scales and some of their hallmark phenomena
[MSFK09], [MFV10]. As shown in this figure, in a biological system, each level is
composed of components of its lower ones, e.g. molecules compose cells, cells integrate
themselves into tissues, and tissues organize themselves into organs. For each level,
there are some particular phenomena, which are also the issues that modeling focuses
on. Most importantly, those large data sets have pushed us to integrate all these facets
[MFV10]. Multiscale modeling has become one of the most important issues in the
study of systems biology [PH09]. Modeling biological systems beyond one spatial scale
introduces a series of challenges, which will be discussed in the following.

���������

�����

	
�����

��
���

��
��
���

�

���
�
��������
�������
���������
�������������
���
��

����
��������
��
���
�������������
����������������
���
��
�������������
����������
 �����
��
��
�!
�����"
�������
��
���
��
#������� �����
��

�!
�����"
�������
��
���
��

�!
�����"
�������
��
���
��

�����������	���
 ���
�
���������

���
��

Figure 1.3: A diagrammatic representation of some biological scales.

(1) Repetition of components.

As depicted in Figure 1.3, each level is composed of components of its lower level, e.g.
cells integrate themselves into tissues and tissues organize themselves into organs. To

10

1.2 Background

model this, we usually have to describe multiple components, e.g. cells and tissues,
each of which has a similar definition.

For example, at the intracellular level, consider a taxis signal transduction network
consisting of multiple receptors and transducers [SOM10]. We have to distinguish and
model each receptor or transducer if we want to clearly describe the effects among
them. Consider another example, Ca2+ release site models that are composed of a
number of individual Ca2+ channel models [DLKS08]. In order to clarify the effects
among these channels, each of these channels has to be represented by an individual
model with an identical structure.

Another challenge is the modeling of multicellular biological systems [HGBT09], [PUS11],
e.g. an adult Drosophila wing comprising about 30,000 cells [GLG+11]. In this situ-
ation, we also have to face models with a high number of components of a similar
definition.

For biological systems with repetitive components, we can easily use colored Petri nets
to model them, where we only need to define each similar component as a color of a
color set standing for the set of similar components and to develop a model for one
component only. Usually, colored Petri nets can reduce the model size of repetitive
components to that of one component by representing repetitive components with one
component model, each of which is encoded and distinguished by a color. Thus colored
Petri nets make it possible to model such kind of large-scale biological systems.

(2) Variation of components.

Variation, e.g. mutation [KB71], [PGA02] widely exists in biological systems and it is
important to understand the effects that a variation brings. In multicellular biological
systems, we often have to consider variations among cells [BMD07]. To do this, we
have to add different mutant conditions to these models and change them conveniently
for simulation. Using colored Petri nets, we can easily deal with this issue, where we
can encode mutations as colors and switch a mutation by changing the parameters of a
colored place or transition relating to this mutation. In this case, color is used to mark
the differences between normal and mutant cells.

(3) Organization of components.

Every component in a biological system has a spatial aspect, and to consider this
during modeling is sometimes essential [GAS+06], [NJT+05], [PO00]. In the example
of coupled Ca2+ channels, the local Ca2+ concentration experienced by a channel is
affected not only by the number of other open channels but also their distances to this
channel. Here we have to arrange these channels in regular or irregular space in order
to consider the distance between two channels [DLKS08]. It is also natural to organize
cells in a tissue or tissues in an organ if it is not acceptable to neglect this spatial
aspect.

Moreover, sometimes we have to consider a hierarchical organization of components.

11

1 Introduction

For example, there are two hierarchies when we model cells which contain several
compartments or three hierarchies if we build a model involving three levels, cells,
tissues and organs.

To address these issues, the selected modeling tools have to support spatial and hier-
archical modeling. Fortunately, colored Petri nets provide all these capabilities. Using
the hierarchical modeling capability and hierarchical color sets, we can easily address
all these problems. In this case, colors encode discrete positions of elements in one, two
or three dimensional space.

(4) Communication between components.

The understanding of the communication mechanism between cells, e.g quorum sensing
(QS) is another fundamental issue in systems biology, which has great impact on bio-
logical processes such as development, growth and tissue repair [JKT+01], [MKH+06].
QS takes place among cell populations and depends on the cell density, which can
be organized in one, two or three dimensional space. By means of colored Petri nets,
we can easily construct such communication processes, in which we still use colors to
represent each cell.

(5) Movement of components.

Some components in biological systems have the ability to move in a certain region,
e.g. molecules within an individual cell or cells within a tissue, which results in the
rearrangement and sorting of these components, possibly forming patterns. For exam-
ple, coordinated movements of cells or tissues will lead to larger tissue rearrangements
[PO00]. Such motion plays a crucial role throughout the life span of a number of or-
ganisms, which can occur at different levels, e.g. molecules, cells or tissues [PO00].
Reference [PSQH06] gives an example of the modeling of molecule movement in a cell.
In [GMR08], six different types of cells move in a two dimensional grid in order to in-
vestigate the regeneration of the chronic chagasic cardiomyopathy after bone marrow
stem cell transplantation.

In this situation, colored Petri nets provide an interesting solution, where each element
of a grid is considered as a color. If a component occupies a grid element, it will have
the color of this element. The movement of a component from a grid element to another
means to change the color of the former grid element to that of the new grid element.

(6) Differentiation of components.

Differentiation widely occurs during the development of a biological system. For ex-
ample, cellular differentiation turns a less specialized cell into a more specialized cell
type, e.g. embryonic stem cells are able to differentiate into all cell types in the body.
Reference [GMR08] gives an example by investigating the regeneration of the chronic
chagasic cardiomyopathy after bone marrow stem cell transplantation, which involves
the modeling of the differentiation of bone marrow stem cells into cardiomyocyte. In
this scenario, we can use colors to encode different states of components, e.g. cells.

12

1.2 Background

(7) Replication of components.

Replication of a component usually means the process of duplicating or producing a
copy of this component, e.g. DNA replication or cell division [Mor06]. For example,
cell division and thereby DNA replication is a key step in life, which plays important
roles in the development and growth of organisms, regular renewal of cells and repair
of damaged cells. The modeling of cell division has been widely studied, e.g. [Wat09].
Using colored Petri nets, we can represent a cell as a color of a color set and add a new
color to the color set for each division.

(8) Death of components.

Death of components, e.g. cell death [Mor06] is also essential in life like apoptosis of
cells during organism development and necrosis caused by detrimental factors. Using
colored Petri nets, we can still represent a cell as a color of a color set, but when it
dies, we have to remove this color from the color set.

(9) Pattern formation of components.

The processes of pattern formation [Gri08] mean to distribute and organize a number of
components (e.g. cells or signal molecules) in appropriate one, two or three dimensional
structures in space and time [MFV10]. Pattern formation in fact results from the
combination of organization, communication and movement of components, e.g. cell
populations, so it can be tackled by colored Petri nets.

Multiscale modeling poses technical challenges in order to solve the application chal-
lenges above, the most important two of which are given as follows.

Modeling methods.

The selected modeling methods have to take into account the challenges addressed by
multiscale modeling. As described above, colored Petri nets have the ability to address
these challenges. Besides, the modeling method for each level may be different due
to the complex nature of biological systems; therefore, the selected modeling methods
have to offer at least continuous and stochastic modeling capabilities. Colored Petri
nets provide these capabilities through colored stochastic and continuous Petri nets.

Analysis techniques.

In the situation of multiscale modeling, the constructed models become more and
more intractable due to the involved multiple scales, which demand for more analy-
sis techniques, not only continuous or stochastic simulation, but also formal analysis
techniques, e.g. model checking. Colored Petri nets offer a variety of analysis methods,
ranging from animation/simulation to structural analysis to qualitative and quantita-
tive model checking.

In summary, in order to address these challenges, new modeling approaches have to
be provided and fortunately colored Petri nets could have the required potential. In
Chapter 5, we will illustrate how to use colored Petri nets to address some of these
challenges.

13

1 Introduction

1.3 Contributions

This thesis aims to present a technology based on colored Petri nets and associated
techniques to support multiscale modeling and analysis of biological systems. In par-
ticular, the contributions of this thesis are as follows.

(1) A colored Petri net framework for systems biology.

Modeling in systems biology usually takes two approaches: qualitative and quantitative.
Qualitative approaches often serve as initial investigations of systems or apply when the
amount of quantitative information about systems is limited. Quantitative approaches
offer quantitative and realistic insights into systems to be studied, which usually take
two forms: stochastic and deterministic.

The first contribution of this thesis is that we present a colored Petri net framework for
systems biology in Chapter 2, which relates three modeling paradigms: colored quali-
tative Petri net (QPN C), colored stochastic Petri net (SPN C) and colored continuous
Petri net (CPN C). Hence, we can model and analyze a biological system from three
perspectives: qualitative, stochastic and continuous by transforming them into each
other. That is to say, these three formalisms can be combined together to accomplish
the modeling and analysis of biological systems.

(2) An algorithm for the computation of enabled transition instances.

Animation/simulation is an important technique for obtaining an intuitive understand-
ing of a Petri net model as it demonstrates the dynamic behavior of the model in a
visual way. The computation of enabled transition instances plays a core role in the
animation/simulation of colored Petri nets. The main difference between the compu-
tation of enabled transition instances for animation/simulation and the computation
of transition instances for unfolding is that the former computes enabled transition
instances in terms of available tokens on places while the latter computes transition
instances in terms of color sets of variables.

In Chapter 3 we present an efficient algorithm for the computation of enabled transition
instances for colored Petri nets. This algorithm uses a pattern matching mechanism and
a new partial binding - partial test principle, and adopts some optimization techniques.
The pattern matching mechanism improves the computational efficiency by binding
variables to available tokens on places. The partial binding - partial test principle allows
us to test expressions during the partial binding process so as to prune invalid bindings
as early as possible. The optimization techniques prune invalid potential bindings before
the binding begins, and also find disabled transitions at an early phase. This algorithm
realizes an efficient computation of enabled transition instances for colored Petri nets.

(3) An unfolding algorithm for colored Petri nets.

Colored Petri nets provide a compact and convenient way for modeling complex sys-
tems, but many basic properties and analysis techniques for standard Petri nets are

14

1.3 Contributions

difficult to extend to colored Petri nets. So it is a reasonable approach to unfold colored
Petri nets to equivalent standard Petri nets in order to use existing analysis techniques
and tools for standard Petri nets. Besides, we can also simulate colored stochastic (con-
tinuous) Petri nets using stochastic (continuous) simulation algorithms by unfolding.
Therefore, unfolding is an essential problem in simulating and analyzing colored Petri
nets.

For this, in Chapter 3 we present an efficient unfolding algorithm, in which we provide
two approaches to efficiently compute transition instances. That is, if the color set of
each variable in a guard is a finite integer domain, the constraint satisfaction approach
is used to obtain all valid bindings; otherwise, a general algorithm is adopted, in which
some optimization techniques, e.g. the partial binding - partial test principle, are used.

(4) Automatic folding of Petri nets, illustrated by three special cases.

Folding (colorizing) is a challenging approach to obtain a colored Petri net for a given
standard Petri net. In Chapter 3, we consider three special cases for automatic fold-
ing: colorizing T-invariants, master nets and twin nets in order to reduce the amount
of manual work required for folding Petri nets. Among them, colorizing T-invariants
contributes to the further understanding of T-invariants of a biological network, and
colorizing master nets and twin nets offers a convenient way for reconstructing biolog-
ical networks from experimental data.

(5) Summarizing analysis techniques for colored Petri nets.

Petri nets offer a large variety of analysis techniques ranging from informal techniques,
e.g. animation/simulation to formal techniques, e.g. model checking. In Chapter 4, we
summarize those analysis techniques that can be used for colored Petri nets and pay
attention to applying them for analyzing colored Petri nets.

(6) Application and validation of the colored Petri net technology and tech-
niques using case studies.

In Chapter 5, we give three case studies, C. elegans vulval development, coupled Ca2+

channels and membrane systems, to explore the application of our colored Petri net
technology and techniques. These case studies not only demonstrate how to apply the
colored Petri net framework and related analysis techniques to modeling and analyzing
practical biological systems, but also show how to address the challenges in systems
biology given above.

Concrete outputs.

We have implemented our colored Petri net technology and associated techniques in
our modeling tool, Snoopy; as a result, we provide three colored net classes, QPN C ,
SPN C and CPN C , available in Snoopy. We have also finished a detailed manual for
how to model and analyze colored Petri nets in Snoopy [LH11] and provided a library
of examples, see e.g. [GLTG11], [GLG+11] and [GH11].

15

1 Introduction

We have also published a set of related papers, see [LH10a], [LH10b], [GLTG11] and
[GLG+11].

1.4 Organization of Thesis

This thesis is organized as follows:

Chapter 2 We propose a colored Petri net framework for modeling and analyzing bio-
logical systems, which contains three related modeling paradigms: QPN C , SPN C

and CPN C . Besides, we summarize the scenarios where colored Petri nets can
be used to model biological systems and discuss how to encode components of
biological systems as colors.

Chapter 3 We focus on three key problems in implementing colored Petri nets. We first
give an algorithm for the computation of enabled transition instances. We then
present an algorithm for unfolding colored Petri nets and discuss how to improve
the efficiency of the unfolding process. Besides we discuss three scenarios of the
automatic folding (colorizing) of Petri nets: T-invariants, master nets and twin
nets.

Chapter 4 We summarize analysis techniques for colored Petri nets from two points
of view. From the unfolding point of view, we describe how to employ existing
techniques, structural techniques, numerical and simulative model checking, and
tools for standard Petri nets to realize the analysis of colored Petri nets. From
the folding point of view, we transform our qualitative Petri nets to those read
by CPN tools and then analyze them using CPN tools.

Chapter 5 We give three case studies, C. elegans vulval development, coupled Ca2+

channels and membrane systems to demonstrate the applications of colored Petri
nets.

Chapter 6 We summarize the achieved results and give an outlook for future research.

16

2 A Colored Petri Net Framework

Petri nets provide a formal and clear representation of biological systems based on
their firm mathematical foundation for the analysis of biochemical properties. How-
ever, standard Petri nets do not easily scale. So attempts to simulate biological systems
by standard Petri nets have been mainly restricted so far to relatively small models.
They tend to grow quickly for modeling complex systems, which makes it more difficult
to manage and understand the nets, thus increasing the risk of modeling errors. Two
known modeling concepts improving the situation are hierarchy and color. Hierarchical
structuring has been discussed a lot, see e.g. [MWW11], while the color has gained lit-
tle attention so far. Thus, we investigate how to apply colored Petri nets to modeling
and analyzing biological systems. To do so, we not only provide compact and readable
representations of complex biological systems, but also do not lose the analysis capa-
bilities of standard Petri nets, which can still be supported by automatic unfolding.
Moreover, another attractive advantage of colored Petri nets for a biological modeler
is that they provide the possibility to easily increase the size of a model consisting of
many similar subnets just by adding colors.

In this chapter, we present a colored Petri net framework for modeling and analyzing
biological systems, which contains three related modeling paradigms: colored qualitative
Petri net (QPN C), colored stochastic Petri net (SPN C) and colored continuous Petri
net (CPN C). These three formalisms can be combined together to accomplish the
modeling and analysis of biological systems.

This chapter is organized as follows. We first give an overview of this framework. After
that, we briefly recall some prerequisites of colored Petri nets and then formally define
these three formalisms. We finally summarize the scenarios where colored Petri nets
can be used in systems biology and discuss how to encode components of biological
systems as colors.

2.1 Overview

In this section, we present a colored Petri net framework for modeling and analyzing
biological systems (illustrated in Figure 2.1), which extends the Petri net framework for
modeling and analyzing biological systems in [GHL07], i.e. the new proposed framework
is in fact the colored version of the existing framework, but the colored version provides
possibilities for compact and readable representations of complex biological systems.

17

2 A Colored Petri Net Framework

Both of these frameworks unify the qualitative, stochastic and continuous Petri net
paradigms. More specifically, the new framework relates three modeling paradigms:
QPN C , SPN C and CPN C , just like the Petri net framework relating qualitative Petri
net (QPN), stochastic Petri net (SPN) and continuous Petri net (CPN).

� �

���

�������

�	
��
�	����
	��

����

���������

��	�������	����
	��

����

�����

���������	�
���	�
�� �
�����
���	�
���	�
��

���������

�������

��
����
����

���

���

���

���� ����

����

���	�
�	�
�

��	����
�

����
���
	�
�

��
!"��#

$
!"��#

Figure 2.1: A colored Petri net framework.

QPN C is a colored version of QPN . Like QPN , QPN C is time-free, i.e. transitions
are not assigned a time and tokens on places are not associated with a sojourn time.
So the analysis on a QPN C model in fact considers all possible behavior of it under
any timing, for example, using the state space analysis based on Computational Tree
Logic (CTL), one branching time temporal logic [CGP01], to analyze its reachability
graph (RG).

SPN C is a colored version of SPN . Similarly, a firing delay rate is introduced and
associated with each transition, which is a random variable defined by an exponential
probability distribution. Therefore, the semantics of SPN C is equivalent to a contin-
uous time Markov chain (CTMC), which is constructed from the reachability graph
of the underlying qualitative Petri net by labeling the arcs between the states with
transition rates. So we can use such quantitative analysis techniques as Continuous
Stochastic Logic (CSL) [Kwi03], a probabilistic counterpart of CTL, or Probabilistic
Linear-time Temporal Logic with numerical constraints (PLTLc) [DG08]. QPN C is an
abstraction of SPN C , so all qualitative properties valid in the QPN C are also valid in
the SPN C , and vice versa.

CPN C is a colored version of CPN . In CPN C , the discrete values of places are replaced
with continuous values, which describe the overall behavior of species represented by
places via concentrations. A deterministic rate is associated with each transition, which

18

2.2 Colored Petri Nets

makes a continuous Petri net model represent a set of ordinary differential equations
(ODEs). Contrary to discrete Petri nets, the state space for CPN C is continuous and
linear, so we can analyze it using a Linear Temporal Logic (LTL) [Pnu81], e.g. Linear
Temporal Logic with constraints (LTLc) in the manner of [CCFS06] or PLTLc [DG08].
The stochastic and continuous models are mutually related by approximation. See
[GHL07] for more details about the relationships among qualitative, stochastic and
continuous Petri nets.

2.2 Colored Petri Nets

In this section, we recall some prerequisites of colored Petri nets according to [Jen81]
and [JK09] before introducing our own colored Petri net classes.

Let us begin with introducing the definition and notations of multisets, which will be
used in the later definitions of colored Petri nets.

2.2.1 Multiset

A multiset is a set in which there can be several occurrences for the same element. The
number of occurrences of an element is called coefficient or multiplicity.

Definition 1 (Multiset)

Let S be a finite, non-empty set, a multiset over S is a function m : S → N0 that maps
each element s ∈ S onto a non-negative integer m(s) ∈ N0. It is denoted by a formal
sum: m =

∑

s∈S m(s)‘s.

The collection of all the multisets over S is denoted by SMS . The empty multiset over
S is denoted by φMS where the coefficient for each element is zero.

Definition 2 (Multiset operations)

Let S be a finite, non-empty set, and ∀m1, m2, m ∈ SMS . Addition (+) , scalar multi-
plication (∗), comparison (≤), substraction (−) and size |m| are defined as follows:

1. (m1 + m2)(s) = m1(s) + m2(s), ∀s ∈ S.

2. (n ∗m)(s) = n ∗m(s) ∀n ∈ N0, ∀s ∈ S.

3. m1 ≤ m2 ⇔ m1(s) ≤ m2(s), ∀s ∈ S.

4. (m2 −m1)(s) = m2(s)−m1(s), ∀s ∈ S and m1 ≤ m2.

5. |m| =
∑

s∈S m(s).

19

2 A Colored Petri Net Framework

We also use SMS to represent the multiset type over S. For example, the marking of a
place p and the expressions on the arcs connected by p are of the multiset type C(p)MS ,
where C(p) represents the color set of p, that is, they are required to evaluate to the
multiset over the color set of their corresponding place, p.

For instance, let a color set be S = {a, b, c}, then m = 1‘a+2‘b+4‘c is a multiset over S,
which contains 1 occurrence of element a, 2 occurrences of element b and 4 occurrences
of element c, i.e. m(a) = 1, m(b) = 2 and m(c) = 4.

2.2.2 Definition

In colored Petri nets, there are different types of expressions, e.g. arc expressions,
guards, or expressions for defining initial markings. An expression is built up from
variables, constants, and operation symbols. It is not only associated with a particular
color set, but also written in terms of a predefined syntax. In the following, we denote by
EXP a set of expressions that comply with a predefined syntax. The formal definition
of colored Petri nets is as follows.

Definition 3 (Colored Petri net)
A colored Petri net is a tuple N =< P, T, F,

∑

, C, g, f, m0 >, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• F is a finite set of directed arcs.

•
∑

is a finite, non-empty set of color sets.

• C : P →
∑

is a color function that assigns to each place p ∈ P a color set
C(p) ∈

∑

.

• g : T → EXP is a guard function that assigns to each transition t ∈ T a guard
expression of the Boolean type.

• f : F → EXP is an arc function that assigns to each arc a ∈ F an arc expression
of a multiset type C(p)MS , where p is the place connected to the arc a.

• m0 : P → EXP is an initialization function that assigns to each place p ∈ P an
initialization expression of a multiset type C(p)MS .

We then introduce the following notions that may be used in the following sections.

• •t, the preplaces of a transition t,

• t•, the postlaces of a transition t,

20

2.2 Colored Petri Nets

• •p, the pretransitions of a place p,

• p•, the posttransitions of a place p.

2.2.3 Dynamic Behavior

Before giving the behavior of colored Petri nets, we first define some concepts and
denotations.

In a colored Petri net N =< P, T, F,
∑

, C, g, f, m0 >, each place p ∈ P is associated
with a color set C(p). Each color c ∈ C(p) exactly corresponds to a place instance,
i.e. each color will become an uncolored place after unfolding. We let p(c) denote an
instance of p with color c, IP (p) all the instances of p and IP all the instances of all
places p ∈ P .

Definition 4 (Place instance)

A place instance p(c) is a pair (p, c) with p ∈ P and c ∈ C(p).

The variables associated with a transition t ∈ T are denoted V ar(t), which is composed
of the variables in the guard of t and in the expressions of arcs connected to t. Before
the expressions are evaluated to values, the variables must get assigned values, which
is called binding [JKW07].

A binding b of a transition t is a function that maps each variable v ∈ V ar(t) onto
a value b(v) that is of the same type as the variable. The set of all bindings for a
transition t is denoted B(t).

A binding b ∈ B(t) of a transtion t exactly corresponds to a transition instance,
denoted by t(b), i.e. it will become an uncolored transition after unfolding. The set of
all bindings for a transition t constitutes the set of all the instances of transition t,
denoted by IT (t). The set of all instances of all transitions t ∈ T is denoted IT .

Definition 5 (Transition instance)

A transition instance t(b) is a pair (t, b) with t ∈ T and b ∈ B(t).

In the following, we use exp〈b〉, where exp ∈ EXP , to represent the result of evaluating
an expression exp in terms of a binding b of a transition t.

Definition 6 (Transition instance enabling)

A transition instance t(b) ∈ IT is enabled in a marking m, denoted by m[t(b)〉, if and
only if the following conditions are satisfied:

1. g(t) 〈b〉 = true,

2. m(p) ≥ f(p, t)〈b〉, ∀p ∈• t.

21

2 A Colored Petri Net Framework

Definition 7 (Transition instance firing)
A transition instance t(b) ∈ IT enabled in a marking m may fire, and reach a new
marking m

′
, denoted by m[t(b)〉m

′
, with

m
′
(p) = m(p) + f(t, p)〈b〉 − f(p, t)〈b〉,∀p ∈ P.

2.3 Colored Qualitative Petri Nets

The introduction of colored Petri nets greatly increases modeling convenience by asso-
ciating data types with tokens and parameterizing transitions and arcs, which makes
it possible to create compact models for complex systems.

QPN C has a similar expressive power to colored Petri nets given by K. Jensen [Jen81],
but adds some restrictions on data types and the syntax of expressions. However,
QPN C considers many features that are very helpful for the modeling of biological
systems, such as flexible ways for specifying initial marking and support of special
arcs. In fact, QPN C is a colored extension of Petri nets extended by such special arcs
as inhibitor, read, equal and reset arcs.

In the following, we first describe Petri nets extended by special arcs, and then give
the definition of QPN C and describe its behavior.

2.3.1 Extended Petri Nets

There have been many various extensions based on the basic Place/Transition nets
(P/T nets) [HGD08] so far. One of these extensions is to consider special arcs, which
either make the model representation more compact or extend the modeling power of
the Petri net formalism.

In our extended Petri nets, we consider four special arcs: inhibitor arcs, read arcs (also
called test arcs), equal arcs and reset arcs, which are particularly helpful for biological
modeling. Figure 2.2 gives the graphical representation of these three special arcs in
Snoopy.

The inhibitor arc, read arc and equal arc add constraints on the firing of a transition,
but are not affected by the firing. The inhibitor arc was first introduced in [FA73]
to solve a synchronization problem beyond the power of P/T nets. The inhibitor arc
reverses the logic of the enabling condition of a place, i.e. it imposes a precondition
that a transition may only fire if the place contains less tokens than the weight the arc
indicates. The inhibitor arc is only allowed to lead from a place to a transition that
is inhibited. In systems biology, the inhibitor arc is especially useful for modeling the
inhibition function widely existing in biological systems [GCPL+98].

The read/test arc was introduced in [MR95], which is also directed from a place to a
transition. It allows to model that some resource is read, but does not consume the

22

2.3 Colored Qualitative Petri Nets

��

�� ��

��

�

�

�

Figure 2.2: Special arcs drawn in Snoopy, where the arc terminating with a small hollow
circle is the inhibitor arc, the arc with a filled circle is the read/test arc,
the arc with double filled circles is the equal arc, and the arc with double
arrowheads is the reset arc.

tokens of the source place. Hence the same token can be used by many transitions at
the same time. In systems biology, the read arc provides a convenient representation
of such chemical interactions as enzymatic reactions, since the enzyme itself is not
consumed in the enzyme reaction [Cha07].

The equal arc [RMH10] imposes a precondition that a transtion may only fire if the
number of tokens of the place connected by the equal arc is equal to the arc weight.
After fired, the tokens of this place do not change. An equal arc can be replaced by an
inhibitor arc and a read arc, so it makes the model representation more compact.

The reset arc makes it possible to empty the place connected by this arc once the
transition connected by it is fired. This adds expressive power and makes reachabil-
ity undecidable [AK76]. The reset arc is also only allowed to lead from a place to a
transition.

The following gives the formal definition of extended Petri nets by special arcs.

Definition 8 (Extended Petri net)
An extended Petri net is a tuple N =< P ,T ,F , f ,m0 > where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• F is a finite set of directed arcs. F is refined as the union of five disjunctive arc
sets, i.e. F := FS ∪ FI ∪ FT ∪ FE ∪ FR with:

– FS ⊆ (P × T) ∪ (T × P) is the set of standard arcs,

– FI ⊆ P × T is the set of inhibitor arcs,

– FT ⊆ P × T is the set of test/read arcs,

– FE ⊆ P × T is the set of equal arcs, and

23

2 A Colored Petri Net Framework

– FR ⊆ P × T is the set of reset arcs.

• f : F → N0 is a function that assigns a non-negative integer to each arc a ∈ F .

• m0 : P → N0 gives the initial marking.

Compared with standard P/T nets, the firing rule for extended Petri nets needs to be
adapted accordingly. The enabling conditions are extended in the following way.

Definition 9 (Extended enabling condition)

Let N =< P, T, F, f, m0 > be an extended Petri net and m be a marking of N .
F := FS ∪FI ∪FT ∪FE ∪FR. A transition t ∈ T is enabled in the marking m, denoted
by m[t〉, if the following conditions are satisfied:

• ∀p ∈• t, m(p) ≥ f(p, t), if (p, t) ∈ FS ,

• ∀p ∈• t, m(p) < f(p, t), if (p, t) ∈ FI ,

• ∀p ∈• t, m(p) ≥ f(p, t), if (p, t) ∈ FT ,

• ∀p ∈• t, m(p) = f(p, t), if (p, t) ∈ FE .

Definition 10 (Extended firing)

Let N =< P, T, F, f, m0 > be an extended Petri net, m be a marking of N , and a
transition t ∈ T be enabled in the marking m. F := FS ∪ FI ∪ FT ∪ FE ∪ FR. The
transition t can be fired and reach a new marking m′, denoted by m[t〉m′, with

m′(p) =























m(p)− f(p, t) + f(t, p) if (p, t) ∈ FS ,
m(p) + f(t, p) if (p, t) ∈ FI ,
m(p) + f(t, p) if (p, t) ∈ FT ,
m(p) + f(t, p) if (p, t) ∈ FE ,
f(t, p) if (p, t) ∈ FR.

Consider an extended Petri net in Figure 2.3, which illustrates how different extended
arcs work. For example, the transition t0_1 is connected with p0_1 by an inhibitor
arc. t0_1 is enabled when p0_1 has less than 2 tokens. Firing of t0_1 does not change
the number of tokens on p0_1. t3_1, connected with p0_1 by an equal arc, is enabled
when p0_1 has exactly 2 tokens. If t3_1 is fired, the equal arc also does not change
the number of tokens on p0_1. t1_1 is connected with p0_1 by a read arc and with
p1_1 by a reset arc, whose firing will make p1_1 empty due to the reset arc.

24

2.3 Colored Qualitative Petri Nets

����

���� ����

����

����

��������

���� ����

���� ����

����

����

����

	 	

� �� �

�

� �

�

� �

Figure 2.3: An extended Petri net that illustrates how different extended arcs work.

2.3.2 Colored Qualitative Petri Nets

Colored qualitative Petri nets are a colored extension of extended Petri nets defined in
the previous section. In the following, we give the formal definition of QPN C .

Definition 11 (Colored qualitative Petri net)

A colored qualitative Petri net QPN C is an eight-tuple N =< P, T, F,
∑

, C, g, f, m0 >,
where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• F is a finite set of directed arcs. F is refined as the union of five disjunctive arc
sets, i.e. F := FS ∪ FI ∪ FT ∪ FE ∪ FR with:

– FS ⊆ (P × T) ∪ (T × P) is the set of standard arcs,

– FI ⊆ P × T is the set of inhibitor arcs,

– FT ⊆ P × T is the set of test/read arcs,

– FE ⊆ P × T is the set of equal arcs, and

– FR ⊆ P × T is the set of reset arcs.

•
∑

is a finite, non-empty set of color sets.

• C : P →
∑

is a color function that assigns to each place p ∈ P a color set
C(p) ∈

∑

.

• g : T → EXP is a guard function that assigns to each transition t ∈ T a guard
expression of the Boolean type.

25

2 A Colored Petri Net Framework

• f : F → EXP is an arc function that assigns to each arc a ∈ F an arc expression
of a multiset type C(p)MS , where p is the place connected to the arc a.

• m0 : P → EXP is an initialization function that assigns to each place p ∈ P an
initialization expression of a multiset type C(p)MS .

The meaning of each element in this definition is the same as that of colored Petri
nets by K. Jensen [Jen81]. The only difference lies in the consideration of special arcs,
which results in the change of enabling conditions.

Definition 12 (Transition instance enabling)

Let N =< P, T, F,
∑

, C, g, f, m0 > be a QPN C and m be a marking of N . F :=
FS ∪ FI ∪ FT ∪ FE ∪ FR. A transition instance t(b) ∈ IT is enabled in a marking m,
denoted by m[t(b)〉, if and only if the following conditions are satisfied:

1. g(t) 〈b〉 = true,

2. ∀p ∈• t, m(p) ≥ f(p, t)〈b〉, if (p, t) ∈ FS ,

3. ∀p ∈• t, m(p) < f(p, t)〈b〉, if (p, t) ∈ FI ,

4. ∀p ∈• t, m(p) ≥ f(p, t)〈b〉, if (p, t) ∈ FT ,

5. ∀p ∈• t, m(p) = f(p, t)〈b〉, if (p, t) ∈ FE .

Definition 13 (Transition instance firing)

Let N =< P, T, F,
∑

, C, g, f, m0 > be a QPN C , m be a marking of N , and a transition
instance t(b) ∈ IT be enabled in the marking m. F := FS ∪ FI ∪ FT ∪ FE ∪ FR. The
transition instance t(b) can be fired, and reach a new marking m

′
, denoted by m[t(b)〉m′,

with

m′(p) =























m(p)− f(p, t)〈b〉+ f(t, p)〈b〉 if (p, t) ∈ FS ,
m(p) + f(t, p)〈b〉 if (p, t) ∈ FI ,
m(p) + f(t, p)〈b〉 if (p, t) ∈ FT ,
m(p) + f(t, p)〈b〉 if (p, t) ∈ FE ,
f(t, p)〈b〉 if (p, t) ∈ FR.

For example, if we fold the left part and the right part of the model in Figure 2.3 by
defining a color set CS with two colors, e.g. 1 and 2, we can obtain a colored version
of the extended Petri net model, illustrated in Figure 2.4.

We then use a circadian model introduced in [GHG02] to give another QPN C example.
It describes circadian rhythms, which are widely used in organisms to keep a sense
of daily time and regulate their behavior accordingly. In this model, two genes, e.g.
a and r, are transcribed into mRNA and then translated into proteins respectively.

26

2.3 Colored Qualitative Petri Nets

��

�

������	

�

��

������	

�

��

����

�� ��

���

�

��

��� ���

���

���

��

���

Figure 2.4: A QPN C model for Figure 2.3. The declarations: colorset CS =
int with 1, 2 and variable x : CS.

Gen_a

Gen_act_r

Gen_Act_a

Activator

Gen_r

mRNA_Gen_a

Act_repRepressor

mRNA_Gen_r

R4_a

R6_a

R2_a

R4_r

R2_r

R5_a

R11_a

R3_a

R3_r

R7_a

R1

R9

R5_r R6_r

R11_r

R7_r

R8

R10

Figure 2.5: A Petri net model for circadian rhythms.

27

2 A Colored Petri Net Framework

Gene a positively regulates the transcription, whereas gene r negatively regulates the
transcription. More details can be found in [GHG02] and [VKBL02].

According to the kinetic equations provided in [GHG02], we build a qualitative Petri
net model and further a QPN C model by folding two genes, illustrated in Figure 2.5
and Figure 2.6, respectively. From the colored model, we can see that we define a color
set CS with two colors a and r to distinguish two genes. Besides, we use read arcs to
accomplish the control of R3, R5 and R6 for example, as tokens on places Gen and
Gen_act are not consumed.

�������

�	

������
�

�
�

���
�

�����
���

�	
������

�
�

�������
�

�
�

���
����

�	

��

�� ��

��

��

�� �����

��

��

��

!!

!

"
�

!

"
�

"
�

"
�"
�

"
�

! !
!

#!$�%"
�

"
�

"
�"
�

#!$�%"
�

!

!!

!

Figure 2.6: A QPN C model for circadian rhythms in Figure 2.5. The declarations:
colorset Dot = with dot, colorset CS = enum with a, r and variable x :
CS.

2.4 Colored Stochastic Petri Nets

Stochastic Petri nets are an extension of qualitative Petri nets by associating random
delay firing rates with transitions, which provide a possibility to model stochastic
systems [HGD08]. Due to inherently stochastics in biological processes, stochastic Petri
nets have recently become a popular modeling paradigm for capturing their complex
stochastic dynamics, which offer a suitable way to understand the behavior of complex
biological systems by integrating detailed biochemical data and providing quantitative
analysis results, see e.g. [GP98], [PRA05].

There are several extensions based on the fundamental stochastic Petri net class SPN .
For example, the generalized stochastic Petri net (GSPN) is SPN extended by in-

28

2.4 Colored Stochastic Petri Nets

hibitor arcs and immediate transitions. The deterministic and stochastic Petri net
(DSPN) is GSPN extended by deterministic transitions. Different extensions serve
different requirements of biological modeling, e.g DSPN can be used to model bio-
logical systems with a stochastic and deterministic firing behavior. See [HLGM09] for
more details.

While SPN and its extensions offer enormous modeling power, managing large-scale
low-level Petri net models is difficult due to the fact that tokens are indistinguishable.
To alleviate this limitation, SPN C is presented to uplift biochemically interpreted
extended stochastic Petri nets introduced in [HLGM09] to a colored version. As in
QPN C , in SPN C , tokens are distinguished by the "color", and arc expressions and
guards have the same meaning.

In the following, we start with recalling the biochemically interpreted SPN and DSPN
introduced in [HLGM09] and then focus on SPN C , the colored version of DSPN .

2.4.1 Stochastic Petri Nets

Stochastic Petri nets are an extension of qualitative Petri nets [HGD08]. Contrary to
the qualitative Petri net, a firing delay rate is introduced and associated with each
transition t of a Petri net, which is a random variable Xt, defined by the following
exponential probability distribution:

FXt
(τ) = 1− e−λt•τ , τ ≥ 0.

The formal definition of stochastic Petri nets is as follows [HLGM09].

Definition 14 (Stochastic Petri net)
A biochemically interpreted stochastic Petri net SPN is a six-tuple
N =< P, T, F, f, v, m0 >, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• F ⊆ (P × T) ∪ (T × P) is a finite set of directed arcs.

• f : F → N0 is a function that assigns a non-negative integer to each arc a ∈ F .

• v : T → H is a function that assigns a stochastic hazard function h(t) to each

transition t ∈ T , whereby H :=
⋃

t∈T {ht|ht : N
|•t|
0 → R

+} is the set of all
stochastic hazard functions, and v(t) = h(t) for all transitions t ∈ T . R

+ denotes
the set of all non-negative real numbers.

• m0 : P → N0 gives the initial marking.

29

2 A Colored Petri Net Framework

The stochastic hazard function ht defines the marking-dependent transition rate λt(m)
for the transition t ∈ T , i.e. ht = λt(m). The domain of ht is restricted to the set
of preplaces of t to enforce a close relation between network structure and hazard
functions.

The semantics of a stochastic Petri net is equivalent to a continuous time Markov
chain (CTMC), which is constructed from the reachability graph of the underlying
qualitative Petri net by labeling the arcs between the states with transition rates. For
more details, see [HLGM09].

2.4.2 Deterministic and Stochastic Petri Nets

Generalized stochastic Petri nets are stochastic Petri nets extended by inhibitor arcs
and immediate transitions. Deterministic and stochastic Petri nets are generalized
stochastic Petri nets extended by deterministic transitions. In this section, we skip
GSPN and recall DSPN in [HLGM09] based on which we will define our colored
stochastic Petri nets.

Definition 15 (Deterministic and stochastic Petri net)

A biochemically interpreted deterministic and stochastic Petri net DSPN is a seven-
tuple N =< P, T, F, f, v, l, m0 >, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions. T is the union of three disjunctive
transition sets, i.e. T := Tstoch ∪ Tim ∪ Ttimed with:

– Tstoch, the set of stochastic transitions with exponentially distributed wait-
ing time,

– Tim, the set of immediate transitions with waiting time zero, and

– Ttimed, the set of transitions with deterministic waiting time.

• F is a finite set of directed arcs. F is the union of two disjunctive arc sets, i.e.,
F := FS ∪ FI with:

– FS ⊆ (P × T) ∪ (T × P) is the set of directed standard arcs, and

– FI ⊆ P × T is the set of directed inhibitor arcs.

• f : F → N0 is a function that assigns a non-negative integer to each arc a ∈ F .

• v : Tstoch → H is a function that assigns a stochastic hazard function h(t) to

each transition t ∈ Tstoch, whereby H :=
⋃

t∈Tstoch
{ht|ht : N

|•t|
0 → R

+} is the set
of all stochastic hazard functions, and v(t) = h(t) for all transitions t ∈ Tstoch.

30

2.4 Colored Stochastic Petri Nets

• l : Ttimed → R
+ assigns a non-negative deterministic waiting time to each deter-

ministic transition t ∈ Ttimed.

• m0 : P → N0 gives the initial marking.

The stochastic transitions also have an exponentially distributed waiting time. For sake
of simplicity, such features as read arcs and scheduled transitions are not explicitly
mentioned in this definition. See [HLGM09] for more details.

2.4.3 Colored Stochastic Petri Nets

The biochemically interpreted colored stochastic Petri net (SPN C) is a colored version
of the biochemically interpreted deterministic and stochastic Petri net DSPN . In the
following, based on DSPN and colored Petri nets, we give the formal definition of
SPN C .

Definition 16 (Colored stochastic Petri net)

A biochemically interpreted colored stochastic Petri net SPN C is a ten-tuple N =<
P, T, F,

∑

, C, g, f, v, l, m0 >, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions. T is the union of three disjunctive
transition sets, i.e. T := Tstoch ∪ Tim ∪ Ttimed with:

– Tstoch, the set of stochastic transitions with exponentially distributed wait-
ing time,

– Tim, the set of immediate transitions with waiting time zero, and

– Ttimed, the set of transitions with deterministic waiting time.

• F is a finite set of directed arcs. F is the union of two disjunctive arc sets, i.e.,
F := FS ∪ FI with:

– FS ⊆ (P × T) ∪ (T × P) is the set of directed standard arcs, and

– FI ⊆ P × T is the set of directed inhibitor arcs.

•
∑

is a finite, non-empty set of color sets.

• C : P →
∑

is a color function that assigns to each place p ∈ P a color set
C(p) ∈

∑

.

• g : T → EXP is a guard function that assigns to each transition t ∈ T a guard
expression of the Boolean type.

31

2 A Colored Petri Net Framework

• f : F → EXP is an arc function that assigns to each arc a ∈ F an arc expression
of a multiset type C(p)MS , where p is the place connected to the arc a.

• v : ITstoch
→ H is a function that assigns a stochastic hazard function h(t(b)) to

each transition instance t(b) ∈ ITstoch
(t) of each transition t ∈ Tstoch, whereby

H :=
⋃

t(b)∈ITstoch

{ht(b)|ht(b) : N
|•t(b)|
0 → R

+} is the set of all stochastic hazard

functions, and v(t(b)) = h(t(b)) for all transitions t ∈ Tstoch.

• l : ITtimed
→ R

+ assigns a non-negative deterministic waiting time to each tran-
sition instance t(b) ∈ ITtimed

(t) of each deterministic transition t ∈ Ttimed.

• m0 : P → EXP is an initialization function that assigns to each place p ∈ P an
initialization expression of a multiset type C(p)MS .

Please note, the stochastic hazard function in SPN C is defined for each instance of
each colored transition. The domain of h(t(b)) is also restricted to the set of preplace
instances of t(b), denoted by •t(b) with •t(b) := {p(c) ∈ IP |f(p(c), t(b)) 6= 0}. For sake
of simplicity, such features as read arcs and scheduled transitions are also not explicitly
mentioned in the definition above.

The semantics of SPN C is equivalent to that of its unfolded DSPN . For the semantics
of DSPN refer to [HLGM09].

We still use circadian rhythms to give a SPN C model. The SPN C model for circadian
rhythms is the same in structure as the QPN C model in Figure 2.6. The only difference
is that we now assign a rate function to each transition, illustrated in Table 2.1.

Table 2.1: Rate functions of the SPN C model for Circadian rhythms. MassAction
denotes the mass action function [Lun65].

Transition Rate function Transition Rate function

R1 MassAction(1) R7 MassAction(5)
R2 MassAction(1) R8 MassAction(0.2)
R3 MassAction(100) R9 MassAction(1)
R4 MassAction(100) R10 MassAction(5)
R5 MassAction(0.01) R11 MassAction(0.5)
R6 MassAction(0.01)

2.5 Colored Continuous Petri Nets

In a continuous Petri net, the discrete token values of places are replaced with contin-
uous values, which describe the overall behavior of species represented by places via

32

2.5 Colored Continuous Petri Nets

concentrations. A deterministic rate is associated with each transition, which makes a
continuous Petri net model represent a set of ordinary differential equations (ODEs).
Contrary to discrete Petri nets, the state space for a continuous Petri net is continuous
and linear [GHL07].

Like other types of uncolored Petri nets, continuous Petri nets also face the largeness
problem in representing complex systems due to the fact that tokens are indistinguish-
able. To alleviate this limitation, the CPN C is presented to uplift continuous Petri nets
introduced in [HLGM09] to a colored version. As in other types of colored Petri nets,
in CPN C , tokens are distinguished by the "color"; arc expressions and guards have the
same meaning.

In the following, we start with recalling CPN C introduced in [HLGM09] and then focus
on CPN C , the colored version of CPN .

2.5.1 Continuous Petri Nets

Definition 17 (Continuous Petri net)
A continuous Petri net CPN is a six-tuple N =< P, T, F, f, v, m0 >, where:

• P is a finite, non-empty set of continuous places.

• T is a finite, non-empty set of continuous transitions.

• F ⊆ (P × T) ∪ (T × P) is a finite set of directed arcs.

• f : F → R
+ is a function that assigns a non-negative real values to each arc

a ∈ F .

• v : T → H is a function that assigns a firing rate function ht to each transition

t ∈ T , whereby H :=
⋃

t∈T {ht|ht : R
+|•t|

→ R} is the set of all firing rate
functions, and v(t) = ht for all transitions t ∈ T .

• m0 : P → R
+ gives the initial marking.

The firing rate function ht defines the marking-dependent continuous transition rate
for the transition t. The domain of ht is restricted to the set of preplaces of t to enforce
a close relation between network structure and firing rate functions.

The underlying semantics of a continuous Petri net is a system of ODEs, where each
equation describes the continuous token flow of a given place, i.e. continuously increas-
ing its pretransitions’ flow and decreasing its posttransitions’ flow. An equation for a
place p has the following form:

dm(p)

dt
=

∑

t∈•p

f(t, p)v(t)−
∑

t∈p•

f(p, t)v(t).

33

2 A Colored Petri Net Framework

See [HLGM09] for more details.

2.5.2 Colored Continuous Petri Nets

CPN C is a colored version of CPN . In the following, based on CPN and colored Petri
nets, we give the formal definition of CPN C .

Definition 18 (Colored continuous Petri net)
A colored continuous Petri net CPN C is a nine-tuple N =< P, T, F,

∑

, C, g, f, v, m0 >,
where:

• P is a finite, non-empty set of continuous places.

• T is a finite, non-empty set of continuous transitions.

• F ⊆ (P × T) ∪ (T × P) is a finite set of directed arcs.

•
∑

is a finite, non-empty set of color sets.

• C : P →
∑

is a color function that assigns to each place p ∈ P a color set
C(p) ∈

∑

.

• g : T → EXP is a guard function that assigns to each transition t ∈ T a guard
expression of the Boolean type.

• f : F → EXP is an arc function that assigns to each arc a ∈ F an arc expression
of a multiset type C(p)MS , where p is the place connected to the arc a.

• v : IT → H is a function that assigns a firing rate function ht(b) to each transition
instance t(b) ∈ IT (t) of each transition t ∈ T , whereby H :=

⋃

t(b)∈IT
{ht(b)|ht(b) :

R
+|•t|

→ R} is the set of all firing rate functions, and v(t(b)) = h(t(b)) for all
transitions t ∈ T .

• m0 : P → EXP is an initialization function that assigns to each place p ∈ P an
initialization expression of a multiset type C(p)MS .

Please note, the firing rate function in CPN C is defined for each instance of each
colored transition. The domain of ht(b) is restricted to the set of preplace instances of
t(b), denoted by •t(b) with •t(b) := {p(c) ∈ IP |f(p(c), t(b)) 6= 0}.

The semantics of CPN C is equivalent to that of its unfolded CPN . For the detailed
semantics of CPN , please refer to [HLGM09].

We still use circadian rhythms to give a CPN C model. The CPN C model for circadian
rhythms also looks like the same in structure as the QPN C model in Figure 2.6. We
can also use the same rate functions for transitions as those illustrated in Table 2.1.

34

2.6 Scenarios for Using Colored Petri Nets in Systems Biology

But they are now not stochastic but deterministic. As there is a difference in graphic
representations between discrete and continuous Petri nets, we give the CPN C model
for circadian rhythms in Figure 2.7.

�������

�	

������
�

�
�

���

�����
���
�	 �

������

�
�

�������
�

�
�

���
����

�	

��

�� ��

��

��

�� ��

���

��

��

��

���

##

#

$
�

#

$
�

$
�

$
�$
�

$
�

#
#

#

%#&�'$
�

$
�

$
�$
�

%#&�'$
�

#

##

#

Figure 2.7: A CPN C model for circadian rhythms. The declarations: colorset Dot =
with dot, colorset CS = enum with a, r and variable x : CS.

2.6 Scenarios for Using Colored Petri Nets in Systems

Biology

Colored Petri nets provide a means to construct compact models for large-scale systems
by folding (overlaying) several similar components or objects with similar content and
structure. In theory we can use colored Petri nets to model any system, but only in
some scenarios we can see big advantages of colored Petri nets. In this section, we
are going to find out those scenarios that are suitable for using colored Petri nets for
modeling biological systems. The scenarios we have explored so far are summarized as
follows.

(1) Modeling a system with repetition of components.

This is the most commonly seen scenario to use colored Petri nets for modeling systems.
In this scenario, similar components (cells, receptors, transducers etc.) are represented
by one component, which are distinguished by colors, e.g. modeling a tissue with rep-
etition of cells, modeling an organ with repetition of tissues or modeling a transducer
cluster with repetition of transducers. Consequently, the size of the whole system usu-
ally decreases to that of one component. In contrast, using such approaches as standard

35

2 A Colored Petri Net Framework

Petri nets, we have to draw every component to form a connected model, which usually
becomes very large if the number of components is very big. See systems such as the
repressilator [EL00], circadian rhythms [GHG02] and C. elegans vulval development
[LNUM09] for some examples in this scenario. Specifically in Chapter 5, we will take
C. elegans vulval development as an example to explore this scenario.

(2) Modeling a system with variation of components.

A system may have a set of similar components with defined variations, e.g. mutants.
In this case, we can define each of similar components as a color. In [GLG+11], we
demonstrate this issue during modeling planar cell polarity in Drosophila Wing using
colored Petri nets, which shows that colored Petri nets provide a very flexible way to
study the variation of components for biological systems.

(3) Modeling a system with organization of components.

In some systems such as the cellular automaton [Ila01], coupled Ca2+ channels [NMS05],
tissue models or organ models [MFV10], species are organized into regular or irregular
patterns over a spatial network in one, two or three dimensions. For such a system,
we can model species as colored places and elements of a grid as colors and thus ob-
tain a compact but scalable spatial model. Compared with other approaches, colored
Petri nets can not only tackle large-scale models but also explicitly represent the spatial
properties of models, which facilitates the description of communication of components
and the study of pattern formation [MFV10]. In Chapter 5, we will use coupled Ca2+

channels to demonstrate this scenario.

(4) Modeling a system with hierarchical organization of components.

For example, in a system, cells are organized in a gird and further each cell contains
several well-organized compartments. For this, we have to model the hierarchical orga-
nization of components. Using hierarchical product color sets of colored Petri nets, we
can easily cope with this issue. In Chapter 5, we will give a brief discussion about the
hierarchical organization of coupled Ca2+ channels, in which there are more than one
clusters and each cluster contains a number of coupled Ca2+ channels. In addition, in
[GLTG11] and [GLG+11] we have deeply discussed this issue by modeling planar cell
polarity in Drosophila Wing using colored Petri nets.

(5) Modeling membrane systems.

Membrane systems (also known as P systems) [Pau99] are a very powerful and efficient
computational model inspired by the internal organization of living cells with differ-
ent membranes hierarchically arranged. The membranes enclose compartments where
objects evolve by means of specific biochemical reactions. Colored Petri nets provide a
suitable way for representing membrane systems or even dynamic membrane systems
with creation, merging or dissolving rules, where each object at different compartments
is represented as a colored place and compartments are differentiated by colors of a
color set. As a result, we not only distinguish and show compartment information in

36

2.7 Encoding Components of Systems as Colors

a colored Petri net model of a membrane system, but also make it more compact. In
fact, this addresses an advanced application of colored Petri nets, which we will give
in Chapter 5.

(6) Colorizing twin nets.

In the biological context, when we have a net model, we sometimes need create another
net model with the identical structure for some experimental purpose, which we call
twin nets. For example, Marwan et al. [MSS05] explore the network structure by mixing
two cytoplasms of mutants with the identical structure. For this, it is easy to use colored
Petri nets for modeling two nets with the same structure, i.e. we only need assign two
colors to the original net. This scenario is in fact a special case of the first scenario.

(7) Colorizing T-invariants.

T-invariants play an important role in the preliminary analysis of a Petri net model. In
order to clearly display T-invariants, we can employ colored Petri nets to colorize T-
invariants; as a result, we not only easily differentiate overlapped T-invariants by using
colors, but also can dynamically demonstrate them by animation. To do this, we just
need define a color set which contains as many colors as the number of T-invariants,
i.e. we define each T-invariant as a color. We then assign the color set to each place
of a net, write the same expression to all arcs and write a guard for each transition to
indicate which T-invariants cover this transition.

Moreover, we can also use this approach to model and display interesting subnets. For
this purpose, we also need define a color set in which we define a subnet as a color. In
Chapter 3, we will deeply discuss the last two scenarios.

2.7 Encoding Components of Systems as Colors

In order to use colored Petri nets to model a system, one of the key problems is to
encode components of the system as colors. Usually, we need this encoding not only
for locating the components represented by the colors but also for easily finding the
neighborhood of each component. In the following, we will in detail discuss this issue.

One dimensional space. In one dimensional space, components are arranged in a
straight line (only X axis). For example, Figure 2.8 illustrates an arrangement of M
components in a line, where we use a square to denote a component. For this, we can
define a simple color set {x|x = 1, 2, ..., M}, i.e. using one dimensional coordinate x to
differentiate each component. For a non-boundary component x, it has two immediate
neighbors, x− 1 and x + 1. If we want to evaluate if a component a is a neighbor of a
given component x, we can define the following function that returns a Boolean value
"true" or "false" (where "|" denotes "logical or", "&" "logical and" and "!" "logical
not".):

37

2 A Colored Petri Net Framework

Boolean IsNeighbor1D(x, a)
{

(a = x + 1|a = x− 1)&
a >= 1&a <= M
}

� ��� �� ���

Figure 2.8: An arrangement of M components in a line.

Two dimensional space. Components can also be arranged in a two dimensional
lattice or grid. For example, Figure 2.9 gives an arrangement of M ×N components.
For this, we can define a product color set {(x, y)|x = 1, 2, ..., M and y = 1, 2, ..., N},
i.e. using two dimensional coordinates (x, y) to denote each component. For a non-
boundary component, it has 8 neighbors in terms of the Moore neighborhood and
4 neighbors according to the von Neumann neighborhood [Ter06]. Likewise, we can
use the following function to evaluate if a component (a, b) is a neighbor of a given
component (x, y) in terms of the Moore neighborhood:

Boolean IsNeighbor2D((x, y), (a, b))
{

(a = x|a = x + 1|a = x− 1)&
(b = y|b = y + 1|b = y − 1)&
!(a = x&b = y)&
a >= 1&a <= M&
b >= 1&b <= N
}

Higher dimensional space. The encoding way above can be easily extended to higher
dimensions. The key problem is still the definition of the neighborhood, which would
become difficult with the increasing dimensions.

Hierarchically organized systems. For hierarchically organized systems, e.g. a system
consisting of clusters each of which is further composed of transducers or a system with
a lattice occupied by cells in each of which there is a further regular organization, we

38

2.8 Closing Remarks

����� ��� ���������� ���

���

���

���

����� ��� ���������� ���

��� ���

�	��� ��� �	����	��� ���

���

���

������ ���

Figure 2.9: An arrangement of M ×N components in a two dimensional lattice.

can use hierarchical color sets. For example, we can use a product color (a tuple)
(x1, y1) to represent the location of a cluster, in which we can use a second product
color (x2, y2) to denote the location of a transducer. Now each transducer obtains a
hierarchical color ((x1, y1), (x2, y2)). We can easily extend this way to a system with
more hierarchies.

2.8 Closing Remarks

In this chapter, we have presented a colored Petri net framework for modeling and
analyzing biological systems, which relates three modeling paradigms: QPN C , SPN C

and CPN C and then described their definitions and behavior. All these three model-
ing paradigms can be combined together to accomplish the modeling and analysis of
biological systems. We have also summarized the scenarios we have explored so far to
apply colored Petri nets to modeling biological systems. In addition, we have discussed
how to encode components of systems as colors especially for those scenarios. In the
future, we will continue to investigate new scenarios using colored Petri nets in the
biological context.

39

2 A Colored Petri Net Framework

40

3 Some Implementation Aspects

We have implemented all colored Petri net classes defined in Chapter 2 in our Petri net
tool Snoopy [RMH10], [LH11]. Now we can use Snoopy to model, animate or simulate
colored qualitative, stochastic and continuous Petri nets.

We provide specific support for modeling colored Petri nets. For example, we offer rich
data types for color set definition: dot, integer, string, Boolean, enumeration, index,
product and union, and support user-defined functions. We allow several extended arc
types, inhibitor, read, equal, reset or modifier arcs, and several special transitions,
stochastic, immediate, deterministic or scheduled transitions. In addition, we take into
account some features suitable for biological modeling, e.g. concise specification of
initial marking for larger color sets and automatically colorizing some special subnets.
All these features facilitate the modeling of biological systems using colored Petri nets.

We also offer a variety of analysis techniques for colored Petri nets. Using Snoopy, we
can not only run automatic animation but also run single-step animation by manually
choosing a binding. We allow stochastic simulation, e.g. using the Gillespie stochastic
simulation algorithm [Gil77] for colored stochastic Petri nets and continuous simulation
for colored continuous Petri nets. Moreover, within Snoopy different net classes can be
exported to one another or to some specific formats, e.g. APNN [BKK95]. This allows
for applying other tools, e.g. structural analysis or model checking, to further analyzing
colored Petri nets.

In this chapter, we do not address all implementation details; instead, we concentrate
on three key implementation problems. The first problem is the computation of enabled
transition instances, which plays a crucial role in the animation/simulation of colored
Petri nets. For this, we will give an efficient algorithm by using a pattern matching
mechanism and considering some optimization techniques.

The second problem concerns the unfolding of colored Petri nets. When we want to use
the existing analysis techniques and tools of standard Petri nets for colored Petri nets
or equip them with stochastic or continuous simulation capabilities, we have to unfold
colored Petri nets into their corresponding uncolored ones. For this we will present an
unfolding algorithm and discuss how to improve the efficiency of the unfolding process.

The third problem deals with the automatic folding (colorizing) of Petri nets in order
to ease the modeling work of colored Petri nets. We will consider to automatically
colorize three special cases: T-invariants, master nets and twin nets, which would bring

41

3 Some Implementation Aspects

benefits to biologists for a better understanding of biological networks or reconstructing
networks from experimental data.

This chapter is organized as follows. Section 3.1 discusses the computation of enabled
transition instances for colored Petri nets. Section 3.2 describes the unfolding algorithm
for colored Petri nets. Section 3.3 addresses the folding problem of Petri nets. Section
3.4 concludes this chapter.

3.1 Computation of Enabled Transition Instances

Animation is an important technique for obtaining an intuitive understanding of a Petri
net model as it demonstrates the dynamic behavior of the model in a visual way. Nearly
all visual tools for modeling Petri nets provide the animation functionality [Pet11].
For standard Petri nets, the core of the animation is the scheduling algorithm for
transitions. However, for colored Petri nets, we have to consider another key problem,
the computation of enabled transition instances.

When checking whether a transition is firable or not at a given marking, we have to
assign values to the variables that occur in the arc expressions and the guard of the
transition. This is called binding. A binding of a transition corresponds to an instance
of it. Then we evaluate if the transition respects the firing rule. The introduction of
colors to Petri nets makes it difficult to compute their firing rules [JKW07].

The efficiency of the animation for large-scale colored Petri nets is mainly determined
by the efficiency of the computation of enabled transition instances, which, however,
is a NP-hard search problem because of the expressiveness of colored Petri nets. One
theoretically possible way is to make an exhaustive search to check all bindings and
then prune invalid ones, which is inefficient at all especially if the transitions have
many variables, but only a few bindings can fire the transitions.

In this section, we focus on the problem of the computation of enabled transition
instances for colored Petri nets. We adopt the idea given in [KC04], that is, extracting
patterns from input arc expressions and guards, then binding these patterns to tokens
on input places, and thus obtaining an enabled binding set. The main contribution of
this section is that we give a more efficient algorithm for our colored Petri net tool,
Snoopy [LH10b], in which we use a new partial binding - partial test principle and
several heuristics techniques to compute enabled transition instances.

This section is organized as follows. Section 3.1.1 describes the patterns that are used
for the computation of enabled transition instances, and discusses how to classify and
find patterns. Section 3.1.2 discusses the binding process and recalls related concepts.
Section 3.1.3 gives the computation algorithm. Section 3.1.4 discusses some heuris-
tics that are used to optimize the computation process. Section 3.1.5 summarizes and
compares related work. Section 3.1.6 gives the conclusion of this section.

42

3.1 Computation of Enabled Transition Instances

3.1.1 Patterns

We use the same pattern matching mechanism as CPN tools [KC04]. A pattern is
defined as an expression with variables which can be matched with other expressions
to assign values to variables [KC04]. CPN tools are based on a standard meta language
(SML) and thus employ the patterns defined in SML [Ull98]. In contrast, our tool is
not based on SML but we consider a subset of SML patterns, as we use less data types
than CPN tools. The patterns that we use have the following syntactical structure:

Pattern ::= ”V ariable”
| ”Constant”
| TuplePattern

TuplePattern ::= (Pattern(, Pattern)∗)

Consider the example illustrated in Figure 3.1. According to the syntax of the patterns,
we can see that (x, y) is a tuple pattern. If we assign token (1, a) on place P2 to (x, y),
we obtain an assignment x = 1 and y = a. This process is called pattern matching
[KC04].

��
�

�����

�����

�����

��	

��

�

�����
���

���������

�����
�

�

��

	

�����

���

���

��������
�

���

�����

�����
�����

���

�

����
�
� !"#$

�!�!�#��%
%�% "�%& �'%�()

�!�!�#��%�%�%�"*+%& �'%
����)

�!�!�#��%�%�%�"*+%& �'%�����)

�!�!�#��%
�%�%,�!-*��%& �'%
��)

.
�
���%�$%
)

.
�
���%�$%�)

.
�
���%�$%�)

Figure 3.1: A colored Petri net for demonstrating patterns.

Pattern matching provides an easy and efficient way to compute enabled transition
instances; therefore, in order to improve the efficiency of the computation, we have to
find and use patterns for assigning tokens on places to variables as much as possible.
To do this, we can search all input arc expressions of a transition to find available

43

3 Some Implementation Aspects

patterns, which we call a pattern set concerning arc expressions, denoted by AS(t) for
a transition t. Besides, we can search the guard of a transition t to find patterns in
the guard, denoted by GS(t). These two sets constitute the overall pattern set for a
transtion t, PS(t) = AS(t) ∪ GS(t), which are used to assign tokens to variables. In
the following, we in detail discuss how to find these two types of patterns.

Patterns in arc expressions

The patterns in arc expressions are the basic ones that are used for the computation
of enabled transition instances. To obtain them, we can search though all input arc
expressions of a transtion t.

We can write an input arc expression as c1‘exp1++...++cn‘expn, where ci is the multi-
plicity of expi (i = 1, 2, ..., n) that has the type of its corresponding input place. If expi

is a pattern, then we add expi to AS(t). For example, for the expression 2‘1++2‘x in
Figure 3.1, we obtain two patterns: the constant pattern, 1, and the variable pattern,
x, while for the expression x++(x + 2), we only obtain one variable pattern, x, as
x + 2 is not a pattern. At the same time, we record the multiplicity corresponding to
each pattern so as to use it to test bindings once its corresponding pattern is used. For
example, for the variable pattern x, if we assign a token to it, for instance ’4’ on place
P3, we immediately test if there are enough tokens with color ’4’ on place P3. To do
so, the invalid bindings can be discarded earlier.

Patterns in guards

As the guard of a transition often imposes a rather strong constraint on efficient bind-
ing, it is better to consider it early when computing bindings. For this, we adopt the
similar approach as that in [KC04]. Like [KC04], we consider a guard in the conjunctive
form, g(t) ≡ ∧n

i=1gi(t). For each conjunct, gi(t), we only consider the following form:
gil(t) = gir(t), where gil(t) and gir(t) are expressions of patterns, but one of them must
be a constant. We add these special expressions to the pattern set GS(t) for a transi-
tion t. The advantage of using patterns in guards for binding is obvious. For example,
consider the pattern, y = a, it directly makes the bindings relating to tokens without
the color a, invalid.

Binding variables to color sets

For a transition t, if there are variables that are not covered by PS(t), we have to bind
them to their corresponding color sets. For example, for the variables that only appear
in output arcs, we have to assign their color sets to them. In Figure 3.1, we can see
that the variable z is of this case, which has to be bound to its corresponding color set
C.

44

3.1 Computation of Enabled Transition Instances

Formal representation of patterns

We herein give a formal representation of each pattern S ∈ PS(t) for a transtion t,
which is a five-tuple S = 〈P, E, X, M, m〉, where

1. P , the type of the pattern: constant, variable, tuple, or guard (a special pattern),

2. E, the expression of the pattern,

3. X, the set of variables in the pattern,

4. M , the initial/current tokens on the place that connects the arc whose expression
contains the pattern, and

5. m, the multiplicity of the pattern.

For the patterns in AS(t) ⊆ PS(t), all components above would be used, but for the
patterns in GS(t) ⊆ PS(t), only the first three components P , E and X would be
used. For a constant pattern, X will always be empty, denoted by {φ}.

For example, the pattern set PS(t) in Figure 3.1 can be formally written as follows:

1. S1 = 〈V ariable, x, {x}, {2‘1, 2‘3, 1‘4, 1‘5}, 1〉

2. S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

3. S3 = 〈Constant, 1, {φ}, {4‘1, 1‘4}, 2〉

4. S4 = 〈V ariable, x, {x}, {4‘1, 1‘4}, 2〉

5. S5 = 〈Guard, y = a, {y}〉

Optimized pattern set

In order to further improve the efficiency of computation, we define an optimized
pattern set like [KC04]. Let PS(t) = AS(t) ∪GS(t) be the pattern set of a transition
t. An optimized pattern set OPS(t) for transition t is a set at least satisfying the
following conditions:

1. OPS(t) ⊆ PS(t),

2. GS(t) ⊆ OPS(t), and

3. V (OPS(t)) = V (PS(t)).

45

3 Some Implementation Aspects

The first item ensures that all members of OPS(t) come from PS(t). The second item
states that all guard patterns must be included in OPS(t). The third item ensures that
the optimized pattern set should cover all variables that appear in PS(t). Please note
that there may be some variables of transition t that are not covered by PS(t), and
these variables will be bound to their color sets.

In the preprocessing section below, we will give the steps to obtain an optimized pattern
set, OPS(t) for a transition t from its pattern set, PS(t), where we will see more
conditions that an optimized pattern set should satisfy.

Besides, we collect other expressions that are not in the optimized pattern set to a
test set TS(t) for a transition t, which will be used to test if bindings are valid during
the binding process. Each expression S ∈ TS(t) is denoted by a tuple S = 〈E, X, M〉,
where

1. E, the expression,

2. X, the set of variables in the expression, and

3. M , the initial/current tokens on the place that connects the arc to which the
expression belongs.

For the expressions in TS(t), we do not leave them until finishing all bindings and then
test them. Instead, we will use the partial binding - partial test principle to test an
expression in TS(t) once we find that all variables of it have been bound during the
partial binding process. This could exclude invalid bindings as early as possible.

For example, in Figure 3.1, if the variable x is bound by values 1, 3, 4, 5 on place P1,
we can immediately evaluate and test the expression x++(x + 2). As a result, at this
moment we can exclude the partial bindings x = 3, x = 4 and x = 5, as place P1 has
no enough tokens for these bindings.

3.1.2 Binding Process

In this section, we recall the binding process and some related definitions according to
[KC04].

In order to evaluate the arc expressions and the guard of a transition t, the variables
relating to the transition (denoted by V (t)) must be bound to values (tokens). A
binding of a transition t is written as: 〈v1 = c1, v2 = c2, ..., vn = cn〉, where vi ∈ V (t)
and ci is a color of the color set of vi, i = 1, 2, ..., n.

Matching a token on an input place with a pattern would usually only bind a subset of
V (t) for a transition t. For example, consider transition t in Figure 3.1, matching token
(1,a) with pattern (x, y) will bind variable x to 1, and y to a, but will not bind variable
z to any value. So the concept of partial binding is presented. A partial binding of a

46

3.1 Computation of Enabled Transition Instances

transition is a binding in which not all variables of this transition are bound to values.
In the following, we use PartialBinding(p, c) to denote a partial binding by matching
a pattern p with a value c. If they are not matched, PartialBinding(p, c) = ⊥.

In order to obtain a complete binding, we have to gradually merge the partial bind-
ings. For example, in Figure 3.1, matching pattern x and the tokens on P1 yields the
following four partial bindings:

1. 〈x = 1, y = ⊥, z = ⊥〉

2. 〈x = 3, y = ⊥, z = ⊥〉

3. 〈x = 4, y = ⊥, z = ⊥〉

4. 〈x = 5, y = ⊥, z = ⊥〉

Matching pattern (x, y) with the tokens on P2 yields the following three partial bind-
ings:

1. 〈x = 1, y = a, z = ⊥〉

2. 〈x = 2, y = b, z = ⊥〉

3. 〈x = 3, y = a, z = ⊥〉

If we merge them, we obtain the following two partial bindings:

1. 〈x = 1, y = a, z = ⊥〉

2. 〈x = 3, y = a, z = ⊥〉

We can continue to match patterns with values and merge them until all variables are
bound.

The merging of two partial bindings relates to the concept of compatible bindings. Two
partial bindings b1 and b2 of a transtion t are compatible (written as Compatible(b1, b2)),
if and only if

∀v ∈ V (t) : b1(v) 6= ⊥ ∧ b2(v) 6= ⊥ ⇒ b1(v) = b2(v).

For two compatible partial bindings b1 and b2, the combined partial binding, b, (written
as Combine(b1, b2)) can be obtained by:

b(v) =







b1(v) if b1(v) 6= ⊥,
b2(v) if b2(v) 6= ⊥,
⊥ otherwise.

47

3 Some Implementation Aspects

Based on these defintions above, the merging of two partial binding sets B1 and B2 is
defined as:

Merge(B1, B2) = {Combine(b1, b2)|∃(b1, b2) ∈ B1 ×B2 : Compatible(b1, b2)}.

3.1.3 Algorithms

In this section, we first give a top-level algorithm for computing enabled transition
instances, which is illustrated in Algorithm 1. The algorithm inputs the pattern set
PS(t) and the test set TS(t) of a transition t, and outputs a complete binding set C.

The algorithm works as follows. First it conducts a preprocessing (Line 1) on PS(t),
and obtains an optimized pattern set, OPS(t) by considering some optimization tech-
niques. Afterwards, it executes the BindbyPatterns process (Line 2) to assign to-
kens on places to patterns. After that, it executes the BindbyColorSets process (Line
3) to assign color sets to the variables that are not contained in the pattern set,
V (TS(t))\V (OPS(t)). During these two processes, the algorithm checks whether the
guard is satisfied and whether the input places have sufficient tokens. So, finally we will
obtain all valid complete bindings. In the next subsections, we will continue to discuss
these three processes in this algorithm in detail.

Algorithm 1: Computing enabled transition instances.
Input: PS(t), TS(t)
Output: C
OPS(t) = Preprocess(PS(t));1

C = BindbyPatterns(OPS(t), TS(t));2

C = BindbyColorSets(C, TS(t), V (TS(t)) \ V (OPS(t)));3

Preprocessing of a pattern set

The preprocessing of the pattern set of a transition is very important as it may prune a
lot of invalid partial bindings earlier and find whether the transition can be enabled as
early as possible, thus improving the efficiency of the computation of enabled transition
instances. In this section, we give the steps to preprocess a pattern set, which results
in an optimized pattern set.

(1) Testing multiplicity.

We begin the preprocessing of a pattern set with multiplicity testing. During this step,
we can discard the tokens in the current marking that do not contribute to valid
bindings. This is done by checking whether the number of tokens of the same color is
greater than or equal to the multiplicity of a pattern. For a constant pattern, if this is

48

3.1 Computation of Enabled Transition Instances

evaluated to false, we immediately stop the preprocessing process, and directly disable
this transition. If true, we now can remove the constant pattern from the pattern set, as
we will not use it any longer for the following process. For a variable or tuple pattern,
if this is evaluated to false, we will remove these tokens from the current tokens. If the
current tokens becomes zero, we stop the preprocessing process, and directly disable
this transition. This idea partly comes from [Mäk01] and [Gae96].

The main algorithm is illustrated in Algorithm 2, which works as follows. It executes
a loop for each pattern in the pattern set PS(t). If a pattern is a constant pattern, its
multiplicity is checked against the number of the current tokens of the constant color.
Here S.M〈c〉 denotes the number of tokens of color c. If this is evaluated to false, the
transition is determined not to be enabled (Lines 2-7). If a pattern is a variable or tuple
pattern, for each color in the current tokens, the multiplicity is tested (Lines 10-11).
The tokens will be removed if the testing is false. If the current tokens relating to the
pattern become empty, the transition is determined to be disabled (Lines 14-18).

After the multiplicity testing for the example in Figure 3.1, we obtain the following
pattern set, where pattern S3 is removed.

1. S1 = 〈V ariable, x, {x}, {2‘1, 2‘3, 1‘4, 1‘5}, 1〉

2. S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

3. S4 = 〈V ariable, x, {x}, {4‘1}, 2〉

4. S5 = 〈Guard, y = a, {y}〉

(2) Merging identical patterns.

Often, there exist several identical patterns (identical expressions) for a transition.
Merging them can remove invalid partial bindings as many as possible before the bind-
ing begins. The main algorithm is illustrated in Algorithm 3. To merge two identical
patterns, for example, Si and Sj in OPS(t), i 6= j, we need to obtain their colors from
their current tokens, denoted by Ci and Cj (Lines 1-2), respectively. We calculate the
merged colors by Ck = Ci∩Cj (Line 3). If Ck is not empty, we create a new pattern Sk,
where Sk.M saves the merged colors with the multiplicity being 1 and Sk.m is set to
1 (Lines 4-9). At the same time, we remove the old patterns Si and Sj and add a new
pattern Sk to the pattern set. If the set Ck is empty, we can directly set the transition
disabled.

For example, Figure 3.1 has two identical patterns: S1 and S4. The colors of the current
tokens on their corresponding places are {1, 3, 4, 5} and {1}, respectively, and the
merged color is {1}. So we remove the patterns, S1 and S4 and add a new pattern, S14.
Now the patterns for Figure 3.1 become:

1. S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

49

3 Some Implementation Aspects

Algorithm 2: Testing multiplicity.
Input: PS(t)
Output: OPS(t)
for each pattern S ∈ PS(t) do1

if S is a constant pattern then2

c← S.E;3

if S.M〈c〉 < S.m then4

transition t is disabled;5

endif6

endif7

if S is a variable or tuple pattern then8

for each color c ∈ S.M do9

if S.M〈c〉 < S.m then10

S.M ← S.M\{S.M〈c〉};11

endif12

endfor13

if S.M is not empty then14

OPS(t)← S;15

else16

transition t is disabled;17

endif18

endif19

endfor20

Algorithm 3: Merging identical patterns.
Input: Si, Sj

Output: Sk

Ci ← Si.M ;1

Cj ← Sj .M ;2

Ck ← Ci ∩ Cj ;3

if Ck is not empty then4

Sk.P ← Si.P ;5

Sk.E ← Si.E;6

Sk.X ← Si.X;7

Sk.M ← Ck;8

Sk.m← 1;9

else10

transition t is disabled;11

endif12

50

3.1 Computation of Enabled Transition Instances

2. S14 = 〈V ariable, x, {x}, {1‘1}, 1〉

3. S5 = 〈Guard, y = a, {y}〉

(3) Sorting patterns in terms of the less different tokens first policy [Gae96].

After that, we can sort the patterns in terms of the less different tokens first policy that
will be discussed in detail later. For example, after sorting, the patterns in Figure 3.1
become:

1. S5 = 〈Guard, y = a, {y}〉

2. S14 = 〈V ariable, x, {x}, {1‘1}, 1〉

3. S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

(4) Removing redundant patterns.

For a pattern set, after some patterns are matched, all variables in the left patterns
maybe have been bound, so these left patterns are not necessary to contribute to the
binding process. Instead, they can be used to test if the current bindings are valid or
not. Hence, we can remove these patterns from the pattern set and add them to the
test set. For example, in Figure 3.1, after we bind S5 and S14, we will find that all
variables in S2 have been bound. So we can move it to the test set. Now the pattern
set for Figure 3.1 becomes:

1. S5 = 〈Guard, y = a, {y}〉

2. S14 = 〈V ariable, x, {x}, {1‘1}, 1〉

After finishing the preprocessing, we finally obtain an optimized pattern set OPS(t)
for a transition t, which will be used as the input of the following algorithm.

Binding by matching tokens with patterns

Now we describe a key component of the algorithm for the computation of enabled
transition instances, binding by matching tokens on the preplaces of a transtion t and
patterns in the pattern set, OPS(t), illustrated in Algorithm 4, which is based on the
algorithm in [KC04].

The algorithm executes a loop to handle each member in the pattern set OPS(t). Lines
4-6 consider the guard patterns, where the right hand side of each guard pattern is
matched against the left hand side of it. Lines 8-12 consider the matching of the current
tokens on a place and an arc expression pattern, where the pattern is bound to each

51

3 Some Implementation Aspects

Algorithm 4: Binding by matching tokens with patterns.
Input: OPS(t), TS(t)
Output: C
C ← φ;1

for each pattern S ∈ OPS(t) do2

C
′
← φ;3

// binding

if S is a guard pattern and S ≡ gl = gr then4

b← PartialBinding(gl, gr);5

C ←Merge(C, {b});6

else7

for each color c ∈ S.M do8

b← PartialBinding(S.E, c);9

C
′
← C

′
∪ {b};10

endfor11

C ←Merge(C, C
′
);12

endif13

// testing

for each expression St ∈ TS(t) do14

if V (St) ⊆ V (C) then15

for each binding b ∈ C do16

if St.E is a guard expression and St.E〈b〉 is false then17

C ← C\{b};18

endif19

if St.E is an arc expression and St.E〈b〉 > St.M〈c〉 then20

C ← C\{b};21

endif22

endfor23

TS(t)← TS(t)\{St};24

endif25

endfor26

endfor27

52

3.1 Computation of Enabled Transition Instances

colored token. Lines 14-26 test if each partial binding is valid using the test set TS(t).
For an expression in TS(t) whose variables are fully bound, if it is a guard expression
and is evaluated to false for a partial binding, then the partial binding is invalid. If the
expression is an arc expression and can not obtain enough tokens by evaluating it with
a partial binding, then the partial binding is also invalid.

Compared to the algorithm in [KC04], the biggest difference is that our algorithm
employs the partial binding - partial test principle, that is, during a partial binding
process, if the variables in a test expression have been detected to be fully bound, then
we evaluate and test it immediately. As a result, this would not produce any invalid
complete binding when the binding process ends.

We still use the example in Figure 3.1 to demonstrate how this algorithm works. For
the first loop, the guard pattern y = a is processed, and let y bind to a. Then the
pattern S14 is processed, and let x be bound to 1. After that, the test expression, e.g.
x < 3 begins to work as it finds that the variable x has been bound. After these steps,
we obtain the following partial binding.

1. 〈x = 1, y = a, z = ⊥〉

Binding variables to color sets

When there are variables that are not covered by a pattern set, they have to be bound
to colors of their color sets. The algorithm is illustrated in Algorithm 5. It works as
follows. It executes a loop for each variable v in V (TS(t))\V (OPS(t)) that represents
all the variables that have to be bound to color sets. Lines 3-7 bind variables to colors.
Here c(v) represents the color set of variable v. Lines 8-20 test if the expressions in
TS(t) satisfy the guard or have sufficient tokens on the corresponding places.
We continue to apply this algorithm to the example in Figure 3.1. Here, we bind the
variable z to the color set C with colors, c1 and c2. Then we obtain the following
complete bindings.

1. 〈x = 1, y = a, z = c1〉

2. 〈x = 1, y = a, z = c2〉

3.1.4 Optimization Techniques

In this section, we briefly summarize some of the optimization techniques that we use
to improve the efficiency of the computation of enabled transition instances.

(1) Partial binding - partial test principle.

As described above, we collect all the arc and guard expressions that do not appear
in the pattern set of a transition. We do not leave them until finishing all complete

53

3 Some Implementation Aspects

Algorithm 5: Binding variables to color sets.
Input: C, V (TS(t))\V (OPS(t)), TS(t)
Output: C
// binding

for each variable v ∈ V (TS(t))\V (OPS(t)) do1

C
′
← φ;2

for each color c ∈ c(v) do3

b← PartialBinding(v, c);4

C
′
← C

′
∪ {b};5

endfor6

C ←Merge(C, C
′
);7

// testing

for each expression S ∈ TS(t) do8

if V (S) ⊆ V (C) then9

for each binding b ∈ C do10

if S.E is a guard expression and S.E〈b〉 is false then11

C ← C\{b};12

endif13

if S.E is an arc expression and S.E〈b〉 > S.M〈c〉 then14

C ← C\{b};15

endif16

endfor17

TS(t)← TS(t)\{S};18

endif19

endfor20

endfor21

54

3.1 Computation of Enabled Transition Instances

bindings and then test them. Instead, we test them once we find that all the variables of
them have been bound during the partial binding process. For example, in Figure 3.2,
the optimized pattern set is x, y and z. If we do not use this policy, we would first
obtain 20× 30× 40 complete bindings, then test the other expressions x + 1 and y + 1
using these bindings and finally obtain 480 valid bindings. However, if we use this
policy, x is first bound and 20 partial bindings are gotten. After that the expression
x+1 is tested, and the valid bindings for x are now 3. Then y is bound, and the partial
bindings for x and y become 90. When the expression y + 1 is tested, the partial
bindings become 12. Finally, the variable z is bound, and the final complete bindings
are gotten, whose number is also 480. Obviously, using this principle usually excludes
invalid partial bindings earlier.

�� �

�����

�����

����

	

����

��
���

�

�� �

�����

�����

�����

����

�

����

��
���

�
�� ��

��
���

	

���

�

���

� �

����
�
������

���������	� �����!��"��#��$

����������� ���%&�!��"��#��$

����������� ���%&�!��"��#��$

'
��
(�������	$

'
��
(��������$

'
��
(��������$

Figure 3.2: A colored Petri net for demonstrating the partial binding - partial test
principle.

(2) Less different tokens first policy [Gae96].

As can be easily noticed and analyzed, the information of tokens on different places can
affect the efficiency of the computation of enabled transition instances. For example, in
Figure 3.1, for transition t, if we first bind x to the tokens on P1, we have 4 bindings,
but if we bind x to the tokens on P2 first, we obtain only 2 bindings. That is to say,
the binding order of variables is quite different in efficiency; therefore, we can optimize
the binding process by taking account into the binding order. For this we use the less
different tokens first policy, which has been given in [Gae96].

(3) Testing multiplicity.

When searching patterns, we also collect the multiplicity for each pattern. We use them
to test if places contain enough tokens for enabling before the binding begins, which is
already reflected in Algorithm 2. This idea partly comes from [Mäk01] and [Gae96].

(4) Merging identical patterns.

Merging identical patterns before the binding process starts is more efficient than

55

3 Some Implementation Aspects

binding one pattern and then testing the other identical patterns during the binding,
which has been discussed in Algorithm 3. This heuristics is very useful when there are
many identical patterns for a transition and the tokens available for each pattern are
notably different.

All the heuristics have been used in our algorithm, which can be seen in different parts
in Algorithm 1-5.

3.1.5 Related Work

In this section, we describe and compare related work concerning the computation of
enabled transition instances.

Mäkelä [Mäk01] used a unification technique to calculate enabled transition instances
for the algebraic system nets that are in fact another kind of high-level Petri nets,
which gave a different idea on finding enabled bindings.

Sanders [San00] considered the calculation of enabled binding as a constraint satis-
faction problem. He imposed strong constraints on the form of arc expressions, only
considering the constant multiplicity of expressions of such form, n‘exp, where n is the
multiplicity of a color expression exp.

Gaeta [Gae96] studied the enabled test problem of Well-Formed Nets, and gave some
heuristics for determining the binding elements, e.g. the less different tokens first policy,
which are very useful for improving the efficiency of calculation of enabled transition
instances.

Mortensen [Mor01] described data structure and algorithms used in CPN tools. He
used the locality principle to discover enabled transitions rather than calculating all
the transition each time. He also discussed how to optimize the binding sequences.

Kristensen et al. [KC04] gave a pattern reference algorithm for the enabled binding
calculation in CPN tools. We also adopt that idea to design our binding algorithm, but
compared their algorithm, our algorithm considers more optimization techniques.

In our work, we take into account the main idea of [KC04] and also some ideas of
[Mäk01] and [Gae96], which have been explicitly stated. However, compared with all
the previous work, we adopt a new principle, partial binding - partial test, and consider
more optimization techniques to improve the efficiency of computing enabled transition
instances for colored Petri nets.

3.1.6 Conclusions

In this section, we have presented an algorithm for the computation of enabled transi-
tion instances for colored Petri nets. This algorithm uses a pattern matching mechanism
and a partial binding - partial test principle and adopts some optimization techniques.
The pattern matching mechanism improves the computational efficiency by binding

56

3.2 Unfolding of Colored Petri Nets

variables to available tokens on places. The partial binding - partial test principle al-
lows us to test expressions during the partial binding process so as to prune invalid
bindings as early as possible. The use of optimization techniques prunes invalid partial
bindings before the binding process begins, and also finds the disabled transitions at an
early phase. Among them, the less different tokens first policy allows variables to have
less bindings, the multiplicity test excludes partial bindings due to insufficient tokens
and the merging of identical patterns avoids repeated bindings for identical patterns.
All these techniques contribute to the improvements of efficiency. This algorithm can
realize an efficient computation of enabled transition instances for large-scale colored
Petri nets. In the future, we will investigate more optimization techniques to further
improve the computational efficiency.

3.2 Unfolding of Colored Petri Nets

Colored Petri nets provide a compact and convenient way for modeling complex sys-
tems, but many basic properties and analysis techniques of standard Petri nets are
difficult to extend to colored Petri nets. Therefore it is a reasonable approach to unfold
colored Petri nets to equivalent standard Petri nets in order to use existing analysis
techniques and tools for standard Petri nets. Fortunately, each of our colored Petri nets
corresponds to a standard Petri net as we only support finite color sets. Besides, we can
also simulate colored stochastic (continuous) Petri nets using stochastic (continuous)
simulation algorithms by automatic unfolding. Thus, unfolding plays an important role
in simulating and analyzing colored Petri nets.

In order to unfold a colored Petri net we usually have to make an exhaustive search
of colors for places and bindings (transition instances) for transition and then unfold
each color to an unfolded place and each transition instance to an unfolded transition.
However if we consider some features of color Petri nets and exploit some optimization
techniques we do improve the unfolding efficiency.

In this section, we will propose an efficient unfolding algorithm, in which we present
two approaches to efficiently compute transition instances. That is, if the color set of
each variable in a guard is a finite integer domain, the constrain satisfaction approach
is used to obtain all valid bindings; otherwise, a general algorithm is adopted, in which
some optimization techniques, e.g. the partial binding - partial test principle, are used.

This section is organized as follows. Section 3.2.1 describes the mapping from colored
Petri nets to their unfolded Petri nets. Section 3.2.2 presents an unfolding algorithm.
Section 3.2.3 discusses how to compute transition instances for unfolding. Section 3.2.4
summarizes the used optimization techniques. Section 3.2.6 analyzes related work.
Section 3.2.5 gives some experimental results. Section 3.2.7 concludes the whole section.

57

3 Some Implementation Aspects

3.2.1 Equivalent Standard Petri Nets

If the color sets of a colored Petri net are finite, it exactly corresponds to an equivalent
standard Petri net [Jen92]. In the following, we recall how to obtain an unfolded Petri
net for a given colored Petri net by unfolding according to [Jen92].

Definition 19 (Unfolded Petri net)
Let N =< P, T, F,

∑

, C, g, f, m0 > be a colored Petri net, its unfolded Petri net
N∗ =< P ∗, T ∗, F ∗, f∗, m∗

0 > is defined by:

1. P ∗ = IP .

2. T ∗ = IT .

3. F ∗ = {(p(c), t(b)) ∈ P ∗ × T ∗|(f(p, t)〈b〉)〈c〉 > 0} ∪
{(t(b), p(c)) ∈ T ∗ × P ∗|(f(t, p)〈b〉)〈c〉 > 0}.

4. ∀(p(c), t(b)) ∈ F ∗ : f∗(p(c), t(b)) = (f(p, t)〈b〉)〈c〉,
∀(t(b), p(c)) ∈ F ∗ : f∗(t(b), p(c)) = (f(t, p)〈b〉)〈c〉.

5. ∀p(c) ∈ P ∗ : m∗
0(p(c)) = m0(p)〈c〉.

The explanations about the definition are as follows.

1. Each place instance (each color) in the place instance set IP of the colored Petri
net N corresponds to a place of the Petri net N∗. That is, the colored tokens in
the colored Petri net are now distinguished by different places in its correponding
Petri net.

2. Each transition instance (each binding) in the transition instance set IT of the
colored Petri net N corresponds to a transition of the Petri net N∗. This means
that each binding of the colored Petri net is instantiated as a transition in its
correponding Petri net.

3. If the occurrence of t with binding b removes at least one token of color c from
p, denoted by ((f(p, t)〈b〉)〈c〉 > 0, then an arc that connects p(c) and t(b) exists
for the Petri net, whose weight is the number of tokens of color c, denoted by
((f(p, t)〈b〉)〈c〉. Analogously, If the occurrence of t with the binding b adds at
least one token of color c to p, denoted by ((f(t, p)〈b〉)〈c〉 > 0, then an arc that
connects t(b) and p(c) exists for the Petri net, whose weight is the number of
tokens with color c, denoted by ((f(t, p)〈b〉)〈c〉.

4. If the initial marking of the colored Petri net N contains tokens of color c on a
place p, then the place p(c) of the Petri net N∗ has initial tokens, whose coefficient
is the number of tokens of color c, denoted by m0(p)〈c〉.

58

3.2 Unfolding of Colored Petri Nets

For colored Petri nets with special arcs and time information, they have similar unfolded
Petri nets with only minor differences. Specifically, for colored Petri nets with special
arcs, we only need to set colored arcs and their corresponding unfolded arcs to the
same arc types, while for colored Petri nets with time information, we only need to
add such time information to the unfolded transitions.

3.2.2 Unfolding Algorithm

In this section, we present an unfolding algorithm for colored Petri nets without special
arcs and time information for sake of simplicity. For colored Petri nets with special arcs
and time information, it is easy to consider them in this algorithm. The algorithm is
illustrated in Algorithm 6, which works as follows.

The algorithm executes a loop for each transition t of the net N . In each loop, it
first computes valid bindings for transition t, which is realized by a sub-algorithm,
ComputeBindings(t). It then evaluates whether the binding set B is empty if the
variable set V (t) of transition t is not empty. If so, the transition either is unfolded to an
isolated transtion or excluded from the unfolded net right now (Lines 3-5). Afterwards,
for each binding b ∈ B (corresponding to a transition instance t(b)) of transition t, we
assign it to a Petri net transition t∗(b) (Line 7). For each pre-arc F (p, t) of t, we first
evaluate its expression in terms of binding b, denoted by (f(p, t)〈b〉). For each color c
in the evaluated expression (f(p, t)〈b〉), we assign a place instance p(c) to a Petri net
place p∗(c) (Line 10). At the same time, the tokens correponding to color c on place p
is assigned to p∗(c) (Line 11). Besides the number of tokens of color c in (f(p, t)〈b〉),
denoted (f(p, t)〈b〉)〈c〉, is assigned to a Petri net arc expression (f∗(p(c), t(b)) (Line
12) and an arc (p(c), t(b)) is added to the unfolded net (Line 13). We deal with the
post-arcs in the same way as the pre-arcs.

This algorithm implicitly omits that the guards are evaluated to false during computing
bindings, which is in fact an optimal way for unfolding colored Petri nets. Besides, we
consider other ways to optimize unfolding, e.g. removal of isolated places or transitions
during the unfolding process, not waiting until finishing unfolding. For colored Petri
nets with special arcs and time information, we only need to add arc types and time
information in this algorithm.

3.2.3 Algorithms for Computing Transition Instances

When we unfold a transition, we have to compute all its instances (or bindings). In fact,
the gain in the unfolding efficiency mostly depends on the computation of transition
instances. For a transition, the number of its instances is only decided by its guard,
which is in fact a logical expression. We can consider the computation of transition
instances as a combinatorial problem. If we test a guard for each combination of values,
then we would have the combinatorial explosion problem, which we do not want to

59

3 Some Implementation Aspects

Algorithm 6: Unfolding a colored Petri net.
Input: a colored Petri net N =< P, T, F,

∑

, C, g, f, m0 >
Output: an unfolded Petri net N∗ =< P ∗, T ∗, F ∗, f∗, m∗

0 >
for each transition t ∈ T do1

B = ComputeBindings(t);2

if V (t) is not empty and B is empty then3

t is isolated;4

endif5

for each binding b ∈ B do6

t∗(b)← t(b);7

for each pre-arc (p, t) of t do8

for each color c in (f(p, t)〈b〉) do9

p∗(c)← p(c);10

m∗
0(p

∗(c))← m0(p)〈c〉;11

f∗(p∗(c), t∗(b))← (f(p, t)〈b〉)〈c〉;12

(p∗(c), t∗(b))← (p(c), t(b));13

endfor14

endfor15

for each post-arc (t, p) of t do16

for each color c in (f(t, p)〈b〉) do17

p∗(c)← p(c);18

m∗
0(p

∗(c))← m0(p)〈c〉;19

f∗(t∗(b), p∗(c))← (f(t, p)〈b〉)〈c〉;20

(t∗(b), p∗(c))← (t(b), p(c));21

endfor22

endfor23

endfor24

endfor25

60

3.2 Unfolding of Colored Petri Nets

expect. In this situation, we can think of using the constraint satisfaction approach to
solve the problem of the computation of transition instances for it has been used in
many combinatorial problems, e.g. scheduling and timetabling in operational research.
In the following, we will first address this issue and then consider a more general
algorithm for computing transition instances.

Computing transition instances using the constraint satisfaction approach

A constraint satisfaction problem (CSP) [BPS99], [Tsa93] is to pick a value from a given
finite domain and then assign it to each variable in a problem, so that all constraints
concerning the variables are satisfied.

Formally, a constraint satisfaction problem is a triple CSP =< V, D, C >, where:

• V = {v1, v2, .., vn} is a set of variables.

• D = {d1, d2, .., dn} defines a finite domain di of possible values for each variable
vi, i = 1, 2, ..., n.

• C is a set of constraints on variables in V , which restricts the values taken by
the variables.

A state of a CSP is defined by an assignment of values to variables. A complete as-
signment means that each variable gets assigned a value. A solution to a CSP is a
complete assignment satisfying all the constraints. For our purpose, we will restrict the
domains of variables to finite integer domains and we want to find all solutions of a
CSP. We implement the constraint satisfaction approach in Snoopy using Gecode, an
open constraint solving library [Gec11].

Take Figure 3.3 as an example, we will see how to formulate the computation of tran-
sition instances as a CSP, which can take the following steps.

��

���

��

���

� ��	
��

� �

������������

����������������������������

��������������������������

����� ���������

����� ���������

Figure 3.3: A colored Petri net for demonstrating the constraint satisfaction approach.

1. Obtain the guard of a transition, e.g. x <> y (x is not equal to y) for transition
t, which is a logic expression.

61

3 Some Implementation Aspects

2. Obtain all the variables in the guard, e.g. x and y in x <> y, which will be the
variables of the CSP.

3. Define the color set of each variable as its domain in the CSP. For example,
the color sets CS1 and CS2 will become the domains of x and y in the CSP,
respectively.

4. Define the guard as a constraint in the CSP. For example, x <> y will become
a constraint of the CSP. If the guard is a conjunctive form, we can define each
conjunct as a constraint.

Using this procedure, we can formulate Figure 3.3 as a CSP: V = {x, y}, D =
{CS1, CS2} and C = {x <> y}. Then we can obtain all the solutions:

1. 〈x = 1, y = 2〉

2. 〈x = 2, y = 1〉

3. 〈x = 3, y = 1〉

4. 〈x = 3, y = 2〉

That is, transition t in Figure 3.3 has four instances.

A general algorithm for computing transition instances

However, if the guard of a transition is always evaluated to true or not all the variables
in the guard are integer types, we have to take another way to compute transition
instances. Here we will adopt a similar approach as that in Section 3.1.

Unlike the computation of enabled transition instances in Section 3.1 where variables
are bound to tokens on places, during the computation of transition instances for
unfolding, all variables have to be bound to the colors of their color sets. As the
algorithm here is similar as that in Section 3.1, we do not give the formal algorithm
any more and only discuss how to adapt the algorithm in Section 3.1 to obtain an
algorithm for the unfolding purpose by illustrating their differences in the following.

We can use the same top-level algorithm as in Algorithm 1, but there are some differ-
ences in each sub-algorithms. We use a slightly different way to preprocess the pattern
set, which will be discussed in detail. In the BindbyPatterns algorithm (see Algorithm
4), Line 8 is now read as binding the variables to the colors of their color sets rather
than tokens on places. Lines 20-22 are removed because we do not need to test if places
have enough tokens. In the BindbyColorSets algorithm (see Algorithm 5), Lines 14-16
are removed because we do not need to test if places have enough tokens.

Before we discuss the preprocessing process, we have to slightly modify the data struc-
ture of the pattern S ∈ PS(t) for a transition t as S = 〈P, E, X, M〉

62

3.2 Unfolding of Colored Petri Nets

1. P , the type of the pattern: constant, variable, tuple or guard (a special pattern),

2. E, the expression of the pattern,

3. X, the set of variables in the pattern, and

4. M , the color set relating to the pattern.

In this data structure we now have to collect the color set for a pattern rather than the
initial tokens on its correponding place as we only need to bind patterns to color sets
and we do not need the multiplicity testing for a pattern any more. In the following,
we discuss how to modify the preprocessing algorithms in Section 3.1 to deal with the
current problem.

For the unfolding purpose, we do not need to test the multiplicity for each pattern, so
we do not use Algorithm 2, but keep the left three steps: merging identical patterns,
sorting patterns and removing redundant patterns. Among them, in the merging of
identical patterns (see Algorithm 3), Lines 1-2 are now read as merging two color sets
for two patterns and Line 4 and Lines 9-12 are removed. In the sorting of patterns we
need to change to sort patterns in terms of the number of colors in color sets, which
we call the less colors first policy.

The reasons for merging identical patterns are as follows. We support to define subsets
of a color set, which then may be used by different places relating to a transition
and maybe have identical arc expressions for this transition, which can be seen as
identical patterns. Merging these identical patterns means to obtain the intersection of
the subsets of a color set, which can reduce the number of the values to which variables
are bound before the binding process begins.

For example, Figure 3.4 has the following patterns before preprocessing.

1. S1 = 〈V ariable, x, {x}, A〉

2. S2 = 〈V ariable, y, {y}, B〉

3. S3 = 〈V ariable, x, {x}, A1〉

4. S4 = 〈Tuple, (x, y), {x, y}, AB〉

5. S5 = 〈Guard, y = a, {y}〉

After merging identical patterns, we obtain:

1. S2 = 〈V ariable, y, {y}, B〉

2. S3 = 〈V ariable, x, {x}, A1〉

3. S4 = 〈Tuple, (x, y), {x, y}, AB〉

63

3 Some Implementation Aspects

���
�����

�����

�����

��	

���

�����

���

�

�	�

�� � ��

�

�� �

�����
�

�

�
�������
�

�

�

�

�

�����

����
�
� !"#$%%%%%%%%%%%%%%%

�!�!�#��%
%�% "�%& �'%�(�)*

�!�!�#��%
��%
%& �'%�(*

�!�!�#��%�%�%�"+,%& �'%
�-��*

�!�!�#��%�%�%�"+,%& �'%�����*

�!�!�#��%
�%�%.�!/+��%& �'%
��*%

0
�
-��%�$%
*

0
�
-��%�$%�*

0
�
-��%�$%�*

Figure 3.4: A colored Petri net for computing transition instances.

4. S5 = 〈Guard, y = a, {y}〉

After sorting the patterns, we further obtain:

1. S5 = 〈Guard, y = a, {y}〉

2. S2 = 〈V ariable, y, {y}, B〉

3. S3 = 〈V ariable, x, {x}, A1〉

4. S4 = 〈Tuple, (x, y), {x, y}, AB〉

After removing redundant patterns, we finally obtain an optimized pattern set OPS(t)
for transition t:

1. S5 = 〈Guard, y = a, {y}〉

2. S3 = 〈V ariable, x, {x}, A1〉

After the preprocessing, we begin to bind patterns to color sets and then obtain the
following partial bindings:

1. 〈x = 1, y = a, z = ⊥〉

2. 〈x = 2, y = a, z = ⊥〉

For the left variables, we bind them to their color sets. For this example, we finally
obtain the complete bindings:

64

3.2 Unfolding of Colored Petri Nets

1. 〈x = 1, y = a, z = c1〉

2. 〈x = 2, y = a, z = c1〉

3. 〈x = 1, y = a, z = c2〉

4. 〈x = 2, y = a, z = c2〉

Using our unfolding tools, for this example we obtain an unfolded Petri net, illustrated
in Figure 3.5.

����� ����������� ������

�	���	��

�

������������

�������
�������
�������
�������

Figure 3.5: The unfolded Petri net for Figure 3.4.

In summary, the features of our algorithm are as follows:

• The algorithm also employs the partial binding - partial test principle, that is,
during a partial binding process, if the variables in a test expression have been
detected to be fully bound, then we evaluate and test it immediately. As a result,
this would not produce any invalid complete binding when the binding process
ends.

• If we use subsets of color sets, the pattern matching approach can make us bind
variables to subsets of color sets. This prevents a lot of useless bindings from the
difference between color subsets and their father color sets.

65

3 Some Implementation Aspects

• The algorithm also makes full use of the guard patterns to keep false transition
instances away as early as possible.

3.2.4 Optimization Techniques

In this section, we briefly summarize some of the optimization techniques that we use
to improve the unfolding efficiency.

(1) Optimized computation of transition instances.

In our unfolding algorithm, we adopt an optimized algorithm to compute transition
instances and thus improve the efficiency of unfolding. The optimization techniques
include:

• constraint satisfaction approach,

• partial binding - partial test principle,

• merging identical patterns, and

• less colors first policy.

(2) Removal of false guarded transitions.

We remove all transition instances whose guards are evaluated to false. Unlike [KLPA06],
we remove them in the binding process, not waiting until finishing the unfolding and
then removing them.

(3) Removal of isolated places or transitions.

As the isolated places or transitions do not contribute to the behavior of the whole
net, so they can be removed from the unfolded Petri nets. Unlike [KLPA06], we can
remove them in the binding process, not waiting until finishing the unfolding and then
removing them.

3.2.5 Experimental Results

We now compare the computational efficiency of unfolding before and after using the
optimization techniques, especially the constraint satisfaction approach given in Section
3.2.4. The model we use is illustrated in in Figure 3.6 (Table 3.1 gives its declarations.),
which simulates the diffusion of chemical signals in a grid to form a chemical gradient.
This model can be parameterized by the row M and the column N of the grid.

The experimental results are shown in Table 3.2. From it, we can clearly see that
the unfolding efficiency improves greatly after we use the optimization techniques,
especially the constraint satisfaction approach. For example, for a 100× 100 grid, the
unfolding time before optimization is about 933 times as long as that after optimization.
The unfolding algorithm in this section basically can tackle large-scale models within
a reasonable time.

66

3.2 Unfolding of Colored Petri Nets

�

���
���������

�	
��

��

��

�����
����	�
����������

��

�����

�����

�����
�����

Figure 3.6: A diffusion model for testing the unfolding efficiency.

Table 3.1: Declarations for the diffusion model in Figure 3.6.
Type Declaration

constant int : M = 100;
constant int : N = 100;

colorset CD1 = int with 1−M ;
colorset CD2 = int with 1−N ;
colorset Grid2D = product with CD1× CD2;

variable x : CD1,
variable y : CD2;
variable a : CD1;
variable b : CD2;

function bool IsNeighbor2D
(CD1 x,CD2 y,CD1 a,CD2 b)
{(a=x | a = x+1 | a = x-1) & (b=y | b = y+1 | b = y-1) &
(!(a=x & b=y)) &(a <= D1 & b <= D2) & (a >= 1 & b >= 1); }

function bool IsLateral
(CD1 x,CD2 y,CD1 a,CD2 b)
{(a=x&b=y+1) | (a=x&b=y-1) |(a=x-1&b=y) | (a=x+1&b=y);}

function bool IsDiagonal
(CD1 x,CD2 y,CD1 a,CD2 b)
{(a=x+1&b=y+1) | (a=x-1&b=y-1) |(a=x-1&b=y+1) | (a=x+1&b=y-1);}

67

3 Some Implementation Aspects

Table 3.2: Comparison of the size of the diffusion model in Figure 3.6 and unfolding
runtime∗.

Size Unfolding time (seconds)
M ×N Places Transitions before optimizing after optimizing
10× 10 100 884 4.024 1.024
50× 50 2500 24,404 2,057.318 8.532

100× 100 10,000 98,804 40,301.145 43.199
200× 200 40,000 397,604 ⋄ 238.429

∗ done on PC, Intel(R) Xeon(R) CPU 2.83GHz, RAM 4.00GB.
⋄ we did not obtain the result within 24 hours.

3.2.6 Related Work

In this section, we give the analysis of related work.

In [Mäk01], unfolding is obtained by an enabling test algorithm, so the places of an
unfolded net are all ever marked under the initial marking, that is, all other places
that can not get marked under the initial marking are excluded. Maria uses an explicit
data structure to represent unfolded Petri nets.

Kordon et al. [KLPA06] use symbolic representation, data decision diagrams, to repre-
sent unfolded nets, but the optimization, such as removal of false guarded transitions,
is performed on unfolded nets, which is not efficient.

Compared to those work, our unfolding algorithm adopts an efficient algorithm to com-
pute transition instances, in which some optimization techniques are used to improve
the efficiency of unfolding. The disadvantage is that we still adopt an explicit represen-
tation of unfolded Petri nets. In the next step, we will concentrate on how to combine
the efficient unfolding algorithm with a compact data structure.

3.2.7 Conclusions

In this section, we have presented an efficient unfolding algorithm for colored Petri nets,
which contains an optimized algorithm for computing transition instances. Compared
with existing unfolding algorithms, our algorithm has some advantages, e.g. most op-
timization techniques are used before the real unfolding begins. In the future, we will
concentrate on how to equip the unfolding algorithm with a compact data structure.

3.3 Folding of Petri Nets

Folding is a challenging approach to obtain a colored Petri net for a given standard
Petri net. Just like folding a paper, two halves of this paper become overlaid, thus the

68

3.3 Folding of Petri Nets

size decreasing to 1/2. Generally speaking, folding a Petri net means grouping several
similar subnets and then overlay them, which we also call colorizing. Folding can be
realized manually or automatically. Although automatic folding is usually attractive,
to find similar subnets from a net for a given subnet (pattern) involves a subgraph
isomorphism problem, which is NP-complete [Coo71].

In this section, we do not address the automatic folding based on subgraph isomor-
phism. Rather we consider three special scenarios concerning automatic folding: col-
orizing T-invariants, master nets and twin nets. In the first two scenarios, we can find
subnets of a Petri net through T-invariants or T-invariant-like subnets, while in the
third scenario we only need to colorize two copies for a given half of twin nets. In the
following, we will in detail describe them.

3.3.1 Colorizing T-invariants of Petri Nets

T-invariants play an important role in the preliminary analysis of a Petri net model.
For a Petri net, we usually use some analysis tools, e.g. Charlie [Cha11], to obtain its T-
invariants and then analyze if it is covered by these T-invariants. Although this process
can be aided by graphical display, e.g. to mark different T-invariants with different
colors, sometimes some T-invariants are overlapped, so it is not easy to differentiate
them.

In order to more clearly show T-invariants, we employ colored Petri nets to colorize
T-invariants. To do so, we not only easily differentiate overlapped T-invariants by using
colors, but also can dynamically exploit them via animation.

For this, we can define a color set that contains as many colors as the number of T-
invariants of a net, i.e. we define each T-invariant as a color. We then assign the color
set to each place of this net and write the same expression for all arcs. Finally we use
guards to indicate whether a transition is covered by a T-invariant or not.

The core algorithm for colorizing T-invariants is illustrated in Algorithm 7. The algo-
rithm begins with the processing of each transition t. It first executes a loop to write
the information of all T-invariants (or colors) that contain t to its guard G(t) (Lines
1-3). Each item x = c is considered as a logical disjunct of G(t). After that, it executes
another loop (Lines 4-10) to cope with the marking of the preplaces of t. In this loop, it
first gets each preplace (SourceNode(e)) from the target edges of t (TargetEdges(t))
and evaluates if it is not empty. If so, this preplace is assigned as many tokens as the
number of its black tokens (#(p)) for each color in Tinv(t).

Figure 3.7 [HGD08] and Figure 3.8 give an example to demonstrate how to colorize
T-invariants using colored Petri nets. This net is covered by two minimal T-invariants:
y1 = (1, 0, 2) = (r1, 2 • r3) and y2 = (0, 1, 1) = (r2, r3). Therefore we define a color set
CS containing two colors, e.g. 1 and 2, and assign it to all places. We define a variable x
of the color set CS and assign it to each arc. As r1 is covered by y1, we define its guard

69

3 Some Implementation Aspects

Algorithm 7: A core algorithm for colorizing T-invariants.
Input: a transition: t, the T-invariants/colors of t: Tinv(t), a variable: x
Output: the guard of t: G(t), the marking of the net: M
for each color or T-invariant c ∈ Tinv(t) do1

G(t)← ”x = c”;2

endfor3

for each edge e ∈ TargetEdges(t) do4

p = SourceNode(e);5

if #(p) is not empty then6

for each color or T-invariant c ∈ Tinv(t) do7

M(p)← #(p)‘c;8

endfor9

endif10

endfor11

as x = 1. Similarly, the guards of r2 and r3 are x = 2 and x = 1|x = 2, respectively.
We can observe the behavior of these T-invariants by animation. For example, when
we put a token with color "2" to place A, then if we animate this net, we can see the
flow of T-invariant y2.

� �

�

��

��

��
� �

Figure 3.7: A Petri net model for colorizing T-invariant. This net has two minimal
T-invariants: y1 = (1, 0, 2) = (r1, 2 • r3) and y2 = (0, 1, 1) = (r2, r3).

Moreover, we can easily extend this approach to colorize other kinds of interesting
subnets, such as master nets that will be described in the next section. For this purpose,
we also can define a color set in which we define each subnet as a color.

In the following, we apply this approach to a biological example, the hypoxia response

70

3.3 Folding of Petri Nets

�

�

�����

�

��

�
���� ��

	�

���

	�

�������

	�

���

� �

��

��� ���

� �

Figure 3.8: A colored Petri net model for Figure 3.7. The declarations: colorset CS =
int with 1, 2, and variable x : CS.

network [HS10], to demonstrate its usefulness. The hypoxia response network consists of
three pathways: one oxygen-independent pathway and two oxygen-dependent pathway
which are responsible for degrading HIF (the Hypoxia Induced Factor) transcription
factor. The Petri net model for the hypoxia response network (see [HS10]) enjoys
ten minimal T-invariants, illustrated in Table 3.3, which contribute much to a better
understanding of the structure of the net. See [HS10] for more details.

Using the automatic colorizing functionality for T-invariants in Snoopy, when we input
the T-invariant file, we obtain a colored Petri net model, illustrated in Figure 3.9. Using
the colored Petri net model, we can run animation to observe the flow of a T-invariant
when we choose a corresponding initial marking set.

Table 3.3: The minimal T-invariants of the hypoxia response network model.
No. Transitions No. Transitions

1 k5, k6 6 k1, k2
2 k12, k13 7 k21, k22
3 k18, k19 8 k1, k12, k14, k18, k20
4 k15, k16 9 k1, k3, k15, k17, k18, k20, k22
5 k3, k4 10 k29, k30

3.3.2 Colorizing Master Petri Nets

The network reconstruction problem [MWW08] aims to find a fitting model, e.g. a
Petri net model, from a group of given experimental data by considering all possible

71

3 Some Implementation Aspects

����

��

��

���� ���
��

���

��

�����

���

����	

��

��

��

���

��

��

��

�

��

�		��

�	

��

�	

��

��

��
���������

�	

��
�

��	

��	�����

���

��	�

���

����

���

����

���

������������

�	�

��������

��

����

��

��������

���

��������

��

����

���

����

�	�

����

�		

��������

�

����

��

����

�	�

�����

���

�����

Figure 3.9: A colored Petri net model for the hypoxia response network. The declara-
tions: colorset CS = int with 1 − 10, and variable x : CS. Please note
that for clarity we hide all arc expressions which are all set to x.

models (or networks). For this, we have to construct each of these possible networks
one by one and then compare its behavior with experimental data, which is usually
time-consuming especially for a large number of possibilities.

To alleviate this process, we propose to use colored Petri nets to model all possible
networks (master Petri nets) for a group of experimental data, i.e. to consider each
possibility as a color. After that, we can run simulation for this model in different
settings to decide the fitting network.

Figure 3.10 gives a demonstration example, where for three substrates, P1, P2 and
P3, there are two reaction possibilities: only one reaction t1 or two reactions t1 and
t2. For these two candidate networks (possibilities), we can model them as a colored
Petri net, illustrated in Figure 3.11. For this colored net, if we set the initial marking
to color 1 (2), then the first (second) network will work. Thus, in order to find the
fitting network, we only need to change the marking setting before each simulation.

To implement automatic colorizing of master Petri nets, we now have to let the user
write them in the same file format as T-invariants. After that, we will deal with them

72

3.3 Folding of Petri Nets

��

�� �� ����

��

��

��

��

��� �	�

Figure 3.10: Two Petri net models (reaction possibilities) for demonstrating master
nets.

��
�

�����

���

��

��

������

���

��
���

��	

��

��

�

���������

�

�����

�

������

�

�

�

Figure 3.11: A colored Petri net model for Figure 3.10. The declarations: colorset CS =
int with 1, 2, and variable x : CS.

in the same way as the colorizing of T-invariants. As this format can not save the
information about arcs, we have to rewrite some arc expressions manually at present.
But we are going to develop a suitable format for saving master Petri nets and until
then we will realize fully automatic colorizing of master Petri nets.

In the following, we give an application of the colorizing of master Petri nets by tak-
ing the sensory control of sporulation in P. polycephalum [MWW08] as an example.
During the cell differentiation process, the photoreceptor protein phytochrome Pfr
that detects the far-red light Fr can turn into another stage Pr, which can go back
to Pfr by the red light Re. Figure 3.12 illustrates a common network for this process.
From this figure, we can see that we need to find the suitable reactions among three
places, Pfr, Pr and Re (Figure 3.12 (a)) by considering three possibilities (Figure 3.12
(b)-(d)). See [DWW10] and [MWW08] for details.

Obviously, we can use colored Petri nets to model the whole system, illustrated in
Figure 3.13. For readability, we use logic places to separate the main network and the
possible networks.

73

3 Some Implementation Aspects

��� �������

	
�

�
�

��

��

�������

��

�
�

�� ��

����

�
�

�
�

�� ��

��

��

��

��

��

��

��

��

��

��

��� ���

���

���

Figure 3.12: A Petri net model for the sensory control of sporulation in P. poly-
cephalum (a) and three possible subnetworks (b)-(d), which are adapted
from [DWW10].

���

��

����	��

��

��

��

��

��

��

��

��

��

�

��

�

��

�������

��

��

��

��

��

��

��

��

��

��

��

��

��

�����

�

�

� � � �

�

�

�

�

�

�

�

�

�
�

�

�

����������

����������

Figure 3.13: A colored Petri net model for the sensory control of sporulation in P. poly-
cephalum in Figure 3.12. The declarations: colorset CS = int with 1, 2, 3,
and variable x : CS.

74

3.3 Folding of Petri Nets

3.3.3 Colorizing Twin Nets

During the reconstruction of the regulatory network for sporulation of Physarum poly-
cephalum in [MSS05], Marwan et al. model the fusion of two mutant plasmodia. As
these two plasmodia have identical signaling subnetworks (Figure 3.14 illustrates the
signaling subnetwork for one plasmodium), we call them twin nets.

�� �� ��

�� ��

�� ��

Figure 3.14: The signaling subnetwork for one plasmodium, which is adapted from
[MSS05].

It is natural that we can fold twin nets to construct a colored Petri net model by
defining two colors, e.g. a and b, differentiating each half of twin nets. We can also
extend to any kind of twin nets.

In order to implement automatic folding of twin nets, we informally summarize our
algorithm as follows (for a given half of twin nets, e.g. Figure 3.14).

1. define a color set Dot and a color set CS with two colors a and b, each representing
a half of twin nets,

2. declare a variable x of the color set CS,

3. assign the color set CS to each place of the net,

4. create a new transition, e.g. t, for each place p in the original net,

5. create a new edge from p to t and assign it an expression x,

6. create a new edge from t to p and assign it an expression +x,

7. create another new place Pf with the color set Dot and connect it to each newly
created transition using a read arc, and

8. create a scheduled transition connecting Pf .

For example, for Figure 3.14, we can obtain two equivalent colored Petri net models,
illustrated in Figure 3.15 and Figure 3.16. The latter gives a more compact representa-
tion than the former due to the use of a coarse node. If we unfold them, they produce
the same uncolored Petri net model as in [MSS05].

75

3 Some Implementation Aspects

��

��

��

��

��

��

���� ����

�	
��

���

�� ��

�����	�� �

�

� � � �

���

� �

��

��

��

��

��

��

��

��

��

��

�	
��

���

�	
��

���

�	
��

���

�	
��

���

�	
��

���

���� ���� �������� ����

� �� � �� � ��� ��
� ��

��� ��� ������ ���

Figure 3.15: A colored Petri net model for Figure 3.14. The declarations:
colorset Dot = with dot, colorset CS = enum with a, b, and variable x :
CS.

��

��

��

��

��

��

���� ����

�	
��

���

�� ��

�����
�������	�� �

�

� � � �

���

� �

Figure 3.16: A colored Petri net model for Figure 3.14 with a coarse node "Exchange".
The coarse node contains the bottom subnet of Figure 3.15. The decla-
rations: colorset Dot = with dot, colorset CS = enum with a, b and
variable x : CS.

76

3.4 Closing Remarks

3.3.4 Conclusions

In this section, we have discussed how to automatically colorize three special scenar-
ios: T-invariants, master nets and twin nets, which may be interesting to biologists.
In summary, colorizing T-invariants contributes to the further understanding of T-
invariants for a biological network, while colorizing master nets or twin nets offers a
convenient way for reconstructing biological networks from experimental data. In the
future, we will exploit automatic folding of Petri nets based on subgraph isomorphism
by considering the characteristics of Petri nets.

3.4 Closing Remarks

In this chapter, we have addressed three key implementation aspects. The first aspect
is the computation of enabled transition instances. For this, we have given an efficient
algorithm by using a pattern matching mechanism and considering some optimization
techniques. The second problem concerns the unfolding of colored Petri nets, and we
have presented an unfolding algorithm and discussed how to improve the efficiency of
the unfolding process. In the third problem, the automatic folding (colorizing) of Petri
nets, we have discussed how to automatically colorize three special cases: T-invariants,
master nets and twin nets, which would bring benefits to biologists for a better under-
standing of biological networks or reconstructing networks from experimental data.

In the future, for the first two aspects, we will continue to explore more efficient tech-
niques to improve the computation efficiency in order to satisfy new requirements. For
the last problem, we not only need to consider more special folding problems, but we
also will focus on the automatic folding of Petri nets based on subgraph isomorphism
by considering the potential characteristics of Petri nets.

77

3 Some Implementation Aspects

78

4 Analysis Techniques

The animation of colored Petri nets enables us to experience the model behavior by
following the token flow, which establishes the initial confidence in the model. The
simulation of colored Petri nets strengthens this confidence by allowing us to investigate
specific simulation traces. However, neither animation nor simulation is enough to
obtain a credible model. In order to gain deeper insights into the constructed models,
formal analysis techniques have to be investigated.

As discussed in Chapter 3, colored Petri nets can be unfolded into equivalent standard
Petri nets, so we can use existing analysis techniques and tools for standard Petri nets
to analyze colored Petri nets. In this chapter, we will first discuss how to analyze colored
Petri nets from this point of view. We will describe four analysis techniques: structural
analysis [HGD08] to investigate the structural properties, model checking [CE81] to
qualitatively analyze the behavior, numerical model checking [ASSB00] to accurately
analyze the behavior and simulative model checking [DG08] to approximately analyze
the behavior of a net. Please note that we will focus on how to use existing tools based
on these analysis techniques to accomplish the analysis of colored Petri nets.

In addition, we can directly analyze colored Petri nets without unfolding. For this
purpose, we do not develop our own analysis tools; instead we resort to external tools.
In this chapter, we will discuss how to transform our colored qualitative Petri nets to
those read by CPN tools [RWL+03] and then use the analysis capabilities offered by
CPN tools to accomplish the analysis of our colored Petri nets.

This chapter is organized as follows. Section 4.1 describes structural analysis techniques
of Petri nets and how to conduct structural analysis on colored Petri nets. Section 4.2
illustrates model checking of qualitative colored Petri nets. Section 4.3 describes nu-
merical model checking of colored stochastic Petri nets. Section 4.4 discusses simulative
model checking of colored stochastic Petri nets. Section 4.5 describes how to use CPN
tools to analyze our colored qualitative Petri nets. Finally, the conclusions for this
chapter are given.

4.1 Structural Analysis

Structural analysis [MBC+95], [HGD08] means to investigate the properties of Petri
nets from their structure without constructing the reachability graph. If a property is

79

4 Analysis Techniques

proved structurally for a Petri net, it holds for this Petri net in any initial marking.
The important structural properties can be classified as follows:

1. Elementary graph properties, e.g. connectedness and strongly connectedness. All
of them are decided only by the graph structure using graph algorithms. They
can be used for preliminary checks of the design of a net.

2. P- and T-invariants. A P-invariant represents a set of places over which the
weighted token count keeps constant, and a T-invariant describes how often the
transitions contained by it have to fire to return to the original marking. Both of
them can be obtained by solving a linear equation system that describes a net,
which are also independent of the initial marking.

3. Deadlock and trap. A deadlock is a set of places where the set of its pretransitions
is contained in the set of its posttransitions, while a trap is a set of places where
the set of its posttransitions is contained in the set of its pretransitions. Both of
them contribute to the study the liveness of Petri nets.

Among them, P- and T-invariants play crucial roles in analyzing biological systems due
to their biological interpretations. For example, in a metabolic network, P-invariants
correspond to the conservation law in chemistry, reflecting substrate conservations, and
T-invariants reflect the steady state behavior [BCMS10], [HGD08].

Charlie is a software tool to analyze standard Petri nets, e.g. analyzing the structural
properties given above. We also use Charlie to analyze colored Petri nets. In order to
do that, we have to unfold them and then export them to a file in the APNN format,
which will be inputed to Charlie to prove those properties. See [Fra09] for more details
about how to use Charlie. We will give some case studies to demonstrate how to analyze
structural properties of colored Petri nets in Chapter 5.

4.2 Model Checking

Model checking is a technique developed for the formal verification of hardware and
software systems. It answers whether a finite state model of a system meets a given
specification, expressed by temporal logics, the most popular two of which are Linear
Temporal Logic (LTL) [Pnu81] and branching Computation Tree Logic (CTL) [CE81].
One of the big advantages of model checking is that it can be performed fully auto-
matically.

As a discrete event modeling formalism, qualitative discrete Petri nets can be verified
by model checking. In this section, we will discuss how to use existing model checking
tools to analyze colored qualitative Petri nets. In the following, we first briefly recall
the two popular temporal logics, LTL and CTL, and then discuss the way to check
colored qualitative Petri nets.

80

4.2 Model Checking

4.2.1 Linear Temporal Logic

LTL [Pnu81] is a linear temporal logic, in which the future is seen as a sequence of
states (a path) and each moment has a unique possible future (successor). The syntax
of LTL is defined as follows:

φ ::= Xφ | Gφ | Fφ | φUφ
| ¬φ | φ ∨ φ | φ ∧ φ | φ→ φ
| true | false | ap.

The formulas of LTL are composed of atomic propositions ap ∈ AP , usual Boolean
operators ¬ (complement), ∨ (disjunction), ∧ (conjunction),→ (implication), and tem-
poral operators X (Next), G (Globally), F (Finally), and U (Until).

Suppose a Kripke model M . σ = s0, s1, ... denotes any infinite execution trace of M ,
σi = si, si+1, ... and |= denotes the satisfaction relation. The semantics of LTL is as
follows:

M, σ |= ap ⇔ ap is true at s0 (written s0(ap))
M, σ |= ¬φ ⇔ ¬(M, σ |= φ)
M, σ |= φ1 ∨ φ2 ⇔ M, σ |= φ1 ∨M, σ |= φ2

M, σ |= φ1 ∧ φ2 ⇔ M, σ |= φ1 ∧M, σ |= φ2

M, σ |= φ1 → φ2 ⇔ M, σ |= ¬φ1 ∨M, σ |= φ2

M, σ |= Xφ ⇔ M, σ1 |= φ
M, σ |= Gφ ⇔ ∀i ≥ 0 M, σi |= φ
M, σ |= Fφ ⇔ ∃i ≥ 0 M, σi |= φ
M, σ |= φ1Uφ2 ⇔ ∃i ≥ 0 M, σi |= φ2 ∧ ∀0 ≤ j < i M, σj |= φ1

The formulas of LTL are interpreted over a set of paths; a formula is true if and only
if it is evaluated to true for all paths. See e.g. [CGP01] for detailed semantics.

4.2.2 Computation Temporal Logic

CTL [CE81] is a branching time logic, in which each moment has various possible
futures in time. CTL also contains atomic propositions ap ∈ AP , usual Boolean oper-
ators ¬, ∨, ∧ and →, and temporal operators, X, G, F , and U , but it has two more
path quantifiers E (there exists a path) and A (for all paths). Each of the temporal
operators must be immediately preceded by one of the two path quantifiers. The syntax
of CTL is defined as follows:

φ ::= AXφ | EXφ | AGφ | EGφ | AFφ | EFφ | A[φUφ] | E[φUφ]
| ¬φ | φ ∨ φ | φ ∧ φ | φ→ φ
| true | false | ap.

81

4 Analysis Techniques

The semantics of CTL can be interpreted over Kripke models. Suppose a Kripke model
M . si denotes a state of M , and π = (si, si+1, ...) denotes any path outgoing from si

in the model M . The semantics of CTL is as follows:

M, si |= ap ⇔ ap is true at si (written si(ap))
M, si |= ¬φ ⇔ ¬(M, si |= φ)
M, si |= φ1 ∨ φ2 ⇔ M, si |= φ1 ∨M, si |= φ2

M, si |= φ1 ∧ φ2 ⇔ M, si |= φ1 ∧M, si |= φ2

M, si |= φ1 → φ2 ⇔ M, si |= ¬φ1 ∨M, si |= φ2

M, si |= AXφ ⇔ ∀π = (si, si+1, ...) M, si+1 |= φ
M, si |= EXφ ⇔ ∃π = (si, si+1, ...) M, si+1 |= φ
M, si |= AFφ ⇔ ∀π = (si, si+1, ...) ∃j ≥ i M, sj |= φ
M, si |= EFφ ⇔ ∃π = (si, si+1, ...) ∃j ≥ i M, sj |= φ
M, si |= AGφ ⇔ ∀π = (si, si+1, ...) ∀j ≥ i M, sj |= φ
M, si |= EGφ ⇔ ∃π = (si, si+1, ...) ∀j ≥ i M, sj |= φ
M, si |= A[φ1Uφ2] ⇔ ∀π = (si, si+1, ...) ∃j ≥ i M, sj |= φ2 ∧ ∀i ≤ k < j M, sk |= φ1

M, si |= E[φ1Uφ2] ⇔ ∃π = (si, si+1, ...) ∃j ≥ i M, sj |= φ2 ∧ ∀i ≤ k < j M, sk |= φ1

Compared with LTL, the formulas of CTL are interpreted over trees but not individual
paths. See e.g. [CGP01] for more details.

4.2.3 Model Checking of QPN C

We can use Charlie [Cha11] or Marcie [SRH11] to perform model checking for QPN C .
Charlie can conduct not only structural analysis but also explicit CTL/LTL model
checking of Petri nets. Moreover, Marcie provides more efficient CTL model checking
based on Interval Decision Diagrams (IDD). Either tool accepts an input in the APNN
format.

The procedure to use either tool is the same. We first unfold and export a QPN C

model to a file in the APNN format. Then we can deal with it like dealing with a
standard Petri net model.

Take Figure 1.2 as an example, we can write the following properties e.g. using CTL:

• AG(G_a). It checks if it always holds that G_a (gene a) has tokens.

• AG AF (P_a). It checks if P_a (protein a) has tokens infinitely often.

4.3 Numerical Model Checking

Stochastic Petri nets have gained widespread use in modeling biological systems with
stochastic characteristics. The underlying semantics of a stochastic Petri net is de-
scribed by a continuous time Markov chain, so it can be quantitatively analyzed by

82

4.3 Numerical Model Checking

numerical model checking based on the Continuous Stochastic Logic (CSL) [ASSB00],
[BHHK03], which is very useful for the validation of biological systems.

Some tools for CSL model checking have been developed. For example, PRISM [KNP09]
has been used to analyze probabilistic systems in a variety of application areas. Marcie
[SRH11] particularly aims to quantitative analysis of generalized stochastic Petri nets.

In this section, we will investigate how to utilize those existing model checking tools
to realize the verification and validation of colored stochastic Petri nets. For a SPN C

model, we can exactly obtain its equivalent stochastic Petri net model by unfolding;
hence we can realize the analysis of a SPN C model via its equivalent uncolored model
using those tools. In the following, we first briefly recall CSL and then give the proce-
dure for CSL model checking of SPN C .

4.3.1 Continuous Stochastic Logic

CSL is based on the temporal logics CTL [CES86] and PCTL (Probabilistic Compu-
tation Tree Logic) [HJ94]. CSL provides a powerful means to specify both path-based
and state-based properties on a CTMC. CSL is composed of not only the standard
propositional logic operators, but also two probabilistic operators, P and S, where the
P operator checks the probability of a path formula while the S operator checks the
steady-state behavior of a CTMC. The syntax of CSL [ASSB00], [BHHK03] is defined
as follows:

Φ ::= PEp[φ] | SEp[Φ]
::= ¬Φ | Φ ∧ Φ | Φ ∧ Φ | Φ→ Φ
::= true |false | ap.

φ ::= XIΦ | F IΦ | GIΦ | ΦU IΦ.

where ap ∈ AP is an atomic proposition, E∈ {<,≤,≥, >}, p ∈ [0, 1] and I is an
interval of R

+.

CSL contains state formulas, Φ, interpreted over states of a CTMC, and path formulas,
φ, interpreted over paths of a CTMC. It also has two probabilistic operators. PE p[φ]
asserts that the probability of the path formula φ being satisfied from a given state
meets the bound given by E p, and SE p[Φ] indicates that the steady-probability of
being in a state satisfying Φ meets the bound given by E p.

We do not give the detailed semantics of CSL here because it occupies large space. See
[ASSB00], [BHHK03] for more details.

4.3.2 CSL Model Checking of SPN C

We can use Marcie [SRH11] to realize CSL model checking of the uncolored stochastic
Petri net of a colored stochastic Petri net. Marcie is a tool for qualitative and quantita-

83

4 Analysis Techniques

tive analysis of generalized stochastic Petri nets with extended arcs. It realizes symbolic
CSL model checking of stochastic Petri nets written in the APNN format.

The procedure to use Marcie for CSL model checking of SPN C is very simple. We first
unfold and export a SPN C model to a file in the APNN format. Then we can deal
with it just like dealing with a stochastic Petri net model. We will demonstrate this in
Chapter 5.

We can also use PRISM [KNP09] to conduct CSL model checking on colored stochastic
Petri nets. PRISM is a probabilistic model checker, which supports three types of
probabilistic models, i.e. discrete time Markov chains, continuous time Markov chains
and Markov decision processes and incorporates several temporal logics, e.g. CSL and
PCTL. PRISM uses a simple state-based language to describe its models.

Please note that Marcie is more efficient than PRISM due to the following reasons
[SH09]. Marcie is based on IDD (Interval decision diagrams), which is more efficient
than MTBDD (Multi-terminal binary decision diagrams) that is used by PRISM. More-
over, Marcie supports multi-threaded analysis, while PRISM can not. From the test
result given in [SH09], we can see that Marcie clearly outperforms PRISM, e.g. con-
suming much less time for constructing the state space of the same size, being able to
construct much larger state space.

In order to use PRISM for colored stochastic Petri nets, we first have to export a
SPN C model to a stochastic Petri net that can be transformed into a PRISM file in
Snoopy. When we obtain the PRISM file for a SPN C model, we can use PRISM to
open it and then conduct CSL model checking on it.

For example, for the model of circadian rhythms in Figure 2.5, we can write the fol-
lowing property using CSL:

P>p[F[t,t]Activator = 1].

It checks if the probability of the species Activator being 1 at some time instance t is
greater than a specified value p.

4.4 Simulative Model Checking

Numerical model checking adopts numerical techniques for transient analysis of CTMC
models [ASSB00], which is usually highly accurate. However, it suffers from the problem
of state space explosion due to its intensive computation and is often limited to models
with the Markovian behavior [YKNP06]. In contrast, simulative model checking follows
the idea of Monte Carlo sampling and analyzes only a subset of the state space to obtain
an approximate result. So it is not limited to specified formal models and not subject
to the state space explosion; however it is less accurate [DG08].

84

4.4 Simulative Model Checking

In this section, we investigate how to use simulative model checking to analyze colored
stochastic Petri nets. We first recall basic ideas of PLTLc, a probabilistic linear tempo-
ral logic with numerical constraints [DG08], and then discuss how to use it to analyze
colored stochastic Petri nets.

4.4.1 Probabilistic Linear Temporal Logic with Numerical Constraints

PLTLc [DG08] is an extension of standard LTL [Pnu81] to a stochastic setting with a
probability operator and a filter construct that defines the initial state of a property.
The syntax of PLTLc is defined as follows:

Φ ::= PEp[φ]
| PEp[φ{ap}].

φ ::= Xφ | Gφ | Fφ | φUφ
| ¬φ | φ ∨ φ | φ ∧ φ | φ→ φ
| true | false | ap.

ap ::= ¬ap | ap ∨ ap | ap ∧ ap | ap→ ap
| value Lop value.

Lop ::= = | 6= | ≥ | > | < | ≤ .
value ::= value op value

| variable | function
| Integer | Real.

function ::= max(variable) | d(variable).
Aop ::= + | − | ∗ | /.

The atomic propositions in PLTLc are extended to include e.g. variables and functions,
so we here also describe the syntax of atomic propositions, which we have omitted
for LTL, CTL and CSL. The probabilistic operator PEp[φ] is used to compare the
probability of the property φ being true with a given value p. P=? is allowed to replace
PEp to return the probability of a property φ being true. In PEp[φ{ap}], ap is a filter
construct that defines the initial state of a property φ, i.e. φ will be checked from the
first state that ap is satisfied.

V ariable is defined as the concentration of a species, which is dependent on the time,
e.g. any place in a Petri net can be considered as a variable. time is a predefined variable
to represent the time of states. The function max returns the maximum concentration
value of a species in a simulation run and d returns the derivative of the concentration
of a species at each time instance.

The semantics of PLTLc is defined over a finite set of finite linear traces of temporal
behavior, coming from e.g. stochastic simulation runs. The temporal operators, X, G,
F , and U follow the standard LTL semantics. For example, for PEp[φ], each trace is

85

4 Analysis Techniques

evaluated to a Boolean value in terms of a property φ being true in this trace and the
probability of the property φ holding true in a set of traces is computed by the fraction
of the set that is evaluated to true over the whole set.

No doubt, the number of the traces and the length of each trace affect the correctness
of the result. So one way to improve the accuracy is to increase both of them.

4.4.2 PLTLc Model Checking of SPN C

We can use MC2 [DG08], a model checker by Monte Carlo sampling, for simulative
PLTLc model checking. MC2 can read sets of simulation traces as generated by Snoopy
and expects additionally a file with the temporal-logical formulas. So in order to use
MC2 for model checking of colored stochastic Petri nets, we only need to run simulation
to obtain simulation traces and feed them to MC2.

For a colored stochastic Petri net, its simulation is done on its automatically unfolded
stochastic Petri net, so we can obtain traces of unfolded places directly through simula-
tion. In addition, we can also obtain traces for colored places by summing up the traces
of their correponding unfolded places. For example, if we run the repressilator model in
Figure 1.2, we can obtain a stochastic simulation result, which shows the traces of three
unfolded places Pa, Pb and Pc (illustrated in Figure 4.1(a)) of the colored place P and
also the trace of P by summing up the traces of its three unfolded places (illustrated
in Figure 4.1(b)).

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000 30000

va
lu

e

time

 Pa
 Pb
 Pc

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000 30000

va
lu

e

time

Pa
Pb
Pc
P

(b)

Figure 4.1: Stochastic simulation result of one simulation run for the repressilator
model in Figure 1.2: (a) three unfolded places of colored place P , (b) colored
place P and its three unfolded places.

Therefore, for a colored stochastic Petri net, we can specify its properties to be checked

86

4.4 Simulative Model Checking

not only for its unfolded places but also for its colored places. We use the repressilator
example in Figure 1.2 to demonstrate how to specify properties using PLTLc and
then obtain their results. For this purpose, we generate a set of 200 stochastic (single)
simulation traces.

(1) Properties of colored places.

As described above, when we simulate a SPN C model, we can obtain the traces not
only for unfolded places but also for colored places. Therefore, we can directly specify
properties for colored places.

For example, we can use the following query to check the maximum on the trace of the
colored place, P , which sums up the traces of its three unfolded places, Pa, Pb and Pc.
The probability for this query is evaluated to 1.0.

P=?[G([P] < 150)]

(2) Properties of unfolded places.

As described above, we can directly obtain unfolded places (colored place instances)
from simulation, so we can also specify properties for unfolded places.

P=?[F (¬(G(Pa < 5) ∨ (G(Pa > 110))))]

This query (the probability being evaluated to 0.9) states that the value of the Pa

oscillates between two extremes: 5 and 110.

From these results, we can see that simulative model checking provides a quantifica-
tion of the probabilities at which qualitative properties hold. Although the results are
approximate, they do provide insights into how a system behaves, especially when the
numerical model checking is not available.

In addition, Snoopy also provides simulative model checking of linear-time properties
for SPN and SPN C based on a subset of PLTLc [HRSS10]. For the time being, the
formulas Snoopy supports take the following form:

P=?[F[t1,t2][ap]].

The procedure to use simulative model checking of Snoopy is as follows. In Snoopy,
before each simulation, we specify the properties to be checked, then run simulation
and obtain the model checking result. Please note that we can also specify properties
not only for unfolded places but also for colored places.

87

4 Analysis Techniques

4.5 Analysis of QPN C Using CPN Tools

A QPN C model without special arcs exactly corresponds to a colored Petri net model
drawn by CPN tools [RWL+03] (which we will call a CP-net in the following); therefore
it is natural to transform a QPN C model to a CP-net model and then utilize analysis
capabilities offered by CPN tools.

In this section, we will address this problem. We first recall a brief introduction of CPN
tools, then describe how to transform a QPN C model to a CP-net model and finally
discuss how to analyze QPN C models using CPN tools.

4.5.1 CPN Tools

CPN tools [RWL+03] are a suite of tools for editing, simulating and analyzing CP-nets.
They use the SML language for editing declarations and net inscriptions and provide
several ways for simulation/animation, e.g. single-step simulation by firing one enabled
transition or fast simulation by skipping a number of steps. CPN tools also facilitate
generating and analyzing full or partial state spaces for CP-nets based on an explicit
state enumeration and thus make it possible to verify different behavioral properties of
CP-nets. Specifically, CPN tools not only provide a number of built-in standard queries
to investigate standard properties of CP-nets but also allow to define your own queries
using the SML language to investigate other interesting properties.

4.5.2 Transformation from QPN C Models to CP-Net Models

In order to transform a QPN C model to a CP-net model, we need first to build a
map from QPN C components to CP-net components, and then transform components
of a QPN C model to the counterparts of a CP-net model. The components to be
transformed include:

• Declarations about color sets, variables, constants and user-defining functions,

• Place: name, identity, graphic information and initial marking,

• Transition: name, identity, graphic information and guard,

• Arc: source node, target node and expression, and

• General information: the size of the canvas for a net.

Among them, a key problem is to convert expressions of a QPN C model to those of
a CP-net model, as the syntax for these two kinds of expressions is different. For this,
we have made automatic conversions as much as possible. For those parts that are not

88

4.5 Analysis of QPN C Using CPN Tools

automatically converted, we have to manually modify them so as to make them comply
with the syntax of CPN tools.

CPN tools save all information of a model in an XML file and use a document type
definition (DTD) file to validate the XML file. After the mapping above is built, we
can convert a QPN C model to a CP-net model by exporting to CPN tools in Snoopy,
which in fact serializes a QPN C file to a CP-net file readable by CPN tools. We can also
transform a SPN C/CPN C model to a CP-net model by omitting all rate functions.

4.5.3 Analysis of QPN C Models with CPN Tools

After obtaining a transformed CP-net model from a QPN C model, we can analyze it
using CPN tools. In the following, we use the example for cooperative ligand binding
in Figure 4.2 (constructed according to [MWW11]) to illustrate how to use CPN tools
to analyze a QPN C model. When we export the example to a CP-net file in Snoopy,
we obtain the model in CPN tools, illustrated in Figure 4.3, which exactly corresponds
to the QPN C model.

��
�

�����
���

	
���

�
��

	
��

	
��	

	
��

�� ������ �� ������ �� ������ �� ������

��

��

��� ��� ��� ���

��� � � ���

� �

��

��� � � ���

�������������

�������� ��� ! "��# ���$

�������� 	
�� ! ��� "��#
%�$

&����
�� � � 	
��$

Figure 4.2: A colored Petri net model for cooperative ligand binding [MWW11].

When we generate the state space for this example in CPN tools, we can obtain a
standard report that provides general information about the net. From this report, we
will see that this net is bounded, live and reversible.

89

4 Analysis Techniques

Figure 4.3: A CP-net model for Figure 4.2. Its declarations are the same as those in
Figure 4.2.

We then demonstrate how to use standard queries to analyze the net as follows.

• InitialHomeMarking(): returning whether the initial marking is a home mark-
ing. It is evaluated to true for this net.

• ListDeadMarkings(): returning a list of all dead nodes. It is evaluated to empty
for this net.

Although CPN tools offer an alternative way to directly analyze colored Petri nets,
they have disadvantages in several aspects, e.g. unable to cope with special arcs and
limited by a small state space.

4.6 Discussions

4.6.1 Comparison of Two Approaches: Folded versus Unfolded

Colored Petri nets can be analyzed at two levels: folded (colored) or unfolded. At the
folded level, we can utilize the characteristics of colored Petri nets and do not generate
their corresponding unfolded Petri nets while at the unfolded level we have to explicitly
generate unfolded Petri nets for them. However, there are advantages and disadvantages
for both approaches. In the following, we will in detail discuss and compare these two
approaches from the point of view of simulation and analysis.

At the folded level, the computation of enabled transition instances for a colored Petri
net has to be done for each firing (or in each simulation step) so as to move simulation
on or to construct its reachability graph. Therefore, the repetitive computation of

90

4.6 Discussions

enabled transition instances becomes a quite expensive task. So far, two tools, CPN
tools [JK09] and GreatSPN [Gre11], have extensively explored simulation and analysis
techniques at the folded level, both of which utilize the symmetries inherent to colored
Petri nets.

In CPN tools [JK09], they can freely use the syntax of the SML language for construct-
ing colored Petri nets, so they allow very complex but friendly expressions on guards
or arcs. CPN tools provide simulation at the folded level, in which a pattern matching
mechanism is used to compute enabled transition instances, but they do not make use
of the symmetries of colored Petri nets. Moreover, CPN tools offer state space analysis
at the folded level. To do this, they try to find the symmetries in colored Petri nets and
construct reduced state space, occurrence graphs with equivalence classes (OE graphs)
[Jen95], [Jen96]. However, so far CPN tools are still limited to a small state space.

In GreatSPN [CFG92], [CDFH97], [Gre11] a number of restrictions have been added
on the syntax of colored Petri nets (which are called well-formed nets (SWN)). This
restrained syntax brings several benefits, e.g. easily finding symmetries of a colored
net only from its color sets and improving the efficiency of the computation of enabled
transition instances. However the disadvantages are also obvious, e.g. not easy to write
complex expressions, particularly guards. GreatSPN provides symbolic simulation of
SWN, where the efficiency of the computation of enabled transition instances is gained
due to the restrained syntax of SWN and another great efficiency improvement is gotten
by substantially reducing the length of the event list using symbolic transition instances
that result from the symmetries of SWN. GreatSPN allows to construct reduced state
space, symbolic reachability graphs, where it also uses the restrained syntax of SWN
to improve the efficiency of the computation of enabled transition instances and uses
symmetries to greatly reduce the size of state space. The steady state and transient
Markovian analysis can be done by converting symbolic reachability graphs into lumped
Markov chains in GreatSPN.

In summary, at the folded level, we can utilize the symmetries inherent to colored Petri
nets; however we usually have to develop specific simulation algorithms and analysis
techniques for colored Petri nets with a specific kind of syntax.

In contrast, at the unfolded level, we have to pay the price to obtain an unfolded
Petri net for a colored Petri net and sacrifice its intrinsic symmetry. However, the
benefits we obtain are also great. When we obtain unfolded Petri nets, we can reuse
all the simulation and analysis techniques applicable for standard Petri nets. So there
are usually much richer simulation algorithms and analysis techniques available at the
unfolded level than at the folded level.

Therefore in the future there are at least two ways for us to further strengthen analysis
capabilities of our colored Petri nets, i.e. to export our colored Petri nets to GreatSPN
or CPN tools that is already done in Section 4.5 or to equip our modeling tool with
simulation and analysis techniques at the folded level. In addition, at the unfolded

91

4 Analysis Techniques

level, we will continue to improve the unfolding efficiency of our colored Petri nets.

4.6.2 Partial Unfolding - Tackling Dynamic Color Sets

In biological systems there are usually such biological phenomena as compartment
creation, division, merging and dissolving, or cell division and death. When we use
colored Petri nets to model these phenomena, one way is to use dynamic color sets, i.e.
to simulate these phenomena by adding or removing colors. There are basically two
approaches to implement the simulation and analysis under dynamic color sets: at the
folded or unfolded level.

At the folded level, it seems easier to introduce dynamic color sets. We can implement
simulation by for each firing checking if dynamic color sets change or not and then
computing enabled transition instances of colored Petri nets. However, there are still
many challenges, e.g. when some color set changes, we have to recompute its permu-
tation or rotation and then change everything concerning the permutation or rotation
in the symbolic simulation [CFG92], [CDFH97].

We can also introduce dynamic color sets and then simulate or analyze colored Petri
nets by partial unfolding. For this, we have to track all the transitions that result in
the change of dynamic color sets. We can start with a full unfolding of a color Petri
net. When a transition resulting in the change of a color set fires, we will pause the
simulation and immediately do a partial unfolding for the newly added or removed
colors, which will be fed to the simulation, and then resume the simulation. In the next
step, we will focus on the partial unfolding way to tackle dynamic color sets.

4.7 Closing Remarks

Formal analysis techniques play crucial roles in verifying and validating constructed
models. One of the advantages of Petri nets is that they have rich mathematically
founded analysis techniques, covering both structural and behavioral properties.

In this chapter, we have discussed analysis techniques for colored Petri nets from two
points of view. From the unfolding point of view, we have described how to employ
existing techniques, structural techniques, numerical and simulative model checking,
and tools for standard Petri nets to realize the analysis of colored Petri nets. From
the folding point of view, we have transformed our qualitative Petri nets to those read
by CPN tools and then analyze them using CPN tools. All these analysis techniques
together provide an effective means to verify and validate colored Petri nets. In the
future, we will investigate more analysis techniques suitable for colored Petri nets.
In the next chapter, we will give some case studies in which we will show how these
analysis techniques work for colored Petri nets.

92

5 Case Studies

So far we have introduced modeling and analysis techniques of colored Petri nets. In
this chapter, we will present three case studies to demonstrate how to apply these
techniques to modeling and analyzing practical biological systems.

The first two case studies demonstrate how colored Petri nets can be used to solve
some of multiscale challenges introduced in Chapter 1, e.g. repetition of components,
organization of components, communication of components, and further hierarchical
organization of components. In the third case study, we want to further explore ad-
vanced applications of colored Petri nets, i.e. converting existing modeling paradigms
discussed in the literature to colored Petri nets.

The first case study illustrates how to model C. elegans vulval development, in which
there are six cells of identical structure. This system has such features as repetition of
cells that are organized in one dimensional space, and communicate between immediate
neighbors. Thus this case study will address all these three features (challenges). Other
purposes of this case study are mainly twofold. (1) In Chapter 2, we have presented
a colored Petri net framework for modeling and analyzing biological systems, which
relates three modeling paradigms: QPN C , SPN C and CPN C that can be converted
into each other in our modeling tool Snoopy, thus we can explore a system from three
perspectives: qualitative, stochastic and continuous, respectively. This case study will
demonstrate how these three formalisms are combined to accomplish the analysis of a
biological system. (2) Colored Petri nets enjoy a large variety of analysis techniques,
e.g. animation, stochastic and continuous simulation, structural analysis and model
checking. This case study will also show how these techniques are used to analyze a
biological system.

The second case study models coupled Ca2+ channels, which addresses the problems
of repetition of Ca2+ channels, the organization of Ca2+ channels in two dimensional
space and the communication of Ca2+ channels. We also focus on how to model cou-
pled Ca2+ channels with different levels of details: two-state and six-state models. In
addition, we briefly discuss the hierarchical organization of coupled Ca2+ channels with
more than one clusters in two dimensional space.

The third case study explores a more advanced application of colored Petri nets, i.e.
modeling membrane systems with colored Petri nets. The purpose of this case study
is trying to discover more special scenarios to apply colored Petri nets. A membrane
system composed of compartments can be modeled as a colored Petri net model by

93

5 Case Studies

encoding each compartment as a color. As a result, we not only distinguish and show
compartment information using colored Petri nets but also make the model very com-
pact and offer a large range of analysis techniques.

This chapter is organized as follows. Section 5.1 describes how to model and analyze C.
elegans vulval development. Section 5.2 discusses the modeling of Ca2+ channels. Sec-
tion 5.3 addresses an advanced application, modeling membrane systems with colored
Petri nets. Finally, the conclusions of this chapter are given.

5.1 Modeling C. Elegans Vulval Development

In this section, we illustrate our approach by presenting a case study about C. elegans
vulval development. Based on the model given in [LNUM09], we develop a colored
Petri net model for C. elegans vulval development. This model is then validated by
comparing its behavior with that reported in [LNUM09].

This section is further organized as follows. Section 5.1.1 briefly recalls the background
of C. elegans vulval development. Section 5.1.2 discusses how to model C. elegans vulval
development using colored Petri nets. Section 5.1.3 gives the structural analysis of the
C. elegans vulval development model. Section 5.1.4 describes how to use simulative
model checking to determine the fate of vulval precursor cells. Section 5.1.5 gives
results and discussions. Section 5.1.6 concludes this section.

5.1.1 C. Elegans Vulval Development

Caenorhabditis elegans (C. elegans) vulval development is an important paradigm to
study how multiple pathways in multiple cells interact to produce developmental pat-
terns. It involves six vulval precursor cells (VPCs) that are consecutively numbered
P3.p to P8.p (see Figure 5.1). Each VPC is potentially capable of adopting one of
three cell fates (termed 1◦, 2◦ or 3◦) depending upon the interaction of two opposing
signals that it receives. Vulval development is initiated by an EGF-like soluble factor,
LIN-3 that is produced by a centrally positioned anchor cell (AC). LIN-3 activates
the EGFR homolog LET-23 in the VPCs, and specifies the 1◦ cell fate by means of a
canonical Ras-MAPK cascade. In response to the inductive signal, the VPCs produce
LIN-12-mediated lateral signals, which counteract the inductive signals in the neighbor-
ing VPCs. The lateral signal activates the receptor LIN-12/Notch in the neighboring
VPCs, causing them to adopt the 2◦ fate by means of the LIN-12/Notch lateral sig-
naling pathway. The fate of each VPC is decided by its relative distance to AC and
the lateral signals it obtains from its neighboring VPCs. As a result, in the wild-type
C. elegans the cell closest to the AC (P6.p) adops the 1◦ cell fate by receiving most of
the inductive signals. The two neighboring cells (P5.p and P7p) of it adopt the 2◦ cell
fate by receiving the stronger lateral signals from P6.p. The other cells (P3.p, P4.p and

94

5.1 Modeling C. Elegans Vulval Development

P8.p) adopt the 3◦ fate without enough inductive signals or lateral signals [YBG04],
[FPHH07].

��������	

��
���
� ��
� ��
� ��
� ��
�

�����

�� �� �� �� �� ��

����

�	

����	

���	��
��� ��

!��"�	���� ��

Figure 5.1: Spatial patterning of VPCs of vulval development in the wild-type C. el-
egans. The AC in the gonad releases the inductive signal, in response to
which the VPCs produce the lateral signal, causing P3.p – P8.p cells to
adopt three distinct cell fates (1◦, 2◦ and 3◦).

In order to understand the processes involved in multi-cellular pattern formation, a
lot of computational models have been developed for C. elegans vulval development.
For example, Sternberg and Horvitz [SH89] proposed the first diagrammatic model,
describing the regulatory network underlying VPC determination. Fisher et al. used
state charts to create a formal dynamic model of vulval fate specification [FPHH07].
Giurumescu et al. [GSA06] proposed a partial model based on ordinary differential
equations. Li et al. [LNUM09] recently modeled C. elegans vulval development using
hybrid functional Petri nets with extensions. Bonzanni et al. [BKF+09] used the basic
Petri net formalism to build a coarse-grained model for simulating the behavior of C.
elegans vulval development. Among them, the latter two seem to be more detailed and
quantitative, but both of them become less readable and managable.

5.1.2 Modeling

In this section, we use colored Petri nets to model C. elegans vulval development based
on the hybrid functional Petri net model developed in [LNUM09]. As C. elegans vulval
development involves six similar vulval precursor cells, it is natural to use colored Petri
nets to model it, i.e. defining six colors to differentiate six cells. As a result, we can
use only one-cell model to represent six cells. This shows one attractive advantage
of colored Petri nets, representing the whole system with only one component, thus
greatly decreasing the size of the whole model.

Before giving a colored model, we first briefly recall the hybrid functional Petri net

95

5 Case Studies

model for C. elegans vulval development reported in [LNUM09]. This model is com-
posed of six vulval precursor cells, each of which contains a detailed Ras-MAPK path-
way, a LIN-12/Notch lateral signaling pathway and a signaling pathway induced from
hyp7 (the hypodermal syncytium). In this model, there are 427 entities (places), 554
processes (transitions) and 780 connectors (arcs). They use two biological fate determi-
nation rules based on temporal order and temporal interval, respectively, to determine
the fate of cells. See [LNUM09] for more details about this model.

In order to construct a colored stochastic Petri net model, we first construct a stochastic
Petri net model for one of the six VPCs and the anchor cell. Then we define a color set
with six colors, e.g. an integer color set, CS, with values 3 to 8 encoding six VPCs and a
second color set Dot with only one color "dot" encoding the anchor cell. After that, we
assign CS to the constructed one-cell model, and thus we obtain one copy for each of
the six VPCs. Besides, we assign the color set Dot to the anchor cell. Finally, we obtain
a colored stochastic Petri net model for C. elegans vulval development, illustrated in
Figure 5.2.

In order to easily understand our model and compare it with the original model in
[LNUM09], we give our model a similar structure as one cell of the model in [LNUM09],
and all rate functions and parameters are set in terms of [LNUM09]. Instead of using
implicit user-defined functions, we use scheduled/deterministic transitions (Tsim1–
Tsim3) to add an initial signal to AC and switch on the production of signals of AC
and hyp7. Table 5.1 and 5.2 give explanations about those transitions and places that
are different from those in [LNUM09], respectively. Other transitions and places have
the same meaning as those in [LNUM09]. All arc multiplicities have been marked in the
model. Please note that we use modifier arcs for the arc from place Pe1 to transition
Te1 and the arc from place Pe2 to transition Te4, as Pe1 and Pe2 are only used to
control the rate of Te1 and Te4, respectively.

We use the combination of inhibitor arcs, read arcs and logic places to accomplish
the switch of different genotypes. At the top of the model, we can see a genotype
configuration-like panel, which includes an AC and four mutant variables. AC can tog-
gle between true and false; lin12 can toggle between "wt", "ko" and "gf" (by selecting
lin12_wt, lin12_ko and lin12_gf , respectively), indicating three genetic conditions
of wild, knockout and overexpression of the gene lin−12; lin15, vul and lst can toggle
between "wt" and "ko".

The colored Petri net model comprises 41 places, 68 transitions and 131 arcs. Compared
with the model in [LNUM09], we can see that the size of the colored Petri net model
substantially decreases by folding similar cells to one cell. Therefore, for such models
as C. elegans vulval development with some similar components, it is a very convenient
and compact way to model them with colored Petri nets in a visual way.

96

5.1 Modeling C. Elegans Vulval Development

LS_molecule_E

CS

LS_molecule

CS

mRNA_of_lst_genes

CS

Fate_2

CS

LIN_12_NotchR_intracellular_N

CS

LIN12_NotchR_intracellular

CS

LAG_1

CS

LIN12_NotchR_extracellular

CS

lin12_wt

11‘dot

Dot

lin12_wt

1 1‘dot

Dot

lin12_gf

Dot

lin12_gf

Dot

lin12_gf

Dot

lst
1

1‘dot

Dot

lst

1 1‘dot

Dot

lst

1 1‘dot

Dot

LS_LIN12

CS

Lst_protein

CS

Lst_protein

CS

LIN_12

CS

Pe1

CS

Pe2

CS

LIN3_LET23_p_dimer

CS

LIN3_LET23_p_dimer

CS

LS_mRNA

CS

Fate_1

CS

Vulval_gene

CS

LIN31_LIN1_Complex

CS

LIN_31_a

CS

LNI_1_a

CS

MPK_1_active_N

CS

SEM_5

CS

SEM_5_active

CS

LET60_active

CS

LET_60

CS

MPK_1

CS
MPK_1_active_C

CS

vul
1

1‘dot

Dot

vul

1

1‘dot

Dot

vul

1 1‘dot

Dot

LIN3_LET23_dimer

CS

LIN3_LET23

CS

LET_23

CS

lin15

1

1‘dot

Dot

lin15

1
1‘dot

Dot

LIN_13_from_hyp7

CS

LIN3

CS

AC

1 1‘dot

Dot

AC

1 1‘dot

Dot

lin12_ko

Dot

Steady_state_time_Gonad

Dot

steady_state_time_VPC

CS

steady_state_time_hyp7

CS LIN3_AC Dot

P16

1‘all()
CS

td24

td25

td26

td23

t17

t23

t18

t22

td31

td30

ts10

t20

td27

t21 td29

ts8

t16

t15

[x<>8]

ts9

t19

t14

[x<>3]

Te1

Te2

Te3

Te4

t13

t12

td20

td15

td13

td18

td19

t11

td17

ts6

td14

t10

td16

t9

td12

td21

td6

td5td4t6td3

ts2 t5t4
t2

[x<>6]

t25

ts3

td7

td8

td10

td9

ts4 t7

td11

ts5
t8

t26

t3

[x=6]

td22

ts7 ts1

td1

t1

[x<>6]

td2

[x<>6]

Tsim3

Tsim1

Tsim2

[x<>6]

parameter

x

x

x

x

x

x

x

x

x

x

x

x xx

x

x

x

x x

2‘x

x

x

x

x

x

2‘x

x−1

x
x

x+1

x

x
x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

xxx

x

x

xxxx

x

x

x x x x

x

x
x x x x

x x x

x
x

xx

dot

dot

dot

100‘dot

dot

x

dot

x x

x

x

x

x

dot dot

dot

dot

dot

dot
x

x

x

xx

x

x

x

dot

dot

dot

dot

dot

x

x

dot

x

dot

x

x

x

x

x

x

3‘x

dot

x

x

Simulation Configuration

Figure 5.2: A SPN C model for C. elegans vulval development. The declarations:
colorset Dot = with dot, colorset CS = int with 3− 8, variable x : CS.

97

5 Case Studies

Table 5.1: Descriptions of some transitions in the SPN C model of C. elegans vulval
development. The values of high, medium and low are 100, 1 and 0.01,
respectively. All transitions not given here correspond exactly to those given
in [LNUM09].

Transition Rate function Description

Tsim1 (400,0,400) Add an initial value, 100, to LIN3_AC at
simulation time point 400 and switch on ts1

Tsim2 (450,0,450)/(500,0,500) Switch on transition t1 for cell 5 and 7 at
time point 450, and for cell 3,4 and 8 at 500

Tsim3 rand(200,400) Switch on transition ts7 at a random time
between 200 and 400 for each cell

t1 MassAction(0.1*low)/ for cells 3,4,8 and 5,7, respectively
MassAction(0.1*medium)

t2 MassAction(0.1*low)/ for cells 3,4,8 and 5,7, respectively
MassAction(0.1*medium)

t3 MassAction(0.1*high) only for cell 6
ts8 1 If lin12 equals "wt", it can be fired
ts9 0.2 If lin12 equals "gf", it can be fired
t18 MassAction(0.1) If lin12 equals "gf" and lst equals "wt",

it can be fired
t19 MassAction(0.1) If lin12 equals "gf" and lst equals "ko",

it can be fired
Te1 MassAction(0.04*Pe1) Production of lst_protein
Te2 MassAction(0.06) Degradation of Pe1
Te3 MassAction(0.011) Degradation of Pe2
Te4 MassAction(0.6*Pe2) Production of lst_protein

98

5.1 Modeling C. Elegans Vulval Development

Table 5.2: Descriptions of some places in the SPN C model of C. elegans vulval de-
velopment. All places not given here correspond exactly to those given in
[LNUM09].

Place Initial value Description

AC 1 Switch on/off AC
lin12_wt 1 Switch on/off "wt"
lin12_ko 0 Switch on/off "ko"
lin12_gf 0 Switch on/off "gf"
vul 1 Switch on/off vul
lin15 1 Switch on/off lin15
lst 1 Switch on/off lst
Steady_state_time_gonad 0 Switch on/off transition ts1
Steady_state_time_VPC 0 Switch on/off transition t1
Steady_state_time_hyp7 0 Switch on/off transition ts7
Psim3 1 Switch on/off transition Tsim3
Pe1 0 Production of lst_protein
Pe2 0 Production of lst_protein

5.1.3 Structural Analysis

In order to increase our confidence in the constructed model, we will validate it by
structural analysis. As this model has inhibitor arcs, we have to ignore them during
structural analysis; as a result, the whole net breaks down into disconnnected parts.
The two main parts are the MAPK pathways of all six VPCs connected by the logic
place vul, and the LIN-12/Notch lateral signaling pathways of all six VPCs connected
by the logic places lin12_wt, lin12_gf and lst and the transitions t14 and t15. For
these two parts we perform structural analysis, respectively, after we unfold them to
standard Petri nets, which are inputs of the analysis tool Charlie [Fra09]. Here we
exploit two of the fundamental behavioral properties, P- and T-invariants.

The MAPK pathways of six VPCs as a whole are not covered by P-invariants, but are
covered by 132 minimal semipositive T-invariants, i.e. each VPC has 22 T-invariants
(see Table 5.3). The LIN-12/Notch lateral signaling pathways of six VPCs as a whole
are not covered by P-invariants, but are covered by 130 minimal semipositive T-
invariants, specifically 22 T-invariants for VPC 4 – VPC 7 and 21 T-invariants for
VPC 3 and 8, respectively. For example, Table 5.4 gives the T-Invariants of VPC 4
and other VPCs have similar T-invariants. All these T-Invariants have their biological
meaning.

99

5 Case Studies

Table 5.3: The minimal T-invariants in the MAPK pathway of each VPC.
No. Transitions No. Transitions

1 t11,td18 12 td20,t12,t13
2 ts2,td3 13 td11,ts5
3 td6,t6,ts2,ts7,t4,t5 14 ts5,t8,td12
4 td10,ts4,t7 15 ts5,t8,t26,td13
5 ts6,td14 16 ts3,td7
6 td15,ts6,td16,t9 17 td25,ts3,td8
7 t12,td19 18 t10,td17
8 td9,ts4 19 td4,ts2,t1,t2
9 t1,td2 20 td4,t6,ts2,ts7
10 td22,ts7 21 td5,ts2,t4,t2,t1
11 td6,ts2,t1,t2,t4,t5 22 td5,ts2,ts7,t6,t4

Table 5.4: The minimal T-invariants in the LIN-12/Notch lateral signaling pathway
of VPC 4. Please note that the transitions with the suffix "_3" (or "_5")
belong to VPC 3 (or 5), and other transitions belong to VPC 4. This is
because there are connections between VPC 4 and VPC 3 (or VPC 5).

No. Transitions No. Transitions

1 td30,ts10 12 td25,t17,t23,t20,td27,ts8,t14,t13_3
2 t13,td20 13 td25,t17,t23,t20,td27,ts8,t16,t13
3 td24,t23,t13 14 td25,td26,t17,t23,ts8,t14,t13_3
4 t22,Te3 15 td25,t17,t23,t20,td27,ts8,t15,t13_5
5 td31,t21,td29 16 td25,td26,t17,t23,ts8,t16,t13
6 td23,ts8 17 td25,td26,t17,t23,ts9,t14,t13_3
7 td23,ts9 18 td25,td26,t17,t23,t16,ts9,t13
8 td29,ts8,t19 19 td25,td26,t17,t23,t15,ts9,t13_5
9 t18,td29,ts8,Te2 20 td25,t17,t23,t20,td27,t16,ts9,t13
10 td29,ts9,t19 21 td25,td26,t17,t23,ts8,t15,t13_5
11 t18,td29,ts9,Te2 22 td25,t17,t20,td27,ts9,t14,t13_3,t23_3

100

5.1 Modeling C. Elegans Vulval Development

5.1.4 Determining the Fate of VPCs Using Simulative Model Checking

As our model is a stochastic one, whose average behavior of mutiple runs approximates
the behavior of its corresponding continuous model, we can adapt Rule I in [LNUM09]
to determine the fate of VPCs. Here we name the adapted rule as the fate determination
rule in average setting (shortly Rule A). On the other hand, we can also transform the
fate determination rule in average setting to its counterpart of the stochastic setting,
which we name the fate determination rule in stochastic setting (shortly Rule S). By
analyzing the probabilities of simulation runs satisfying the rule, we can obtain the
fate of each VPC. In the following, we will describe how to implement these two rules
using simulative model checking.

(1) Implementation of fate determination rule in average setting.

Rule A works like Rule I in [LNUM09]. In the case of lin12 being "wt" or "ko", the fate
is determined in terms of the following criteria. If the concentrations of both Fate_1
and Fate_2 (two places) are not less than the respective threshold values (threshold1
and threshold2), and keep these states for given time periods, then 1◦ (or 2◦) fate will
be adopted if Fate_1 (or Fate_2) first exceeds its threshold. If only the concentration
of Fate_1 (or Fate_2) is kept over its threshold for the given time period, then 1◦

(or 2◦) fate will be adopted. Otherwise, 3◦ will be adopted.

In the case of lin12 being "gf", the fate is determined in terms of the following criteria. If
the concentration of Fate_1 is not less than its threshold value (threshold1), and keeps
this state for the given time period, then 1◦ fate will be adopted. If the concentration
of Fate_2 is not less than its threshold value (threshold2), and keeps this state for the
given time period, but the concentration of Fate_1 decreases below its threshold value
(threshold1) during the given time period, then 2◦ fate will be adopted. Otherwise, 3◦

will be adopted.

We use PLTLc [DG08] to implement these rules. To do that, we have to formalize
these rules that lead to the corresponding VPC pattern as queries. After that, we can
use these queries to formally check whether the model reproduces the expected fate
patterns.

In the case of lin12 being "wt" or "ko", the queries for the fate determination are as
follows (threshold1 adops 0.69, and threshold2 adops 0.06):

P=?[F (Fate_1 >= threshold1 & !G(Fate_2 >= threshold2)

& G(Fate_1 >= threshold1))] (5.1)

which reads: what is the probability of the following assertion: eventually Fate_1 is
greater than or equal to threshold1, and from now on Fate_2 is not always greater
than or equal to threshold2, but Fate_1 remains always greater than or equal to

101

5 Case Studies

threshold1.

P=?[F (Fate_2 >= threshold2 & !G(Fate_1 >= threshold1)

& G(Fate_2 >= threshold2))] (5.2)

which reads: what is the probability of the following assertion: eventually Fate_2 is
greater than or equal to threshold2, and from now on Fate_1 is not always greater
than or equal to threshold1, but Fate_2 remains always greater than or equal to
threshold2.

If query 5.1 (or 5.2) is evaluated to true, then 1◦ (or 2◦) will be adopted. Otherwise,
3◦ will be adopted.

In the case of lin12 being "gf", the queries for the fate determination are as follows
(threshold1 adops 0.65, and threshold2 adops 0.35):

P=?[F (Fate_1 >= threshold1 & G(Fate_1 >= threshold1))] (5.3)

which reads: what is the probability of the following assertion: eventually Fate_1 is
always greater than or equal to threshold1.

P=?[F (Fate_2 >= threshold2 & G(Fate_2 >= threshold2))

& G(Fate_1 >= threshold1 → F (Fate_1 < threshold1))] (5.4)

which reads: what is the probability of the following assertion: eventually Fate_2
is greater than or equal to threshold2, and from now on Fate_2 remains always
greater than or equal to threshold2, but always Fate_1 being greater than or equal
to threshold1 implies Fate_1 being less than threshold1.

If query 5.3 (or 5.4) is evaluated to true, then 1◦ (or 2◦) will be adopted. Otherwise,
3◦ will be adopted.

For Rule A, we have to use the average behavior of multiple simulation runs to deter-
mine the fate of cells. These queries above describe the fate determination according to
the average behavior. We recast these queries to PLTLc and perform model checking
using MC2 fed with simulation traces produced by Snoopy.

(2) Implementation of fate determination rule in stochastic setting.

As seen above, Rule S works on each simulation run of a stochastic model. By analyzing
the probability of simulation runs satisfying the rule, we can obtain the fate of each
VPC.

Rule S works as follows. For a given time period when the average behavior of mutiple
simulation runs is in a steady state, for each simulation run, if its average value exceeds

102

5.1 Modeling C. Elegans Vulval Development

its threshold (the same as those in Rule A), then the evaluation of this run is true.
Therefore for multiple simulation runs, we will obtain a probability of simulation runs
being evaluated to true. According to the predefined probabilistic thresholds, we can
determine the fate of each cell.

Using PLTLc, the queries for Rule S can be written as follows. In the case of lin12
being "wt"/"ko" ("gf"), threshold1 adopts 0.69 (0.65), and threshold2 adopts 0.06
(0.35).

P=?[time > 1000→ average([Fate_1]) >= threshold1] (5.5)

which reads: what is the probability of the following assertion: when the simulation
time is greater than 1000, the average value of Fate_1 is greater than or equal to
threshold1.

P=?[time > 1000→ average([Fate_2]) >= threshold2] (5.6)

which reads: what is the probability of the following assertion: when the simulation
time is greater than 1000, the average value of Fate_2 is greater than or equal to
threshold2.
If the probability for query 5.5 exceeds 0.55, then 1◦ is adopted. If the probability for
query 5.5 does not exceed 0.55, but the probability for query 5.6 exceeds 0.55, then 2◦

is adopted. Otherwise 3◦ is adopted.

As our model is a stochastic one, one has to determine the required amount of sim-
ulation runs to achieve an appropriate accuracy of the results. We use the idea of
the confidence interval as described in [SM08]. The confidence interval contains the
property of interest with some predefined probability, called confidence level. This con-
fidence level has usually values of 90%, 95%, or 99%. Choosing the confidence of 95%
and the accuracy of 10−2, we perform 50 simulation experiment for each genotype; for
each simulation experiment we need to perform 38,000 stochastic simulation runs. We
then apply the rule above to the average behavior of these runs. Besides, we choose
the same threshold values for the rules above as those in [LNUM09].

5.1.5 Results and Discussions

To determine the capability of our colored Petri net model to reproduce and predict
the biological behavior, we simulate 48 different experimental conditions (genotypes),
which have been used in [LNUM09]. In order to keep this thesis self-contained, we
repeat these 48 genotypes, illustrated in Table 5.5.
In terms of the experimental setting above, we first perform simulation runs for 44
stable genotypes, which turns out that our model reliably reproduces all these 44 stable
genotypes by using either Rule A or Rule S. We here only give simulation plots for
the genotype where all genes are wild, each of which is an average behavior of 380,000

103

5 Case Studies

Table 5.5: Fate patterns to be validated, excerpted from [LNUM09]. In the AC col-
umn, +/- stands for anchor cell formed/ablated. In the Genotypes column,
"wt", "ko" and "gf" represent wild-type, knockout and overexpression, re-
spectively. In the Fate Patterns column, 1, 2 and 3 indicate 1◦, 2◦, and
3◦, respectively. For the unstable patterns, each cell adopts either 1◦ or 2◦,
which we will discuss in depth.

Genotypes Patterns Genotypes Patterns
No. AC lin12 lin15 vul lst 3,4,5,6,7,8 No. AC lin12 lin15 vul lst 3,4,5,6,7,8

1 + wt wt wt wt [332123] 25 - wt wt wt wt [333333]
2 + wt wt wt ko [331113] 26 - wt wt wt ko [333333]
3 + wt wt ko wt [333333] 27 - wt wt ko wt [333333]
4 + wt wt ko ko [333333] 28 - wt wt ko ko [333333]
5 + wt ko wt wt Unstable 29 - wt ko wt wt Unstable
6 + wt ko wt ko [111111] 30 - wt ko wt ko [111111]
7 + wt ko ko wt [333333] 31 - wt ko ko wt [333333]
8 + wt ko ko ko [333333] 32 - wt ko ko ko [333333]
9 + ko wt wt wt [331113] 33 - ko wt wt wt [333333]
10 + ko wt wt ko [331113] 34 - ko wt wt ko [333333]
11 + ko wt ko wt [333333] 35 - ko wt ko wt [333333]
12 + ko wt ko ko [333333] 36 - ko wt ko ko [333333]
13 + ko ko wt wt [111111] 37 - ko ko wt wt [111111]
14 + ko ko wt ko [111111] 38 - ko ko wt ko [111111]
15 + ko ko ko wt [333333] 39 - ko ko ko wt [333333]
16 + ko ko ko ko [333333] 40 - ko ko ko ko [333333]
17 + gf wt wt wt [222122] 41 - gf wt wt wt [222222]
18 + gf wt wt ko [221112] 42 - gf wt wt ko [222222]
19 + gf wt ko wt [222222] 43 - gf wt ko wt [222222]
20 + gf wt ko ko [222222] 44 - gf wt ko ko [222222]
21 + gf ko wt wt Unstable 45 - gf ko wt wt Unstable
22 + gf ko wt ko [111111] 46 - gf ko wt ko [111111]
23 + gf ko ko wt [222222] 47 - gf ko ko wt [222222]
24 + gf ko ko ko [222222] 48 - gf ko ko ko [222222]

104

5.1 Modeling C. Elegans Vulval Development

simulation runs, illustrated in Figure 5.3 – 5.8. To support their comparison, we use
the same scaling in all plots.

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

va
lu

e

time

Fate 1
Fate 2

Threshold 1
Threshold 2

Figure 5.3: Stochastic simulation result averaged over 38,000 runs for VPC 3.

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

va
lu

e

time

Fate 1
Fate 2

Threshold 1
Threshold 2

Figure 5.4: Stochastic simulation result averaged over 38,000 runs for VPC 4.

We notice for 4 unstable patterns the time when we switch on the production of hyp7
directly affects the fate each cell will adopt. Therefore, we use a random function to
generate different switch times to produce hyp7 so as to obtain different fates. Table
5.6 gives detailed statistical results of these 4 unstable patterns by using Rule A and
Rule S.

105

5 Case Studies

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

va
lu

e

time

Fate 1
Fate 2

Threshold 1
Threshold 2

Figure 5.5: Stochastic simulation result averaged over 38,000 runs for VPC 5.

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

va
lu

e

time

Fate 1
Fate 2

Threshold 1
Threshold 2

Figure 5.6: Stochastic simulation result averaged over 38,000 runs for VPC 6.

106

5.1 Modeling C. Elegans Vulval Development

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

va
lu

e

time

Fate 1
Fate 2

Threshold 1
Threshold 2

Figure 5.7: Stochastic simulation result averaged over 38,000 runs for VPC 7.

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

va
lu

e

time

Fate 1
Fate 2

Threshold 1
Threshold 2

Figure 5.8: Stochastic simulation result averaged over 38,000 runs for VPC 8.

107

5 Case Studies

Table 5.6: Detailed statistical results of 50 simulations for the unstable patterns in
Table 5.5. We perform 50 simulation experiments for each unstable pattern
in Table 5.5, respectively. In each simulation experiment, we perform 38,000
stochastic simulation runs choosing the confidence of 95% and the accuracy
of 10−2.

Rule A Rule S
Patterns Occurrences Percentage Patterns Occurrences Percentage

Row 5 Row 5
[122121] 20/50 40% [122121] 50/50 100%
[121121] 10/50 20%
[121221] 5/50 10%

Row 21 Row 21
[121121] 50/50 100% [121121] 50/50 100%

Row 29 Row 29
[122121] 11/50 22% [122121] 6/50 12%
[121121] 24/50 48% [121121] 32/50 64%
[121221] 5/50 10% [121221] 12/50 24%

Row 45 Row 45
[122121] 2/50 4 % [122121] 12/50 24%
[121121] 42/50 84% [121221] 12/50 24%
[121221] 6/50 12% [121121] 20/50 40%

[122221] 6/50 12%

From these results we derive the following conclusions:

1. For 44 stable patterns, either Rule A or Rule S detects the expected patterns. But
Rule S makes more sense, as it deals with each simulation run of the stochastic
model.

2. For 4 unstable patterns, our model produces less unstable patterns than the
model in [LNUM09]. This is because we only add noise at the switch time to
produce hyp7, but not anywhere else. If we consider more noise, we would obtain
more unstable patterns.

3. For the unstable pattern of Row 5 in Table 5.5, we obtain less patterns using
Rule S than Rule A. This is because in Rule S we do not consider the time order
of Fate_1 and Fate_2, i.e. we do not consider which one first enters a steady
state.

Moreover, we can validate our SPN C model by transforming it to its corresponding
CPN C model. This is done by exporting SPN C to CPN C in Snoopy. By running

108

5.2 Modeling Coupled Ca2+ Channels

continuous simulation and performing model checking using Rule A, we obtain similar
results to those above. To be precise, we obtain the same results for the stable patterns
and similar results for the 4 unstable patterns. Again, we can also unfold the SPN C

model into an uncolored model so as to validate it using more analysis techniques.

To summarize up, we can clearly see some advantages of our method:

1. Using colored Petri nets, we obtain a very compact representation of C. elegans
vulval development. Compared to the model in [LNUM09], our model becomes
more readable. Thus it can be deduced that with increasing size of models, colored
Petri nets will become more helpful.

2. We can use formal analysis techniques, e.g. simulative model checking of PLTLc,
to determine the fate of VPCs.

3. We can analyze our colored model by exporting it to other Petri net paradigms
(e.g. QPN C , CPN C) so as to employ more analysis techniques and perform cross
check.

4. A side effect of our method is that we obtain a stochastic model of C. elegans
vulval development, which is in our opinion more meaningful because of the
inherently stochastic nature of biological processes.

5.1.6 Conclusions

We have illustrated how to model C. elegans vulval development using colored Petri
nets, which addresses such challenges in systems biology as repetition of cells that are
organized in one dimensional space, and communicate between immediate neighbors. We
have also demonstrated how these three formalisms in the colored Petri net framework
and different analysis techniques are combined together to achieve the analysis of a
biological system.

For the current colored Petri net model of C. elegans vulval development, we could
further refine it according to new experimental results and employ more formal analysis
techniques to analyze it.

5.2 Modeling Coupled Ca
2+ Channels

Calcium is a ubiquitous second messenger used to regulate a wide range of cellular pro-
cesses [Ber97], [SF05]. The most important internal store for free calcium ions ([Ca2+])
is the endoplasmic or sarcoplasmic reticulum (ER or SR), and release of Ca2+ from
this store is mainly mediated by the inositol 1,4,5-trisphosphate receptor (IPR) and
the ryanodine receptor (RyR), which are also Ca2+ channels. These channels can be
activated as well as inactivated by cytosolic Ca2+, and the effect of Ca2+ released by

109

5 Case Studies

open Ca2+ channels on subsequent channel gating is presumably dependent on the
details of single-channel kinetics [MTS05].

In order to clarify the possible effect of residual Ca2+ on the stochastic gating of
Ca2+-regulated Ca2+ channels, many mathematical models, e.g. [NMS05], [LSK09],
have been built, which are composed of a number of individual channel models whose
dynamic behavior depends on the local Ca2+ concentration influenced by all open
channels. However, most of these models that are based on continuous time Markov
chains (CTMCs) suffer from the largeness challenges, either in the model representation
or state space [NMS05].

On one hand, there have been some modeling formalisms for addressing model represen-
tations of CTMCs, e.g. stochastic Petri nets, whose underlying semantics are CTMCs
or Kronecker representations [NMS05], [LSK09]; however the former can not alleviate
the largeness in representation of CTMCs although it is graphical and intuitive, while
the latter allows a compact representation of CTMCs, but it is not intuitive and can
not represent the spatial arrangement of systems to be modeled. Fortunately, colored
stochastic Petri nets offer the possibility for combining both compact and intuitive rep-
resentations of large CTMCs (thus coupled Ca2+ channels). More importantly, colored
Petri nets provide the possibility to represent spatial arrangements of coupled Ca2+

channels, which is very important in modeling coupled Ca2+ channels.

In this section we will investigate to use colored stochastic Petri nets to construct
scalable spatial models of coupled Ca2+ channels that are described by CTMCs. We
consider clusters of Ca2+-regulated channels whose stochastic gating depends on Ca2+.
The local Ca2+ concentration experienced by a particular channel depends on its own
state (open or closed) and the state of other channels, that is, open channels increase
the Ca2+ concentration experienced by neighboring channels. As colored Petri nets can
represent a group of similar objects (here Ca2+ channels) as a place and use colors to
differentiate them, they allow a very compact representation for a large system [LH10a].
Hence, colored Petri nets are a potentially suitable formalism for representing coupled
Ca2+ channels where each Ca2+ channel is encoded as a color. As a result, we may use
a very simple model to represent a model with a large quantity of Ca2+ channels. More
importantly, we do not need to change the structure of this model, and usually only
need to change the color set if the number of channels change. It will be proved that
this provides a convenient and powerful way to express and analyze scalable clusters
of Ca2+-regulated channels.

On the other hand, in order to address the challenge of the large state space, colored
stochastic Petri nets offer a large variety of qualitative and quantitative analysis tech-
niques for verifying and analyzing constructed CTMCs models. For example, structural
analysis can be used to exploit the structure of models from a graph point of view.
Gillespie simulation [Gil77] offers a possibility for approximately analyzing models with
huge state space. Numerical analysis techniques can accurately conduct transient and

110

5.2 Modeling Coupled Ca2+ Channels

steady-state analysis on CTMCs models, where both symbolic data structure and spe-
cific optimization techniques for Petri nets can contribute to the improvements of the
computation efficiency [ST11]. In summary, colored stochastic Petri nets are capable
of analyzing CTMCs models with both large representations and large state space.

This section is organized as follows. Section 5.2.1 describes the background of Ca2+-
Regulated Ca2+ Channels. Section 5.2.2 discusses how to model Ca2+ channels using
stochastic Petri nets and colored stochastic Petri nets. Section 5.2.3 describes the anal-
ysis and validation of the constructed colored models of coupled Ca2+ channels. Section
5.2.4 discusses the construction of models with an array of clusters and analysis capa-
bilities offered by colored Petri nets. Section 5.2.5 concludes this section.

5.2.1 Ca
2+-Regulated Ca

2+ Channels

In this section, we will first describe two-state and six-state Ca2+ channel models and
then introduce coupled Ca2+ channels.

(1) A two-state channel model with Ca2+ activation.

We first recall the simplest model of a Ca2+ channel, i.e. the two-state channel model
[Smi02]. The transition diagram for the two-state (closed and open) channel activated
by Ca2+ is illustrated in Figure 5.9.

������ ���	

� η
∞

+
��

� −
�

Figure 5.9: A two-state channel with Ca2+ activation.

In Figure 5.9, k+cη
∞ and k− are transition rates with units of reciprocal time, k+ is an

association rate constant with units of conc−η time−1, η is the cooperativity of Ca2+

binding, and c∞ is the fixed background [Ca2+]. This transition diagram is immediately
read as a CTMC model. Later we will see how to obtain its Petri net model.

(2) A six-state channel model with Ca2+ activation and inactivation.

A six-state channel model with Ca2+ activation and inactivation [DLKS08] is illus-
trated in Figure 5.10. This model is derived from a two-subunit Ca2+ channel including
both fast Ca2+ activation and slower Ca2+ inactivation. It has six states: one open
state, two closed states and three refractory states.

In Figure 5.10, k+
i c∞ (or k+

d (c∞ + cd)) and k−
i with i ∈ {a, ..., f} are transition rates

with units of reciprocal time, k+
i or k+

d is an association rate constant with units of
conc−1 time−1, and c∞ is the fixed background [Ca2+]. The new parameter, cd, denotes
the domain [Ca2+].

(3) Instantaneously coupled channels.

111

5 Case Studies

�
∞

+ ���

� −
��

� −
��

�
∞

+ ���

�
∞

+ ���
� −
��

�
∞

+ ���
� −
��

� �� �� ��� +∞
+ �

∞
+ �� �

� −
��

� −
��

���������	

���������	� ���������	�

�����

����

������

Figure 5.10: A six-state channel with Ca2+ activation and inactivation.

Using the assumption of "instantaneous coupling" [NMS05], we can write the transition
diagram for two coupled, for example and also for simplicity, two-state channels where
both are activated by Ca2+ [DS05], illustrated in Figure 5.11.

��

��

��

��

� η
∞

+
��

−
�

� η
∞

+
��

−
�

−
�

−
� � η�� ����� +∞

+

� η�� ����� +∞
+

Figure 5.11: Two instantaneously coupled two-state channels. "O" denotes "Open" and
"C" "Closed".

This diagram contains four states: both channels closed (CC), both channels open
(OO), or one channel open and the other closed (CO and OC). c12 (c21) represents the
effect experienced by channel 2 (1) when channel 1 (2) is open.

This state transition diagram indicates how to model two instantaneously coupled
channels, and we can easily to extend it to a cluster of N coupled two-state chan-
nels activated by Ca2+. For example, if we use the assumption of mean-field coupling
[NMS05], which assumes that the local [Ca2+] experienced by a channel depends only
on the number of open channels at the Ca2+ release site, we can write the local [Ca2+]
experienced by each channel as c∞ +NO ∗ c∗, where c∞ is the background [Ca2+], c∗ is
the [Ca2+] above background contributed by any open channel, and NO is the number
of open channels.

112

5.2 Modeling Coupled Ca2+ Channels

5.2.2 Modeling

In this section, we will describe how to use stochastic Petri nets and colored stochastic
Petri nets to model Ca2+ channels, respectively.

(1) Modeling using stochastic Petri nets.

The stochastic Petri net model for the two-state Ca2+ channel model in Figure 5.9
is shown in Figure 5.12(a), where each state in Figure 5.9 is modeled as a place in
Figure 5.12(a) and each arc in Figure 5.9 is modeled as a transition in Figure 5.12(a)
with the rate of the arc being assigned to this transition.

������� �	�
� �	�
���������	�
������

�
����
����

���

�����
����

��	��	�������
����	�
�����������

�����
����

��	��	�������
����	�
�����������

�
����
����

���

�����
���

��	���	�����
���

�
����
���

���

��� �%�

Figure 5.12: (a) A SPN model for the two-state Ca2+ channel model in Figure 5.9,
and (b) a SPN model for two instantaneously coupled two-state Ca2+

channels in Figure 5.11. The place connected by a modifier arc can be
used in the rate function of the transition connected by this modifier arc.
The mappings of parameters are as follows: k_p = k+, c_i = c∞, m = η,
k_m = k−, c_12 = c12, c_21 = c21 and pow() is the power function
defined in Snoopy.

Further, we build a stochastic Petri net model for two identical coupled two-state
channels in Figure 5.11, illustrated in Figure 5.12(b). To model the coupling effects, we
use modifier arcs to connect open places with association transitions, e.g. the modifier
arc between Open1 and Associate2 in Figure 5.12(b). All the rates are labeled in the
figure. Please note if both channels are closed, the rate functions for both Associate1
and Associate2 become k_p ∗ pow(c_i, m), which corresponds to the rate from CC to

113

5 Case Studies

CO or OC in Figure 5.11.

We can easily extend this idea to build Ca2+ channel models with more states using
stochastic Petri nets. For example, Figure 5.13 gives a stochastic Petri net model for
the six-state Ca2+ channel model in Figure 5.10, in which all rate functions are set
according to Figure 5.10.

�������
�������

	�
��
�����

	�
��
�����
	�
��
���������

�����
�����

����
����� ����
�����

�����
�����

�����
�����

����
���������
�����

�����
�����

����
����� �����
����� ����
����� �����
�����

Figure 5.13: A stochastic Petri net model for the six-state channel in Figure 5.10.

(2) Modeling using colored stochastic Petri nets.

One of the key problems during modeling coupled Ca2+ channels using colored Petri
nets is to encode channels as colors. Using the assumption of mean-field coupling, we
do not need to consider spatial arrangements of coupled Ca2+ channels, so we can use
an integer color to represent each channel.

However, in practice coupled Ca2+ channels usually have spatial arrangements, see
e.g. [DLKS08], [LSK09]. To explicitly represent this geometry is necessary, especially
if the local [Ca2+] experienced by a channel is not only affected by the number of
other open channels but also the distances between this channel and the other open
channels. When considering this effect during modeling, we often suppose that channels
are positioned in a hypothetical spatial arrangement, e.g. in a square [Fal03]. Here,
we can address this issue using colored Petri nets. For simplicity, we only consider a
regular grid arrangement of coupled Ca2+ channels (see Figure 2.9 for an arrangement

114

5.2 Modeling Coupled Ca2+ Channels

of M ×N components), in which each channel is represented by a small rectangle and
denoted by two dimensional coordinates (x, y). No doubt, using colored Petri nets, we
can also deal with other regular or irregular arrangements.

We begin with the colorizing of Figure 5.12(b) so as to clearly describe our modeling
idea. It has two channels and we can define each channel as a color, so we need to define
a color set CS with two colors, e.g. 1 and 2, which will be assigned to each colored
place. We then define a variable x on CS, which will be assigned to each arc. Now
by folding the two channels in Figure 5.12(b), we obtain its colored Petri net model,
illustrated in Figure 5.14(a).

Now we are going to construct a more general colored Petri net model for coupled
two-state Ca2+ channels, illustrated in Figure 5.14(b). In terms of the encoding way
in Figure 2.9, we first define two simple color sets CRow with M colors and CCol
with N colors, representing the row and column of a rectangular grid. Based on these
two simple color sets, we define a product color set CS, representing a rectangular
M ×N grid, which is used to differentiate M ×N channels. To simplify the function
of the transition Associate, we introduce a new place NumOpen to count all the
open channels. We can easily increase the number of channels simply by increasing the
color set CS. Please note that this model applies under the assumption of mean-field
coupling or considering spatial arrangements, and the only difference between these
two cases lies in the definition of the rate function of the transition Associate.

Besides, using the same modeling idea, we build a colored stochastic Petri net model
for coupled six-state Ca2+ channels, illustrated in Figure 5.15. In this model we use
the same color sets as in Figure 5.14(b) and all the rate functions are set according to
Figure 5.10.

5.2.3 Analysis and Validation

Under the formalism of colored Petri nets, a variety of methods and tools are offered
to analyze models of coupled Ca2+ channels. Among them, structural analysis can
be used to validate the structure of models of Ca2+ channels; simulation offers the
analysis of models with a large number of Ca2+ channels or with large state space;
model checking (numerical analysis) provides accurate analysis results for models but
is subject to the largeness of the state space.

In this section, we will analyze and validate models of coupled Ca2+ channels from these
three aspects: structural analysis, simulation analysis and model checking (numerical
analysis).

(1) Structural analysis.

In order to obtain an initial confidence in colored Petri net models of Ca2+ channels,
we take the six-state model as an example and conduct structural analysis on it using
the analysis tool, Charlie [Cha11].

115

5 Case Studies

����

��

���	�

��

������

��

�������

���

����

��

���	�

�

������

��

�		������

��		������

�		������

��		������

�#$%�

�#$%��#$%�

�#$%�
��

��

#

##

#

��

#

�����������	&

���	����'()�*

���	����'�)�*

�����	��'���)+��,'
��*

�����	��'�-�+)���'+��,'
.(*

�����	��'����)���'+��,'
.�*

�����	��'��)���
���'�-�+$����*

/����0��'#&�-�+*

/����0��'%&����*

�����������	&

�����	��'��)���'+��,'
$�*

/����0��'#&��*

���

�0�

Figure 5.14: (a) A SPN C model for two coupled two-state Ca2+ channels in Fig-
ure 5.12(b), and (b) a general SPN C model for coupled two-state Ca2+

channels of any number.

116

5.2 Modeling Coupled Ca2+ Channels

�������
�	

�
����

��

��������� �������������

�����������

��

�����������

��

����

��

�������

���

�������
���

�������

���

�������

���

�������

���

�����������

���������� ����������

�����������

�����������

����������
���������

����������

���������	

����������	 ���������� �����������

�()�

�()�

�()�

�()�

�()�

�()�
�()�

�()�

�()�

�()�

�()�

�()�

�()�

�()�
 �()�

�()�

�()�

�()�

�()�

�()�
 �()�

�()�
 �()�

�()�

��� ���

���

���

���

��� ���

���

���
���

Figure 5.15: A SPN C model for coupled six-state Ca2+ channels. The gray nodes with
the name NumOpen are logic nodes, i.e. they are the same node with
different graphic representations. This model uses the same color sets as
in Figure 5.14(b) and all the rate functions are set according to Figure 5.10.

117

5 Case Studies

We first conduct structural analysis on the net of one channel model (see Figure 5.13).
From the analysis results, we see this net enjoys some interesting properties, e.g. it
is pure, ordinary, 1-bounded, live, reversible, and a state machine [GHL07]. Besides,
this net is covered by one P-invariant (composed of all places) and eight T-invariants
(illustrated in Table 5.7) that reflect the association and dissociation process of the
channel.

Table 5.7: The minimal T-invariants for the one channel model in Figure 5.13, where
"D" denotes "Dissociate" and "A" "Associate".

No. Transitions No. Transitions

1 D1, A1 5 D5, A5
2 D2, A2 6 D6, A6
3 D3, A3 7 D2, D3, A4, A5
4 D4, A4 8 D4, D5, A2, A3

We then conduct structural analysis on the net of two coupled six-state channels (see
Figure 5.15, where we set the color set CS to two colors.). This net is also pure,
ordinary, live and reversible. Although it is still structurally bounded, but is not 1-
bounded because of the place NumOpen. This net is not a state machine any more
due to the branching transitions. Moreover, this net is covered by three P-invariants
(illustrated in Table 5.8) and sixteen T-invariants (illustrated in Table 5.9).

With the increase of states of a channel, it will become more important to conduct
structural analysis on Ca2+ channel models.

Table 5.8: The minimal P-invariants of the two coupled channels model in Figure 5.15,
where "C" denotes "Closed", "A" "Refractory", "O" "Open" and "N" "Nu-
mOpen". The number following the underscore denotes a channel.

No. Transitions

1 C1_1,C2_1,R1_1,R2_1,R3_1,O_1
2 C1_2,C2_2,R2_2,R2_2,R3_2,O_1
3 C1_1,C1_2,C2_1,C2_2,R1_1,R2_1,

R3_1,R2_2,R2_2,R3_2,N_1

(2) Simulation analysis.

Using the Gillespie’s simulation algorithm [Gil77] we can estimate some response mea-
sures, such as the distribution of the number of open channels, which gives a preliminary
analysis of models. In the following, we first give some simulation results according to
the simulation settings in [DS05] and [LSK09] to validate our models.

118

5.2 Modeling Coupled Ca2+ Channels

Table 5.9: The minimal T-invariants of the two coupled channels model in Figure 5.15,
where "D" denotes "Dissociate" and "A" "Associate". The number following
an underscore denotes a channel.

No. Transitions No. Transitions

1 D1_2, A1_1 9 D3_1, A3_1
2 D1_2, A1_2 10 D3_2, A3_2
3 D6_1, A6_1 11 D4_1, A4_1
4 D6_2, A6_2 14 D4_2, A4_2
5 D2_1, A2_1 13 D4_1, D5_1, A2_1, A3_1
6 D5_1, A5_1 12 D2_1, D3_1, A4_1, A5_1
7 D2_2, A2_2 15 D2_2, D3_2, A4_2, A5_2
8 D5_2, A5_2 16 D4_2, D5_2, A2_2, A3_2

Figure 5.16(a) gives a simulation plot of a single simulation run for a Ca2+ release
site with 19 two-state channels under the assumption of mean-field coupling. From
this plot, we can see that this model exhibits stochastic Ca2+ excitability, which is
consistent with the result given in [DS05]. Figure 5.16(b) gives a simulation plot of the
average behavior of 1000 simulation runs in the same setting, which shows that the
mean of the number of open channels is around 2.47 that is given in [LSK09]. For other
settings, we obtain similar simulation results as those in [DS05] and [LSK09].

Furthermore, Figure 5.17 gives a simulation plot of the average behavior of 1000 simu-
lation runs for a Ca2+ release site with 4 two-state channels by considering the position
effects of individual channels, which is also consistent with the result given in [LSK09].

Besides, we give a simulation plot of the average behavior of 1000 simulation runs
for a Ca2+ release site with 19 six-state channels under the assumption of mean-field
coupling. The parameters in this setting partly come from [DLKS08].

(3) State space construction.

For models of coupled Ca2+ channels, the state space explosion will occur when the
number of channels or number of states per channel becomes larger. Here we use Marcie
to explore the construction of the state space for coupled six-state Ca2+ channels.

Marcie provides functionalities for the analysis of standard Petri net properties as well
as model checking of CTL and CSL. It uses the Interval decision diagrams (IDD) to
alleviate the problem of state space explosion, so it usually shows good performance
[SRH11]. Using Marcie, we explore the size of the state space and its construction time
for coupled six-state Ca2+ channels in Figure 5.15 by changing the number of channels,
illustrated in Table 5.10. As we can see, with the increasing of the number of Ca2+

channels, both the state space and its construction time increase rapidly. However, the
number of Ca2+ channels that Marcie can deal with is limited within 25.

119

5 Case Studies

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200

va
lu

e

time

 NumOpen

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2000 4000 6000 8000 10000

va
lu

e

time

 NumOpen

(b)

Figure 5.16: Stochastic simulation result for the model of 19 two-state Ca2+ channels
under the assumption of mean-field coupling (a) for one simulation run and
(b) averaged over 1000 runs. Parameters used: N = 19, η = 2, c∞ = 0.05,
k+ = 1.5, k− = 0.5, c∗ = 0.0637.

Table 5.10: Comparison of the state space construction in terms of the number of
channels (NC), the number of states and the construction time for the
model of coupled Ca2+ channels in Figure 5.15.

NC States Time (seconds)

1 7 0.00
5 14,256 0.10

10 161,243,136 0.37
15 1.645e+12 102.25
20 1.584e+16 4,036.57
22 6.142e+17 22,337.28
25 ⋄ ⋄

∗ done on MAC Pro, 8×2.2GHz, 16GB RAM.
⋄ Marcie failed to give the result.

(4) CSL model checking.

We now explore how to use the temporal logic CSL to express properties of our models
and then conduct CSL model checking (numerical analysis) [ST11] to analyze them.
For example, for the model of six coupled six-state channels, we give the following
properties from the steady-state analysis, transient analysis and analysis of arbitrarily
specified properties, respectively:

120

5.2 Modeling Coupled Ca2+ Channels

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 2000 4000 6000 8000 10000

va
lu

e

time

 NumOpen

Figure 5.17: Stochastic simulation result averaged over 1000 runs for the model of 4
two-state Ca2+ channels by considering the position of individual chan-
nels. Parameters used: N = 19, η = 2, c∞ = 0.05, k+ = 1.5, k− = 0.5,
c∗ = 0.1452.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2000 4000 6000 8000 10000

va
lu

e

time

 NumOpen

Figure 5.18: Stochastic simulation result averaged over 1000 runs for the model of
19 six-state Ca2+ channels under the assumption of mean-field coupling.
Parameters used: k+

a = 1.5, k+
b = k+

d = 0.015, k+
c = k+

e = 300, k+
a = 3.0,

k−
f = 49.5, k−

b = k−
d = 0.2475, k−

c = k−
e = 6.0, k−

f = 0.03, c∞ = 0.05,

c∗ = 0.4, cd = 0.5.

121

5 Case Studies

• Query 1: R{”NumOpen”}=?[S]: the mean value of the open channels in the
steady state ("NumOpen" is a reward, which is used to measure the number of
open channels).

• Query 2: P=?[F [100, 100][Open_1 = 1]]: the probability of one of the channels
(e.g. channel 1) being in the "Open" state at some time instant (e.g. 100).

• Query 3: P=?[G[Closed1_1 = 1→ P>=1[F [Open_1 = 1]]]]: if one of the channels
(e.g. channel 1) is in the "Closed1" state, then what is the probability of it going
to the "Open" state in the future.

Using Marcie [SRH11], we obtain results for these three queries: 0.32085 for Query
1 that is consistent with the simulation result, 0.055 for Query 2 and 1 for Query 3.
From this analysis, we can see that model checking offers another way to yield a better
insight into the dynamics of the model and identify its interesting behavior.

5.2.4 Discussions

In this section, we will discuss what else could be offered for modeling coupled Ca2+

channels by colored Petri nets from the following two points.

Construction of models with an array of clusters.

We have encoded coupled channels in two dimensional space, i.e. using two dimensional
coordinates, e.g. (x, y) to give the position of each channel. However, so far all the
models given in this paper only consider a single cluster (a group of strongly coupled
channels).

As stated in [Fal03], [SF05], in oder to obtain oscillations and waves, it is necessary
to consider more than one clusters that are weakly coupled. It is both the strong
coupling within clusters and the weak coupling between clusters that contribute to the
oscillations and waves. Using colored Petri nets, we can easily build models with an
array of clusters. For this purpose, we can use hierarchical color sets, i.e. we use a pair
of coordinates (a, b) to encode the locality of each cluster, in which we use another pair
of coordinates (x, y) to encode each channel in a cluster. Now we can use a hierarchical
color set ((a, b), (x, y)) to locate each channel in a cluster. This offers an nice way to
build hierarchically scalable models with an array of clusters.

Analysis capabilities offered by colored Petri nets.

With the increasing number of channels, numerical methods become unsuitable. In
this situation, we can still resort to stochastic simulation to do analysis. Here we will
explore the computational capabilities of colored Petri nets in simulation analysis of
channel models. For this, we consider two key technical problems: unfolding [LH10b]
and simulation. For colored Petri nets, we have to unfold them into flat nets and then

122

5.3 Modeling Membrane Systems

Table 5.11: The size of the Ca2+ channel model and its unfolding and simulation run
time∗. The simulation runtime means the total time of 100 simulation runs.

Size Time (seconds)
Channels Places Transitions Unfolding Unfolding/ Simulation Simulation/

channels channels
19 115 228 0.085 0.0045 2.032 0.1070

100 601 1,200 0.146 0.0015 14.152 0.1415
500 3,100 6,000 0.464 0.0009 100.648 0.2013

1,000 6,001 12,000 0.903 0.0009 558.442 0.5584
∗ done on PC, Intel(R) Xeon(R) CPU 2.83GHz, RAM 4.00GB.

simulate them using continuous or stochastic simulation algorithms. So both unfolding
and simulation decide how far we can go using colored Petri nets.

Using the colored Petri net model in Figure 5.15, we perform a group of testing by
increasing the number of channels and obtain the unfolding/simulation run time for
different size of the model, illustrated in Table 5.11. From the ratio of the unfold-
ing/simulation run time to the number of channels, we can see that either unfolding
or simulation run time approximately linearly increases with the increasing size of the
model, so no doubt we can simulate much larger systems if enough unfolding/simulation
run time is allowed.

5.2.5 Conclusions

We have demonstrated how to use colored Petri nets to construct spatial models of
coupled Ca2+ channels, which shows that colored Petri nets are an effective visual
modeling formalism to represent scalable coupled Ca2+ channels with specific spatial
arrangements. More importantly, colored Petri nets provide rich analysis techniques
for analyzing and validating models of Ca2+ channels. In the future, we are going to
extend to model coupled Ca2+ channels with more states and to exploit a more scalable
model that models more than one clusters (scalable not only in the number of clusters
but also in the number of channels in one cluster).

5.3 Modeling Membrane Systems

Membrane systems (also known as P systems) [Pau99], [Pau02] are a very powerful
and efficient computational model inspired by the internal organization of living cells
with different membranes hierarchically arranged. The membranes enclose compart-
ments where specific biochemical reactions take place. These reactions can transport
packages of objects (molecules) from one part of a cell to other parts of the cell. The

123

5 Case Studies

objects evolve by means of evolution rules in a nondeterministic and maximally parallel
manner. A number of variants of membrane systems have been proposed to deal with
different problems. For example, dynamic membrane systems are presented to consider
membrane creation, dissolution, or division [Pau02]. Stochastic membrane systems are
proposed to model biological systems exhibiting stochastics [GMRC10].

In order to complement the description and analysis of the dynamic behavior of mem-
brane systems, Petri nets have been used to remodel membrane systems and trans-
lations of some classes of membrane systems into Petri nets have been proposed, e.g.
in [QJY04], [KKR06] and [KK09]. But nearly all these researches aim to employ the
maximal concurrency semantics of Petri nets to simulate the nondeterministic and
maximally parallel evolution manner.

In this section, we will first investigate how to use Petri nets to represent basic, dy-
namic and stochastic membrane systems. Consequently once a membrane system is
transformed into a Petri net model, all techniques and tools for Petri nets can be used
to investigate what is going on during an evolution of a membrane system. However,
in a membrane system objects perform their function only at the right membrane,
so each object at different locations (compartments) has to be represented as a cou-
ple of places in standard Petri nets; as a result, the Petri net model for a large-scale
membrane system may become quite large and hard to manage.

To address this issue, we will explore to use colored Petri nets to model membrane
systems. As colored Petri nets can represent a group of similar objects as a place and
use colors to differentiate them, they allow a very compact representation for a large
system. Hence, colored Petri nets are a potentially suitable formalism for represent-
ing membrane systems where each object at different compartments is represented as
a colored place and compartments are differentiated by colors. As a result, we not
only distinguish and show compartment information in a colored Petri net model of a
membrane system, but also make it more compact. Please note that Qi et al. [QJY04]
proposed a high-level framework called membrane Petri nets based on colored Petri
nets to model membrane systems, but it is just a general idea and hard to operate.
In contrast, we will explore how to systematically construct and analyze membrane
systems using colored Petri nets.

This section is organized as follows. Section 5.3.1 describes the background of mem-
brane systems. Section 5.3.2 discusses how to use Petri nets to model membrane sys-
tems. Section 5.3.3 discusses how to use colored Petri nets to model membrane systems.
Section 5.3.4 gives an example, the viral infection. Section 5.3.5 concludes this section.

5.3.1 Membrane Systems

In this section, we will briefly introduce basic, dynamic and stochastic membrane sys-
tems, respectively.

124

5.3 Modeling Membrane Systems

Throughout this section, we use { } or { }l, a curly bracket or a curly bracket with a
label, to specify a multiset or a multiset in a compartment l. We can also omit the curly
bracket and only represent a multiset over S as a string m(s1)‘s1, m(s2)‘s2, ..., m(sn)‘sn,
where S = {s1, s2, ..., sn}.

(1) Basic membrane systems.

We now recall the basic definition of membrane systems according to [Pau99], [Pau02].

Definition 20 (Membrane system)
A membrane system is a construct of the form:
∏

= (O, µ, w1, w2, ..., wm, R1, R2, ..., Rm), where

• O is a finite and non-empty alphabet of objects (e.g. molecules, proteins or com-
plexes of proteins).

• µ is a membrane structure, consisting of m membranes, labeled with 1, 2, ..., m.

• wi is a multiset of objects (which gives the number of occurrences of objects in
an unordered way) associated with membrane i, i = 1, 2, ..., m.

• Ri is a finite set of evolution rules associated with membrane i, i = 1, 2, ..., m.

An evolution rule takes the form of r : ur → vr, where ur is a multiset over O, and vr is a
multiset over O×({here, out}∪{inj |1 ≤ j ≤ m−1}), where here, out or inj represents
a location having the following meanings (assume the compartment containing ur is
compartment k):

• here: the product remains in the same compartment k, and we usually omit it;

• out: the product is transported out of the current compartment k and sent to its
parent compartment;

• inj : the product is transported to a compartment j, immediately enclosed by k.

In this definition, the membrane structure defines a hierarchy of compartments enclosed
by membranes. Each membrane encloses a compartment and each compartment may
contain basic objects (molecules) or other compartments. Membrane systems evolve
in the maximally parallel manner, non-deterministically choosing rules and objects.
The membrane structure and the multisets of objects in its compartments consist of a
configuration of a membrane system. The initial configuration is given by the membrane
structure and the multisets of objects available in their compartments at the beginning
of a computation. During the evolution of the system, by means of applying the rules,
both the multisets of objects and the membrane structure may change.
In the following, we give some examples of evolution rules in basic membrane systems.

125

5 Case Studies

• a→ λ: a degrades, where λ denotes empty.

• a, b→ c: a and b are combined to form a complex c.

• c→ a, b: c is broken into a and b.

• a→ (a, out): a is sent to its parent compartment.

• a→ (a, inj): a is sent to a child compartment j.

Figure 5.19 gives a membrane system. It consists of three membranes (compartments).
The membrane structure is {{{ }3}2}1. w1 = {a}, w2 = { } and w3 = {b}. R1 =
{r11 : b → a; r12 : a → (a, in2), b}, R2 = {r21 : a → (a, in3), b; r22 : b → λ} and
R3 = {r31 : a, b→ b, (b, out)}.

� ���

������������������

�������������������	
���	�

�

� ���

�������					

���������������������	
�
�	�

�
�����	�������������	��	����

λ

Figure 5.19: A basic membrane system.

(2) Dynamic membrane systems.

The basic membrane systems can be extended to have dynamic structure by considering
membrane creation, dissolution, merging or division [Pau02]. All these dynamic changes
in structure are reflected by evolution rules. Here we just give some typical evolution
rules:

• {a, b}l1 → {{a}l2 , b}l1 : a is included in a newly created compartment l2.

• {a, b}l → {a}l1 + {b}l2 : compartment l is divided into two compartment l1 and
l2.

• {a}l1 +{b}l2 → {a, b}l: compartment l1 and l2 are merged into one compartment
l.

126

5.3 Modeling Membrane Systems

• {{a}l2 , b}l1 → {a, b}l1 : compartment l2 containing a is dissolved and a is now
released into its parent compartment l1. For simplicity, we can also use another
way to represent the dissolution rule, a→ a, δ, where δ denotes dissolving.

The reader can refer to [Pau02] for detailed descriptions of evolution rules in dynamic
membrane systems.

For example, Figure 5.20 gives a membrane system with dynamic structure, where the
evolution rule r31 dissolves membrane m3 when it is executed.

� ���

������������������

�������������������	
���	�

�

� ���

�������					

���������������������	
�
�	�

�
�����	��������������	

λ

δ

Figure 5.20: A dynamic membrane system.

(3) Stochastic membrane systems.

The membrane systems above usually evolve in the maximally parallel manner, non-
deterministically choosing rules and objects. However, if we want to employ membrane
systems to model biological systems with stochastics, a stochastic strategy for evolution
rules has to be introduced [GMRC10], [SMC+08]. To do this, we have to change the
form of a evolution rule as

ur
cr→ vr

where cr is introduced to denote a stochastic constant that is used to compute the
probability of the rule according to the Gillespie’s theory of stochastic kinetics [Gil77].

For example, in the rule a
0.1
−→ b, we compute the probability of the rule as 0.1 ∗ |a|,

where |a| is the quantity of object a. After that, we can use the Gillespie’s exact
stochastic simulation algorithm [Gil77] to simulate stochastic membrane systems.

5.3.2 Modeling Using Petri Nets

Petri nets are a suitable formalism to describe membrane systems [KKR06], [KK09].
However, in [KKR06] and [KK09], they aim to employ the maximal concurrency se-
mantics of Petri nets to simulate the nondeterministic and maximally parallel evolution

127

5 Case Studies

manner of membrane systems. In contrast, we want to model membrane systems using
standard Petri nets, so that we can use all analysis techniques applicable to Petri nets
to exploit qualitative properties and dynamic behavior of membrane systems.

(1) Mapping basic and stochastic membrane systems to Petri nets.

In order to model membrane systems using Petri nets, places of Petri nets are used
to represent objects at different locations, whereas transitions of Petri nets are used
to represent evolution rules associated with specific compartments. When a transition
fires, it removes objects from its input places and add objects to its output places, thus
simulating the behavior of an evolution rule. The initial resources in all compartments
consist of the initial marking of a Petri net. The following mapping formalizes the
informal descriptions based on [KKR06].

Definition 21
Let

∏

= (O, µ, w1, w2, ..., wm, R1, R2, ..., Rm) be a basic and stochastic membrane sys-
tem. Its corresponding stochastic Petri net SPN = (P, T, F, f, v, m0) can be obtained
by

• P = O × {1, 2, ..., m}.

• T = R1 ∪R2 ∪ ... ∪Rm.

• For every place p = (o, j) ∈ P , where o ∈ O and j ∈ {1, 2, ..., m}, and every
transition t ∈ T , where t takes the form of r : ur

cr→ vr,

– f(p, t) = ur(o)j , which means the occurrence of object o belonging to mem-
brane j in ur of rule r. If f(p, t) > 0, there exists an arc F (p, t).

– f(t, p) = vr(o)j , which means the occurrence of object o belonging to mem-
brane j in vr of rule r. If f(t, p) > 0, there exists an arc F (t, p).

• For every transition t ∈ T , whose corresponding evolution rule r takes the form
of ur

cr→ vr, the rate function for t is: v(t) = MA(cr), where MA denotes the
mass action function.

• For every place p = (o, j) ∈ P , m0(p) = wj(o).

To model membrane systems using Petri nets, the key is to model different kinds of
evolution rules, and then we can build the whole model based on these basic Petri net
components. In Figure 5.21 we give Petri net models for some typical evolution rules
in basic membrane systems according to the mapping rule.
For example, based on the basic Petri net components, Figure 5.22 gives a Petri net
model for the membrane system in Figure 5.19.

(2) Mapping dynamic and stochastic membrane systems to Petri nets.

128

5.3 Modeling Membrane Systems

���

���
��� ���

��� ��� ������

��� ���

��� ���

	�
 	�

	�
 	�

Figure 5.21: Petri net models for typical evolution rules (assume the membrane struc-
ture is {{ }2}1, R1 = {r11, r12, r13} and R2 = {r21}): (a) r11 : a, b → c,
(b) r12 : a → λ, (c) r21 : a → (a, out) and (d) r13 : a → (a, in2). Please
note that each place is named by a compartment label given as a suffix in
its correponding object name.

������

���
���

���

���

��������

�����������

Figure 5.22: A Petri net model for the basic membrane system in Figure 5.19.

129

5 Case Studies

In the following, we first take dynamic membrane systems only containing the disso-
lution rule as an example to describe how to transform them to stochastic Petri nets
in a precise manner based on [QJY04] and [KK09]. We then briefly describe how to
construct Petri net models for dynamic membrane systems with other dynamic rules.

Definition 22
Let

∏

= (O, µ, w1, w2, ..., wm, R1, R2, ..., Rm) be a dynamic and stochastic membrane
system only with a dissolution rule. Its corresponding stochastic Petri net SPN =
(P ∪ Pδ, T ∪ Tδ, F ∪ Fδ ∪ FI ∪ FR, f ∪ fδ ∪ fI ∪ fR, v, m0 ∪mδ) can be obtained by

• (P, T, F, f, v, m0) can be obtained using Definition 21.

• Pδ is the set of disabling places.

• Tδ is the set of immediate transitions, responsible for transferring all objects of
the dissolved membrane to its parent membrane.

• Fδ, FI and FR are the sets of standard, inhibitor and read arcs, respectively, from
Pδ and Tδ.

• fδ, fI and fR are the weights of Fδ, FI and FR, respectively, and are always set
to 1.

• mδ is the initial marking of Pδ and is set to empty.

Definition 23
Pδ, Tδ, Fδ, FI and FR are constructed for membrane i with a dissolution rule, rδ ∈ Ri

as follows:

1. A disabling place di is added to Pδ:
Pδ = Pδ ∪ {di}.

2. Let Oi denote all objects in membrane i. For each object oij ∈ Oi, an immediate
transition itij is added to Tδ:
Tδ = Tδ ∪ {itij |j = 1, 2, ..., |Oi|}.

3. A standard arc (rδ, di) is added to Fδ.
Fδ = Fδ ∪ {(rδ, di)}.

4. For each object oij ∈ Oi and its corresponding object okj in its parent membrane
k, a pair of standard arcs are added to Fδ.
Fδ = Fδ ∪ {(oij , itij)|j = 1, 2, ..., |Oi|} ∪ {(itij , okj)|j = 1, 2, ..., |Oi|}.

5. For each rule rik in the rule set Ri, an inhibitor arc (di, rik) is added.
FI = FI ∪ {(di, rik)|k = 1, 2, ..., |Ri|}.

130

5.3 Modeling Membrane Systems

6. Let Rin denote all rules which can send objects to membrane i from its parent
membrane. For each rule rk ∈ Rin, an inhibitor arc (di, rk) is added.
FI = FI ∪ {(di, rk)|k = 1, 2, ..., |Rin|}.

7. For each transition tk ∈ Tδ, a read arc (di, tk) is added.
FR = FR ∪ {(di, tk)|k = 1, 2, ..., |Tδ|}.

For dynamic membrane systems containing creation rules, we can deal with them
using the same transformation method as basic membrane systems in Definition 21.
For others with division or merging rules, we can handle them using a similar way as
membrane systems with dissolution rules. We will not discuss them deeply because of
space constraint.

For dynamic membrane systems with dissolution rules, Qi et al. [QJY04] use sending
transitions to send all objects in a membrane to its parent membrane when a dissolution
rule is executed. However, for standard qualitative Petri nets, it is difficult to implement
sending transitions and thus few tools support this special situation. Alternatively, in
[KK09] Kleijn et al. make copies of all transitions in a dissolved membrane, but the
price is that a lot of extra transitions have to be added, which makes Petri net models
more complex and difficult to manage.

In contrast, we consider a kind of stochastic dynamic membrane systems, so we can
adopt a different way to deal with dissolution rules, i.e. we employ immediate transi-
tions to transfer the resources of dissolved membranes to their parent membranes. For
example, if we consider the membrane system in Figure 5.20 as a stochastic membrane
system, we can build its stochastic Petri net model as in Figure 5.23.

���

���

���

���

��	

��� ��	

���
��
���

���
�	�

�

Figure 5.23: A Petri net model for the dynamic membrane system in Figure 5.20. A
read arc is represented as an arc with a solid circle and an inhibitor arc
with a hollow circle. An immediate transition is represented as a black
rectangle.

131

5 Case Studies

5.3.3 Modeling Using Colored Petri Nets

Using standard Petri nets, each object of a membrane system at different compartments
has to be represented as a coupled of places, thus the Petri net model for the membrane
system may become quite large and hard to manage. In contrast, colored Petri nets
represent a group of similar objects as a place and use colors to differentiate them, so
they offer a very compact representation for a large membrane system.

(1) Mapping basic and stochastic membrane systems to colored Petri nets.

In order to model membrane systems using colored Petri nets, we define each membrane
as a color consisting of a color set, which is used to differentiate the location of each
object. We then fold the same object at different compartments as one colored place
and assign the color set to this place. The following definition gives a formal translation
from basic and stochastic membrane systems into colored stochastic Petri nets.

Definition 24
Let

∏

= (O, µ, w1, w2, ..., wm, R1, R2, ..., Rm) be a basic and stochastic membrane sys-
tem. Its corresponding colored stochastic Petri net SPN C = (P, T, F,

∑

, C, g, f, v, m0)
can be obtained by

•
∑

= {{1, 2, ..., m}}, which contains a color set {1, 2, ..., m} that encodes each
compartment as a color.

• P = O.

• T = R1 ∪R2 ∪ ... ∪Rm.

• For every place p = o ∈ O, every color j ∈ {1, 2, ...m}, and every transition t ∈ T ,
where t takes the form of r : ur

cr→ vr,

– f(p, t) =
∑m

j=1 ur(o)j ‘j, where ur(o)j means the occurrence of object o
belonging to membrane j in ur of rule r. If f(p, t) > 0, there exists an arc
F (p, t).

– f(t, p) =
∑m

j=1 vr(o)j ‘j, where vr(o)j means the occurrence of object o be-
longing to membrane j in vr of rule r. If f(t, p) > 0, there exists an arc
F (t, p).

• For every place p ∈ P , the color set {1, 2, ..., m} is assigned.

• For every transition t ∈ T , g(t) is always set to true.

• For every transition t ∈ T , whose corresponding evolution rule r takes the form
of ur

cr→ vr, the rate function for t is defined as v(t) = MA(cr).

• For every place p = o ∈ O, m0(p) =
∑m

j=1 wj(o).

132

5.3 Modeling Membrane Systems

For exmaple, Figure 5.24 gives a colored Petri net model for the membrane system in
Figure 5.19 according to the transformation rules. We define a color set CS with 3
colors, 1, 2 and 3, representing three membranes, respectively.

�

�
��� ��

�
�

���

��

�	�� �	�
 �	��

�	

�	
�

�

� �

�

�

�

�

��
�

Figure 5.24: A colored Petri net model for the basic membrane system in Figure 5.19.

(2) Mapping dynamic and stochastic membrane systems to colored Petri
nets.

In this section, we also take dynamic membrane systems only containing dissolution
rules as an example to give the translation from dynamic membrane systems to colored
Petri nets. We can deal with membrane systems with other types of dynamic rules in
a similar way.

Definition 25
Let

∏

= (O, µ, w1, w2, ..., wm, R1, R2, ..., Rm) be a dynamic and stochastic membrane
system only containing a dissolution rule. Its corresponding colored Petri net SPN C =
(P ∪Pδ, T ∪Tδ, F ∪Fδ ∪FI ∪FR,

∑

, g, f ∪ fδ ∪ fI ∪ fR, v, m0 ∪mδ) can be obtained by

• (P, T, F,
∑

, g, f, v, m0) can be obtained using Definition 24.

• Other components have the same meaning as in Definition 22 and 23.

For example, Figure 5.25 gives a colored Petri net model for the membrane system in
Figure 5.20. We also define a color set CS with 3 colors, 1, 2 and 3, representing three
membranes, respectively.
From these examples we can see that using colored Petri nets we can obtain a compact
model for a membrane system by folding the same kind of object at different com-
partments into a place and defining each membrane as a color. Then we can use the
color to differentiate the object at a specific compartment. The colored Petri net model
would become very compact if a membrane system consists of a lot of objects but few
evolution rules.

133

5 Case Studies

�
�

���

��

�

�

���

��

�	

��

���� ���

����

��

��
�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

Figure 5.25: A colored Petri net model for the dynamic membrane system in Fig-
ure 5.20.

5.3.4 An Example: the Viral Infection

In this section, we use the process of the viral infection [SMC+08] to demonstrate how
to use colored Petri nets to model a membrane system. This example shows a dynamic
membrane system, involving not only the transportation of molecules and entire com-
partments but also the creation and dissolution of membranes. In the following, we
describe the modeling and analysis of this membrane system using colored Petri nets.

Modeling

The viral infection process is illustrated in Figure 5.26, together with the changes of
the membrane structure. At the beginning, the virus consists of a viral RNA wrapped
by the capsid, which is further enclosed in the envelope. If a virus encounters a healthy
cell, it will enter the healthy cell and then will be wrapped by a vesicle membrane. After
that, the the vesicle and envelope membranes dissolve and release the capsid, which
disassembles itself into the viral RNA and C proteins. Now the viral RNA begins to
act through three distinct paths. First, it replicates itself and produces more copies of
the viral RNA. Second, it is translated into proteins, some of which contribute to the
generation of the capsid, enclosing the viral RNA. Finally, the newly assembled capsid
buds out to regenerate a new virus, which continues to infect other healthy cells. See
[SMC+08] for more details.

In the following, we briefly recall how to model the viral infection process using mem-
brane systems according to [SMC+08].

(1) Objects.

In this process, three kinds of objects are involved: healthy cells, viral RNA and Protein
C.

134

5.3 Modeling Membrane Systems

���������	���

��������	���

����
��

������

����
����

��������	���

���������	���

�������

����
��

������

��������
���

��������	���

���������	���

������

���������������

��������	���

���������	���

�������������

�������������

� ��!�������

��������	���

���������	���

������

�"���������

#�$ #�$ #�$ #�$ #�$

�%!

�%!

�%!

�%!

�%!

Figure 5.26: The viral infection process together with the changes of the membrane
structure (taking one virus and one healthy cell as an example).

(2) The membrane structure.

The membranes (compartments) that are involved are as follows. The extracellular
(shortly "Ext") environment provides a space that cells and viruses live in. A virus in
the extracellular is wrapped by the capsid (shortly "Cap"), which is enclosed by the
envelope (shortly "Env"). In the intracellular (shortly "Int") of an infected cell, the
virus is further wrapped by the vesicle (shortly "Ves"). During the infection process,
the membrane structure will change according to Figure 5.26.

(3) Evolution rules.

The infection process uses the following rules (for simplicity, we omit the extracellular
membrane for each rule):

• r1: {{RNA}Cap}Env, Cell
c1
→ {{{{RNA}Cap}Env}V es}Int,

• r2: {{{{RNA}Cap}Env}V es}Int
c2
→ {{RNA}Cap}Int,

• r3: {{RNA}Cap}Int
c3
→ {RNA, 5‘ProteinC}Int,

• r4: {RNA}Int
c4
→ {RNA, ProteinC}Int,

• r5: {RNA}Int
c5
→ {2‘RNA}Int,

• r6: {RNA, 5‘ProteinC}Int
c6
→ {{RNA}Cap}Int,

• r7: {{RNA}Cap}Int
c7
→ {{RNA}Cap}Env.

According to these evolution rules, we first build a stochastic Petri net model, illus-
trated in Figure 5.27. From this model we can see that we have to represent each
object, e.g. viral RNA, at each compartment as a place of the Petri net.

135

5 Case Studies

����������	�
��

����
��

��

����
�������������	�
�� ����
�����	�
��

����
����
�� ����
�����������

������� �� ��������

�� �����������

�������������
�	�� ���

�! ��������

�"
������

�

�

�

Figure 5.27: A SPN model for the viral infection.

Further, we build a colored stochastic Petri net model for the viral infection, illustrated
in Figure 5.28. This membrane system involves the transportation of entire compart-
ments, so we can not differentiate them only using their labels. Rather we have to com-
bine their labels with the labels of their father compartments. Thus, we define a color
set CS with four colors: Ext, Ext_Int, Ext_Env_Cap, Ext_Int_V es_Env_Cap
and Ext_Int_Cap. We use a place to represent a kind of objects at different locations.
For example, we use place RNA to represent the viral RNA at four compartments. We
use arc expressions to indicate the location change of an object. For the two dissolu-
tion rules, r2 and r3, the involved membranes when dissolved become empty (only one
object for each membrane) and do not affect other rules, so we just deal with them as
ordinary rules.

Analysis

In the following, we conduct analysis on the model in 5.28 in three ways: structural
analysis, simulation and model checking.

(1) Structural analysis.

In order to exploit basic properties this net enjoys, We first use our structural analysis
tool, Charlie [Cha11], to analyze its P- and T- invariants. Unfortunately, this net is
covered by neither P-invariants nor T-invariants. The only T-invariant of this net is
composed by r3 and r6, which is as we expect.

(2) Simulation analysis.

We use the Gillespie’s stochastic simulation algorithm [Gil77] to simulate our colored
stochastic Petri net model. As we can not obtain quantitative data, we set all the
stochastic reaction constants c1 to c7 to the same value of 1.0. For comparisons with

136

5.3 Modeling Membrane Systems

���

�

�����	�
�	�
�

��

����

��

������

��

������
�

��

�� �
���

�� ��������

�����
�������

�� ��

��
���� �����
��

�! ��������

�" ����
��

���	�
�	�
�

���

�����	#
�

���	#
�

�����	#
�

���	�
�	�
�

���	#
�	$��	�
�	�
�
���	#
�	$��	�
�	�
�

���	#
�	�
�

���	#
�	�
�
���	#
�	�
�

���	#
�	�
�

���	#
�

�����	#
�
���	#
�

���	#
�

���	#
�

���	#
�

Figure 5.28: A SPN C model for the virus infection.

the results in [SMC+08], we also set the initial marking to 20 healthy cells and 1,
10, 100 virus molecules and we obtain the simulation results shown in Figure 5.29,
Figure 5.30 and Figure 5.31, respectively. As expected, the simulation results show
that the number of viruses in environment increases exponentially with time, which
are consistent with the results in [SMC+08].

(3) Simulative model checking.

We can also support formal analysis of membrane systems using model checking. Here
we will demonstrate how to use a simulative model checking tool, the MC2 tool [DG08],
to check some properties of the viral infection model. For the demonstration purpose,
we give the following queries to be checked and generate a set of 100 stochastic (single)
simulation traces.
(1) P=?[time > 9→ G([Ext_Int_RNA] > [Ext_Env_Cap_RNA])]

After some time, the viruses in the environment become more than those in the infected
cells. The probability for this query as computed by the model checking tool is 0.87.
(2) P=?[G([Ext_Int_ProteinC] < 15)]

The number of Protein C in the cells remains steady (always less than a constant).
The probability for this query is 0.95.

From the colored Petri net model above, we can see that it represents each object at
different locations as one place. Therefore, with the increase of objects and compart-
ments in membrane systems, colored Petri nets provide very compact models. Besides,
we can make full use of analysis techniques of Petri nets to analyze membrane systems.

137

5 Case Studies

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

V
al

ue

time

Ext_Env_Cap_RNA
ProteinC

Figure 5.29: Stochastic simulation result of one simulation run for the virus infection
model with 1 initial virus molecule.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

V
al

ue

time

Ext_Env_Cap_RNA
ProteinC

Figure 5.30: Stochastic simulation result of one simulation run for the virus infection
model with 10 initial virus molecules.

138

5.4 Closing Remarks

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10

V
al

ue

time

Ext_Env_Cap_RNA
ProteinC

Figure 5.31: Stochastic simulation result of one simulation run for the virus infection
model with 100 initial virus molecules.

5.3.5 Conclusions

In this section, we have described how to model and analyze membrane systems using
Petri nets and especially colored Petri nets. By encoding each membrane as a color,
colored Petri nets provide a compact representation for a membrane system in a graph-
ical way and more importantly they allow a lot of analysis techniques. In summary,
colored Petri nets are a powerful tool for modeling and analyzing membrane systems.
In the future, we will use hierarchical color sets to provide a more clear representation
of the structure of membrane systems. We also want to automatically create Petri net
and colored Petri net models for membrane systems of a specific format.

5.4 Closing Remarks

In this chapter, we have given three case studies, each of which has its specific purpose.
The first two mainly demonstrate how to use colored Petri nets to address some of the
challenges faced with by systems biology given in Chapter 1. But the first case study has
other important purposes, i.e. to demonstrate how to model and analyze a system from
three perspectives: qualitative, stochastic and continuous, and to combine a variety of
analysis techniques to analyze a system. The third case study, however, explores an
advanced application of colored Petri nets, modeling membrane systems using colored
Petri nets. The purpose of this case study is trying to find more scenarios to apply

139

5 Case Studies

colored Petri nets.

With the rapid development of systems biology, no doubt colored Petri nets will gain
more and more attention and find more application scenarios.

140

6 Conclusions and Outlook

6.1 Conclusions

This thesis presents a technology based on colored Petri nets and associated techniques
to address challenges introduced by multiscale modeling in systems biology and offer
a solution to perform multiscale modeling and analysis of biological systems.

To accomplish this aim, in Chapter 2 we have first presented a colored Petri net frame-
work for systems biology, which relates three modeling paradigms: QPN C , SPN C and
CPN C . Using this framework, we can model and analyze a biological system from
three perspectives: qualitative, stochastic and continuous by transforming them into
each other. This allows these three formalisms to work together to achieve the modeling
and analysis of biological systems.

We have implemented this framework in our Petri net tool Snoopy, and in Chapter 3
we have discussed three aspects concerning the implementation of colored Petri nets.
We have first presented an efficient algorithm for the computation of enabled transition
instances in order to animate/simulate colored Petri nets, in which we have adopted
a pattern matching mechanism and a new partial binding - partial test principle and
considered some optimization techniques to improve the computation efficiency. We
have then provided an efficient unfolding algorithm for colored Petri nets, in which
we have offered two approaches to efficiently compute transition instances. That is,
if the color set of each variable in a guard is a finite integer domain, the constrain
satisfaction approach has been used to obtain all legal bindings; otherwise, a general
algorithm has been adopted, in which some optimization techniques, e.g. the partial
binding - partial test principle, have been used. Please note that the main difference
between the computation of enabled transition instances for animation/simulation and
the computation of transition instances for unfolding is that the former computes en-
abled transition instances in terms of available tokens (current marking) on places while
the latter computes transition instances in terms of color sets of places. In addition, we
have considered three special scenarios for automatic folding: colorizing T-invariants,
master nets and twin nets in order to reduce the amount of manual work used for
folding Petri nets. Among them, colorizing T-invariants contributes to the further un-
derstanding of T-invariants for a biological network, and colorizing master nets or twin
nets offers a convenient way for reconstructing biological networks.

Petri nets offer a large variety of analysis techniques ranging from informal techniques,

141

6 Conclusions and Outlook

e.g. animation/simulation to formal techniques, e.g. model checking. In Chapter 4, we
have summarized those analysis techniques that can be used for colored Petri nets and
payed attention to applying them for analyzing colored Petri nets.

Finally, in Chapter 5, we have given three case studies, C. elegans vulval development,
coupled Ca2+ channels and membrane systems, to explore the application of our colored
Petri net technology and techniques. These case studies not only demonstrate how to
apply the colored Petri net framework and related analysis techniques to modeling and
analyzing practical biological systems, but also show how to address the challenges in
systems biology given in Chapter 1.

In summary, this thesis provides a solution based on colored Petri nets to model and
analyze biological systems.

6.2 Outlook

This thesis explores theories and application of colored Petri nets for systems biology.
There are a number of potential areas for future research:

1. We will continue to improve our colored Petri net modeling tool, Snoopy, by in-
cluding more features beneficial to computational modeling of biological systems.

2. In Chapter 3, we have included an unfolding algorithm for colored Petri nets
in order to cope with large-scale biological models. But with the increasing size
of biological systems, it is necessary to improve this algorithm to tackle more
complicated and larger biological systems in the future.

3. We will explore automatic folding based on subgraph isomorphism so as to auto-
matically colorize arbitrarily given Petri nets. For this purpose, we will consider
the particular characteristics of Petri nets to offer an efficient folding algorithms
based on subgraph isomorphism.

4. As discussed in Chapter 4, colored Petri nets can be analyzed at the colored
(folded) level, thus we can utilize the characteristics of colored Petri nets with-
out generating their corresponding unfolded Petri nets. In a next step, we will
investigate possible approaches to achieve this.

5. We will look into partial unfolding to tackle dynamic color sets so as to ad-
dress such biological phenomena as compartment creation, division, merging or
dissolving, or cell differentiation.

6. We have applied colored Petri nets to some scenarios in the context of systems
biology, whereas its application is far beyond these. Therefore, we will continue
to discover other challenges from biological modeling and more various ranges of
scenarios in which colored Petri nets can be applied.

142

6.2 Outlook

7. So far, we have discussed the application of colored Petri nets to systems biol-
ogy. In the future we will explore more application areas, e.g. synthetic biology,
where there are a number of similar challenges like repetition of components and
(hierarchical) organization of components.

8. In this thesis, we focus on the colored Petri net technology and associated tech-
niques for the modeling of biological systems; in the next step we will generalize
our experiences to a methodology so as to provide guidelines for multiscale mod-
eling of biological systems.

143

6 Conclusions and Outlook

144

Bibliography

[Ade05] Aderem, A.: Systems Biology: Its Practice and Challenges. In: Cell 121
(2005), Nr. 4, pp. 511–513 {1}

[AK76] Araki, T.; Kasami, T.: Some Decision Problems Related to the Reacha-
bility Problem for Petri Nets. In: Theoretical Computer Science 3 (1976),
Nr. 1, pp. 85–104 {23}

[ASSB00] Aziz, A.; Sanwal, K.; Singhal, V. ; Brayton, R.: Model Checking
Continuous Time Markov Chains. In: ACM Transactions on Computa-
tional Logic 1 (2000), Nr. 1, pp. 162–170 {79, 83, 84}

[BCMS10] Baldan, P.; Cocco, N.; Marin, A. ; Simeoni, M.: Petri Nets for Mod-
elling Metabolic Pathways: a Survey. In: Natural Computing 9 (2010), Nr.
4, pp. 955–989 {1, 2, 4, 80}

[BCP08] Blossey, R.; Cardelli, L. ; Phillips, A.: Compositionality, Stochastic-
ity and Cooperativity in Dynamic Models of Gene Regulation. In: HFSP
Journal 2 (2008), Nr. 1, pp. 17–28 {6}

[BDGH10] Breitling, R.; Donaldson, R.; Gilbert, D. ; Heiner, M.: Biomodel
Engineering - From Structure to Behavior. In: Transactions on Compu-
tational Systems Biology XII, Special Issue on Modeling Methodologies,
Springer, 2010 (LNCS 5945), pp. 1–12 {4}

[Ber97] Berridge, M. J.: Elementary and Global Aspects of Calcium Signalling.
In: Journal of Experimental Biology 200 (1997), Nr. 2, pp. 315–319 {109}

[BHHK03] Baier, C.; Haverkort, B.; Hermanns, H. ; Katoen, J. P.: Model-
checking Algorithms for Continuous-Time Markov Chains. In: IEEE
Transactions on Software Engineering 29 (2003), Nr. 6, pp. 524–541 {83}

[BKF+09] Bonzanni, N.; Krepska, E.; Feenstra1, K. A.; Fokkink, W.; Kiel-

mann, T.; Bal, H. ; Heringa1, J.: Executing Multicellular Differentia-
tion: Quantitative Predictive Modelling of C. Elegans Vulval Development.
In: Bioinformatics 25 (2009), Nr. 16, pp. 2049–2056 {95}

[BKK95] Bause, F.; Kemper, P. ; Kritzinger, P.: Abstract Petri Net Notation.
In: Petri Net Newsletter (1995), Nr. 49, pp. 9–27 {41}

145

Bibliography

[BMD07] Baer, C. F.; Miyamoto, M. M. ; Denver, D. R.: Mutation Rate Vari-
ation in Multicellular Eukaryotes: Causes and Consequences. In: Nature
Reviews Genetics 8 (2007), pp. 619–631 {11}

[BP03] Bahi-Jaber, N.; Pontier, D.: Modeling Transmission of Directly Trans-
mitted Infectious Diseases Using Colored Stochastic Petri Nets. In: Math-
ematical Biosciences 185 (2003), pp. 1–13 {2}

[BPS99] Brailsford, S. C.; Potts, C. N. ; Smith, B. M.: Constraint Satis-
faction Problems: Algorithms and Applications. In: European Journal of
Operational Research 119 (1999), Nr. 3, pp. 557–581 {61}

[CBW08] Channon, K.; Bromley, E. H. ; Woolfson, D. N.: Synthetic Biology
through Biomolecular Design and Engineering. In: Current Opinion in
Structural Biology 18 (2008), Nr. 4, pp. 1–8 {4}

[CCFS06] Calzone, L.; Chabrier-Rivier, N.; Fages, F. ; Soliman, S.: Ma-
chine Learning Biochemical Networks from Temporal Logic Properties. In:
Transactions on Computational Systems Biology, Springer, 2006 (LNCS
4220), pp. 68–94 {19}

[CDFH93] Chiola, G.; Dutheillet, C.; Franceschinis, G. ; Haddad, S.:
Stochastic Well-Formed Coloured Nets for Symmetric Modelling Appli-
cations. In: IEEE Transactions on Computers 42 (1993), Nr. 11, pp.
1343–1360 {7}

[CDFH97] Chiola, G.; Dutheillet, C.; Franceschinis, G. ; Haddad, S.: A
Symbolic Reachability Graph for Coloured Petri Nets. In: Theoretical
Computer Science 176 (1997), Nr. 1-2, pp. 39–65 {91, 92}

[CE81] Clarke, E. M.; Emerson, E. A.: Design and Synthesis of Synchroniza-
tion Skeletons using branching Time Temporal Logic. In: Proc. of the
Workshop on Logic of Programs, Springer, 1981 (LNCS 131), pp. 52–71
{79, 80, 81}

[CES86] Clarke, E.; Emerson, E.; ; Sistla, A.: Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logics. In: ACM Transactions
on Programming Languages and Systems 8 (1986), Nr. 2, pp. 244–263
{83}

[CFG92] Chiola, G.; Franceschinis, G. ; Gaeta, R.: A Symbolic Simulation
Mechanism for Well-Formed Coloured Petri Nets. In: Proc. of the 25th
annual symposium on Simulation, 1992, pp. 192–201 {91, 92}

146

Bibliography

[CGP01] Clarke, E. M.; Grumberg, O. ; Peled, D. A.: Model Checking. Cam-
bridge: MIT Press, 2001 {18, 81, 82}

[Cha07] Chaouiya, C.: Petri Net Modelling of Biological Networks. In: Briefings
in Bioinformatics 8 (2007), Nr. 4, pp. 210–219 {23}

[Cha11] Charlie. Charlie - A tool for the Analysis of Place/Transition Petri Nets.
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie. 2011
{69, 82, 115, 136}

[CJK97] Christensen, S.; Jørgensen, J. B. ; Kristensen, L. M.: Design/CPN
- A Computer Tool for Coloured Petri Nets. In: Proc. of the Third Interna-
tional Workshop on Tools and Algorithms for Construction and Analysis
of Systems, Springer, 1997 (LNCS 1217), pp. 209–223 {2}

[Coo71] Cook, S. A.: The Complexity of Theorem-Proving Procedures. In: Proc.
of the 3rd ACM Symposium on Theory of Computing, ACM, 1971, pp.
151–158 {69}

[CW85] Cardelli, L.; Wegner, P.: On Understanding Types, Data Abstraction,
and Polymorphism. In: Computing Survey 17 (1985), Nr. 4, pp. 471–522
{7}

[Dal10] Dallon, J. C.: Multiscale Modeling of Cellular Systems in Biology. In:
Current Opinion in Colloid and Interface Science 15 (2010), Nr. 1-2, pp.
24–31 {3, 10}

[DG08] Donaldson, R.; Gilbert, D.: A Model Checking Approach to the Pa-
rameter Estimation of Biochemical Pathways. In: Proc. of the 6th In-
ternational Conference on Computational Methods in Systems Biology,
Springer, 2008 (LNCS 5307), pp. 269–287 {18, 19, 79, 84, 85, 86, 101,
137}

[DLKS08] DeRemigio, H.; LaMar, M. D.; Kemper, P. ; Smith, G. D.: Markov
Chain Models of Coupled Calcium Channels: Kronecker Representations
and Iterative Solution Methods. In: Physical Biology 5 (2008), Nr. 3, pp.
1–14 {11, 111, 114, 119}

[DS05] DeRemigio, H.; Smith, G. D.: The Dynamics of Stochastic Attrition
Viewed as an Absorption Time on a Terminating Markov Chain. In: Cell
Calcium 38 (2005), Nr. 2, pp. 73–86 {112, 118, 119}

[DWW10] Durzinsky, M.; Wagler, A. ; Weismantel, R.: An Algorithmic Frame-
work for Network Reconstruction. In: Theoretical Computer Science 8
(2010), Nr. 16, pp. 1–16 {73, 74}

147

Bibliography

[EL00] Elowitz, M. B.; Leibler, S.: A Synthetic Oscillatory Network of Tran-
scriptional Regulators. In: Nature 403 (2000), pp. 335–338 {6, 36}

[FA73] Flynn, M. J.; Agerwala, T.: Comments on Capabilities, Limitations
and Correctness of Petri nets. In: Proc. of the 1st Annual Symposium on
Computer Architecture, ACM, 1973, pp. 81–86 {22}

[Fal03] Falcke, M.: On the Role of Stochastic Channel Behavior in Intracellular
Ca2+ Dynamics. In: Biophysical Journal 84 (2003), Nr. 1, pp. 42–56 {114,
122}

[FHL+04] Finkelstein, A.; Hetherington, J.; Li, L.; Margoninski, O.; Saf-

frey, P.; Seymour, R. ; Warner, A.: Computational Challenges of
Systems Biology. In: Computer 37 (2004), Nr. 5, pp. 26–33 {1}

[FPHH07] Fisher, J.; Piterman, N.; Hajnal, A. ; Henzinger, T. A.: Predictive
Modeling of Signaling Crosstalk during C. Elegans Vulval Development.
In: PLoS Computational Biology 3 (2007), Nr. 5, pp. e92 {95}

[Fra09] Franzke, A.: Charlie 2.0 – a Multi-Threaded Petri Net Analyzer, Com-
puter Science Department, Brandenburg University of Technology Cot-
tbus, Diplomarbeit, December 2009 {80, 99}

[Gae96] Gaeta, R.: Efficient Discrete-Event Simulation of Colored Petri Nets. In:
IEEE Transactions on Software Engineering 22 (1996), Nr. 9, pp. 629–639
{49, 51, 55, 56}

[GAS+06] Galle, J.; Aust, G.; Schaller, G.; Beyer, T. ; Drasdo, D.: Individual
Cell-Based Models of the Spatial-Temporal Organization of Multicellular
Systems - Achievements and Limitations. In: Cytometry 69A (2006), Nr.
7, pp. 704–710 {11}

[GCPL+98] Garcia-Calvo, M.; Peterson, E. P.; Leiting, B.; Ruel, R.; Nichol-

son, D. W. ; Thornberry, N. A.: Inhibition of Human Caspases by
Peptide-Based and Macromolecular Inhibitors. In: Journal Biological
Chemistry 273 (1998), Nr. 49, pp. 32606–32613 {22}

[Gec11] Gecode. Gecode: An Open Constraint Solving Library.
http://www.gecode.org. 2011 {61}

[GH06] Gilbert, D.; Heiner, M.: From Petri Nets to Differential Equations -
an Integrative Approach for Biochemical Network Analysis. In: Proc. of
the 27th International Conference on Applications and Theory of Petri
Nets and Other Models of Concurrency, Springer, 2006 (LNCS 4024), pp.
181–200 {1}

148

Bibliography

[GH11] Gilbert, D.; Heiner, M. Petri nets for multiscale Systems Biology.
http://multiscalepn.brunel.ac.uk. 2011 {15}

[GHG02] Gonze, D.; Halloy, J. ; Goldbeter, A.: Deterministic versus Stochas-
tic Models of Circadian Rhythms. In: Journal of Biological Physics 28
(2002), Nr. 4, pp. 637–653 {26, 28, 36}

[GHL07] Gilbert, D.; Heiner, M. ; Lehrack, S.: A Unifying Framework for
Modelling and Analysing Biochemical Pathways Using Petri Nets. In:
Proc. of the 5th International Conference on Computational Methods in
Systems Biology, Springer, 2007 (LNCS 4695), pp. 200–216 {17, 19, 33,
118}

[Gil77] Gillespie, D. T.: Exact Stochastic Simulation of Coupled Chemical Reac-
tions. In: Journal of Physical Chemistry 81 (1977), Nr. 25, pp. 2340–2361
{41, 110, 118, 127, 136}

[GKV01] Genrich, H.; Küffner, R. ; Voss, K.: Executable Petri Net Models for
the Analysis of Metabolic Pathways. In: International Journal on Software
Tools for Technology Transfer 3 (2001), Nr. 4, pp. 394–404 {2}

[GL79] Genrich, H. J.; Lautenbach, K.: The Analysis of Distributed Sys-
tems by Means of Predicate/Transition-Nets. In: Proc. of the Interna-
tional Sympoisum on Semantics of Concurrent Computation, Springer,
1979 (LNCS 70), pp. 123–146 {2, 7}

[GL81] Genrich, H. J.; Lautenbach, K.: System Modelling with High-Level
Petri Nets. In: Theoretical Computer Science 13 (1981), Nr. 1, pp. 109–135
{2, 7}

[GLG+11] Gao, Q.; Liu, F.; Gilbert, D.; Heiner, M. ; Tree, D.: A Multiscale
Approach to Modelling Planar Cell Polarity in Drosophila Wing using
Hierarchically Coloured Petri Nets. In: Proc. of the 9th International
Conference on Computational Methods in Systems Biology (CMSB 2011),
ACM digital library, September 2011 {3, 11, 15, 16, 36}

[GLTG11] Gao, Q.; Liu, F.; Tree, D. ; Gilbert, D.: Multi-cell Modeling Using
Coloured Petri Nets Applied to Plannar Cell Polarity. In: Proc. of the 2th
International Workshop on Biological Processes & Petri nets Volume 724,
2011, pp. 135–150 {15, 16, 36}

[GMR08] Galvão, V.; Miranda, J. G. V. ; Ribeiro-dos-Santos, R.: Devel-
opment of a Two-Dimensional Agent-Based Model for Chronic Chagasic
Cardiomyopathy after Stem Cell Transplantation. In: Bioinformatics 24
(2008), Nr. 18, pp. 2051–2056 {12}

149

Bibliography

[GMRC10] Gheorghe, M.; Manca, V. ; Romero-Campero, F. J.: Deterministic
and Stochastic P Systems for Modelling Cellular Processes. In: Natural
Computing 9 (2010), Nr. 2, pp. 457–473 {124, 127}

[GP98] Goss, P. J. E.; Peccoud, J.: Quantitative Modeling of Stochastic Sys-
tems in Molecular Biology by Using Stochastic Petri Nets. In: The Pro-
ceedings of the National Academy of Sciences USA 95 (1998), Nr. 12, pp.
6750–6755 {1, 28}

[Gre11] GreatSPN. GreatSPN, a Software Package for the Modeling, Valida-
tion, and Performance Evaluation of Distributed Systems Using General-
ized Stochastic Petri Nets and Their Colored Extension: Stochastic Well-
Formed Nets. http://www.di.unito.it/ greatspn/index.html. 2011 {91}

[Gri08] Grima, R.: Multiscale Modeling of Biological Pattern Formation. In:
Current Topics in Developmental Biology 81 (2008), pp. 435–460 {13}

[GSA06] Giurumescu, C. A.; Sternberg, P. W. ; Asthagiri, A. R.: Intercel-
lular Coupling Amplifies Fate Segregation during Caenorhabditis Elegans
Vulval Development. In: The Proceedings of the National Academy of Sci-
ences USA 103 (2006), Nr. 5, pp. 1331–1336 {95}

[Had87] Haddad, S.: Une Categorie Regulire de Reseau de Petri de Haut Niveau:
Definition, Proprietes et reductions, Paris: Universite P. et M. Curie (Paris
6), PhD thesis, 1987 {7}

[HGBT09] Hwang, M.; Garbey, M.; Berceli, S. A. ; Tran-Son-Tay, R.: Rule-
Based Simulation of Multi-Cellular Biological Systems - A Review of Mod-
eling Techniques. In: Cellular and Molecular Bioengineering 2 (2009), Nr.
3, pp. 285–294 {11}

[HGD08] Heiner, M.; Gilbert, D. ; Donaldson, R.: Petri Nets for Systems and
Synthetic Biology. In: Proc. of the 8th international conference on Formal
methods for computational systems biology, Springer, 2008 (LNCS 5016),
pp. 215–264 {1, 6, 22, 28, 29, 69, 79, 80}

[HJ94] Hansson, H.; Jonsson, B.: A Logic for Reasoning about Time and
Reliability. In: Formal Aspects of Computing 6 (1994), Nr. 5, pp. 512–535
{83}

[HK09] Heath, A. P.; Kavraki, L. E.: Computational Challenges in Systems
Biology. In: Computer Science Review 3 (2009), Nr. 1, pp. 1–17 {1}

150

Bibliography

[HKV01] Heiner, M.; Koch, I. ; Voss, K.: Analysis and Simulation of Steady
States in Metabolic Pathways with Petri Nets. In: Proc. of the 3rd Work-
shop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, University of Aarhus, 2001, pp. 15–34 {2}

[HLGM09] Heiner, M.; Lehrack, S.; Gilbert, D. ; Marwan, W.: Extended
Stochastic Petri Nets for Model-Based Design of Wetlab Experiments.
In: Transaction on Computational Systems Biology XI LNBI 5750 (2009),
pp. 138–163 {29, 30, 31, 32, 33, 34}

[HRSS10] Heiner, M.; Rohr, C.; Schwarick, M. ; Streif, S.: A Comparative
Study of Stochastic Analysis Techniques. In: Proc. of the 8th International
Conference on Computational Methods in Systems Biology, ACM, 2010,
pp. 96–106 {87}

[HS10] Heiner, M.; Sriram, K.: Structural Analysis to Determine the Core of
Hypoxia Response Network. In: PLoS ONE 5 (2010), Nr. 1, pp. e8600
{71}

[IGH01] Ideker, T.; Galitski, T. ; Hood, L.: A New Approach to Decoding Life:
Systems Biology. In: Annual Review of Genomics and Human Genetics 2
(2001), pp. 343–372 {9}

[Ila01] Ilachinsky, A.: Cellular Automata. World Scientific Publishing, 2001
{36}

[IWL06] Ideker, T.; Winslow, L. R. ; Lauffenburger, A. D.: Bioengineering
and Systems Biology. In: Annals of Biomedical Engineering 34 (2006),
Nr. 2, pp. 257–264 {1, 9}

[Jen81] Jensen, K.: Coloured Petri Nets and the Invariant-Method. In: Theo-
retical Computer Science 14 (1981), Nr. 3, pp. 317–336 {2, 7, 19, 22,
26}

[Jen92] Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Vol 1, Basic Concepts. Berlin Heidelberg: Springer, 1992
{58}

[Jen95] Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Vol 2, Analysis Methods. Berlin Heidelberg: Springer, 1995
{91}

[Jen96] Jensen, K.: Condensed State Spaces for Symmetrical Coloured Petri
Nets. In: Formal Methods in System Design 9 (1996), Nr. 1-2, pp. 7–40
{91}

151

Bibliography

[JK09] Jensen, K.; Kristensen, L.M.: Coloured Petri Nets. Springer, 2009 {9,
19, 91}

[JKT+01] Janowski, S.; Kormeier, B.; Töpel, T.; Hippe, K.; Hofestädt, R.;
Willassen, N.; Friesen, R.; Rubert, S.; Borck, D.; Haugen, P. ;
Chen, M.: Modeling of Cell-to-Cell Communication Processes with Petri
Nets Using the Example of Quorum Sensing. In: In Silico Biology 10
(2001), pp. 0003 {12}

[JKW07] Jensen, K.; Kristensen, L. M. ; Wells, L. M.: Coloured Petri Nets
and CPN Tools for Modelling and Validation of Concurrent Systems. In:
International Journal on Software Tools for Technology Transfer 9 (2007),
Nr. 3/4, pp. 213–254 {8, 9, 21, 42}

[KB71] Konopka, R. J.; Benzer, S.: Clock Mutants of Drosophila melanogaster.
In: The Proceedings of the National Academy of Sciences USA 68 (1971),
Nr. 9, pp. 2112–2116 {11}

[KC04] Kristensen, L. M.; Christensen, S.: Implementing Coloured Petri
Nets Using a Functional Programming Language. In: Higher-Order and
Symbolic Computation 17 (2004), Nr. 3, pp. 207–243 {42, 43, 44, 45, 46,
51, 53, 56}

[Kit02] Kitano, H.: Systems Biology: A Brief Overview. In: Science 295 (2002),
Nr. 5560, pp. 1662–1664 {1, 9}

[KK09] Kleijn, J.; Koutny, M.: A Petri Net Model for Membrane Systems with
Dynamic Structure. In: Natural Computing 8 (2009), Nr. 4, pp. 781–796
{124, 127, 130, 131}

[KKR06] Kleijn, J.; Koutny, M. ; Rozenberg, G.: Towards a Petri Net Seman-
tics for Membrane Systems. In: Proc. of the 6th International Workshop
on Membrane Computing, Springer, 2006 (LNCS 3850), pp. 292–309 {124,
127, 128}

[KLPA06] Kordon, F.; Linard, A. ; Paviot-Adet, E.: Optimized Colored Nets
Unfolding. In: Proc. of the 26th IFIP WG 6.1 International Conference
on Formal Techniques for Networked and Distributed Systems, Springer,
2006 (LNCS 4229), pp. 339–355 {66, 68}

[KNP09] Kwiatkowska, M.; Norman, G. ; Parker, D.: PRISM: Probabilistic
Model Checking for Performance and Reliability Analysis. In: ACM SIG-
METRICS Performance Evaluation Review 36 (2009), Nr. 4, pp. 40–45
{83, 84}

152

Bibliography

[Kwi03] Kwiatkowska, M.: Model Checking for Probability and Time: from
Theory to Practice. In: Proc. of the 18th IEEE Symposium on Logic in
Computer Science, IEEE, 2003, pp. 351–360 {18}

[LH10a] Liu, F.; Heiner, M.: Colored Petri nets to model and simulate biological
systems. In: Proc. of International Workshop on Biological Processes and
Petri Nets, satellite event of Petri Nets 2010, 2010 {4, 16, 110}

[LH10b] Liu, F.; Heiner, M.: Computation of Enabled Transition Instances for
Colored Petri Nets. In: Proc. of the 17th German Workshop on Algorithms
and Tools for Petri Nets Volume 643, CEUR-WS.org, 2010, pp. 51–65 {16,
42, 122}

[LH11] Liu, F.; Heiner, M.: Manual for Colored Petri Nets in Snoopy / Bran-
denburg University of Technology Cottbus, Department of Computer
Science. 2011. – Technical Report. http://www-dssz.informatik.tu-
cottbus.de/software/snoopy/Manual_for_colored_Petri_nets_2011_07.pdf
{15, 41}

[LLZ11] Liang, J.; Luo, Y. ; Zhao, H.: Synthetic Biology: Putting Synthesis into
Biology. In: Systems Biology and Medicine 3 (2011), Nr. 1, pp. 7–20 {4}

[LNUM09] Li, C.; Nagasaki, M.; Ueno, K. ; Miyano, S.: Simulation-Based Model
Checking Approach to Cell Fate Specification During Caenorhabditis Ele-
gans Vulval Development by Hybrid Functional Petri Net with Extension.
In: BMC Systems Biology 3 (2009), pp. 42 {xv, 36, 94, 95, 96, 98, 99, 101,
103, 104, 108, 109}

[LSK09] Lamprecht, R.; Smith, G. D. ; Kemper, P.: Stochastic Petri Net Models
of Ca2+ Signaling Complexes and Their Analysis. In: Natural Computing
(2009), 6 {110, 114, 118, 119}

[Lun65] Lund, E. W.: Guldberg and Waage and the Law of Mass Action. In:
Journal of Chemical Education 42 (1965), Nr. 10, pp. 548 {32}

[LZLP06] Lee, D.; Zimmer, R.; Lee, S. ; Park, S.: Colored Petri Net Modeling and
Simulation of Signal Transduction Pathways. In: Metabolic Engineering 8
(2006), Nr. 2, pp. 112–122 {2}

[MBC+95] Marsan, M. A.; Balbo, G.; Conte, G.; Donatelli, S. ; Franceschi-

nis, G.: Modelling with Generalized Stochastic Petri Nets. John Wiley
and Sons, 1995 (Wiley Series in Parallel Computing) {79}

153

Bibliography

[MFV10] Martins, M. L.; Ferreira Jr., S. C. ; Vilela, M. J.: Multiscale Models
for Biological Systems. In: Current Opinion in Colloid & Interface Science
15 (2010), Nr. 1-2, pp. 18–23 {3, 10, 13, 36}

[Mäk01] Mäkelä, M.: Optimising Enabling Tests and Unfoldings of Algebraic
System Nets. In: Proc. of the 22nd International Conference on Applica-
tion and Theory of Petri Nets, 2001 (LNCS 2075), pp. 283–302 {49, 55,
56, 68}

[MKH+06] Müller, J.; Kuttler, C.; Hense, B. A.; Rothballer, M. ; Hart-

mann, A.: Cell-Cell Communication by Quorum Sensing and Dimension-
Reduction. In: Journal of Mathematical Biology 53 (2006), Nr. 4, pp.
672–702 {12}

[Mor01] Mortensen, K. H.: Efficient Data-Structures and Algorithms for a
Coloured Petri Nets Simulator. In: Proc. of the 3rd Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools, University of
Aarhus, 2001, pp. 57–74 {56}

[Mor06] Morgan, D. O.: The Cell Cycle: Principles of Control. New Science
Press, 2006 {13}

[MR95] Montanari, U.; Rossi, F.: Contextual Nets. In: Acta Informatica 32
(1995), Nr. 6, pp. 545–596 {22}

[MSFK09] Meier-Schellersheim, M.; Fraser, I. D. C. ; Klauschen, F.: Multi-
scale Modeling for Biologists. In: Systems Biology and Medicine 1 (2009),
pp. 4–14 {10}

[MSS05] Marwan, W.; Sujatha, A. ; Starostzik, C.: Reconstructing the Reg-
ulatory Network Controlling Commitment and Sporulation in Physarum
Polycephalum Based on Hierarchical Petri Net Modeling and Simulation.
In: Journal of Theoretical Biology 236 (2005), Nr. 4, pp. 349–365 {37, 75}

[MTS05] Mazzag, B.; Tignanelli, C. ; Smith, G. D.: The Effect of Residual Ca2+

on the Stochastic Gating on Ca2+-Regulated Ca2+ Channel Models. In:
Journal of Theoretical Biology 235 (2005), Nr. 1, pp. 121–150 {110}

[Mur89] Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Pro-
ceedings of the IEEE 77 (1989), Nr. 4, pp. 541–578 {6}

[MWW08] Marwan, W.; Wagler, A. ; Weismantel, R.: A Mathematical Ap-
proach to Solve the Network Reconstruction Problem. In: Mathematical
Methods of Operations Research 67 (2008), Nr. 1, pp. 117–132 {71, 73}

154

Bibliography

[MWW11] Marwan, W.; Wagler, A. ; Weismantel, R.: Petri Nets as a Frame-
work for the Reconstruction and Analysis of Signal Transduction Pathways
and Regulatory Networks. In: Natural Computing 10 (2011), Nr. 2, pp.
639–654 {2, 17, 89}

[NJT+05] Nelson, C. M.; Jean, R. P.; Tan, J. L.; Liu, W. F.; Sniadecki, N. J.;
Spector, A. A. ; Chen, C. S.: Emergent Patterns of Growth Con-
trolled by Multicellular Form and Mechanics. In: Proceedings of National
Academy of Sciences of the United States of America 102 (2005), Nr. 33,
pp. 11594–11599 {11}

[NMS05] Nguyen, V.; Mathias, R. ; Smith, G. D.: A Stochastic Automata Net-
work Descriptor for Markov Chain Models of Instantaneously Coupled
Intracellular Ca2+ Channels. In: Bulletin of Mathematical Biology 67
(2005), Nr. 3, pp. 393–432 {36, 110, 112}

[Pau99] Paun, G.: Computing with Membranes. An Introduction. In: Bulletin of
the EATCS 67 (1999), pp. 139–152 {36, 123, 125}

[Pau02] Paun, G.: Membrane Computing, An Introduction. Springer, 2002 {123,
124, 125, 126, 127}

[Pet62] Petri, C. A.: Kommunikation mit Automaten, Bonn: Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, PhD thesis, 1962 {4}

[Pet11] Petri Nets. Petri Nets World. http://www.informatik.uni-
hamburg.de/TGI/PetriNets. 2011 {42}

[PGA02] Peleg, M.; Gabashvili, I. S. ; Altman, R. B.: Qualitative Models of
Molecular Function: Linking Genetic Polymorphisms of tRNA to Their
Functional Sequelae. In: Proceedings of the IEEE 90 (2002), Nr. 12, pp.
1875–1886 {2, 11}

[PH09] Popel, A. S.; Hunter, P. J.: Systems Biology and Physiome Projects. In:
Wiley Interdisciplinary Reviews: Systems Biology and Medicine 1 (2009),
Nr. 2, pp. 153–158 {9, 10}

[Pnu81] Pnueli, A.: The Temporal Semantics of Concurrent Programs. In: The-
oretical Computer Science 13 (1981), Nr. 1, pp. 45–60 {19, 80, 81, 85}

[PO00] Palsson, E.; Othmer, H.: A Model for Individual and Collective Cell
Movement in Dictyostelium D iscoideum. In: Proceedings of National
Academy of Sciences of the United States of America 97 (2000), Nr. 19,
pp. 10448–10453 {11, 12}

155

Bibliography

[PRA05] Peleg, M.; Rubin, D. ; Altman, R. B.: Using Petri Net Tools to Study
Properties and Dynamics of Biological Systems. In: Journal of the Amer-
ican Medical Informatics Association 12 (2005), Nr. 2, pp. 181–199 {1,
28}

[PSQH06] Pogsona, M.; Smallwooda, R.; Qwarnstromb, E. ; Holcombe, M.:
Formal Agent-Based Modelling of Intracellular Chemical Interactions. In:
Biosystems 85 (2006), Nr. 1, pp. 37–45 {12}

[PUS11] Parsa, H.; Upadhyay, R. ; Sia, S. K.: Uncovering the Behaviors of In-
dividual Cells within a Multicellular Microvascular Community. In: Pro-
ceedings of National Academy of Sciences of the United States of America
108 (2011), Nr. 12, pp. 5133–5138 {11}

[QJY04] Qi, Z.; J. You, H. M.: P systems and Petri nets. In: Proc. of the 5th
International Workshop of Membrane Computing, Springer, 2004 (LNCS
2933), pp. 286–303 {124, 130, 131}

[RMH10] Rohr, C.; Marwan, W. ; Heiner, M.: Snoopy - a Unifying Petri Net
Framework to Investigate Biomolecular Networks. In: Bioinformatics 26
(2010), Nr. 7, pp. 974–975 {4, 23, 41}

[RML93] Reddy, V. N.; Mavrovouniotis, M. L. ; Liebman, M. N.: Petri Net
Representations in Metabolic Pathways. In: Proc. of the 1st International
Conference on Intelligent Systems for Molecular Biology, AAAI Press,
1993, pp. 328–336 {1}

[Run04] Runge, T.: Application of Coloured Petri Nets in Systems Biology. In:
Proc. of the 5th Workshop and Tutorial on Practical Use of Coloured Petri
Nets and the CPN Tools, University of Aarhus, 2004, pp. 77–95 {2}

[RWL+03] Ratzer, A. V.; Wells, L.; Lassen, H. M.; Laursen, M.; Qvortrup,
J. F.; Stissing, M. S.; Westergaard, M.; Christensen, S. ; Jensen,
K.: CPN Tools for Editing, Simulating, and Analysing Coloured Petri
Nets. In: Proc. of the 24th International Conference on Applications and
Theory of Petri Nets, Springer, 2003, pp. 450–462 {2, 79, 88}

[San00] Sanders, M. J.: Efficient Computation of Enabled Transition Bindings
in High-Level Petri Nets. In: Proc. of IEEE International Conference on
Systems, Man and Cybernetics, IEEE, 2000, pp. 3153–3158 {56}

[SF05] Sneyd, J.; Falcke, M.: Models of the Inositol Trisphosphate Receptor.
In: Progress in BioPhysics and Molecular Biology 89 (2005), Nr. 3, pp.
207–245 {109, 122}

156

Bibliography

[SH89] Sternberg, P. W.; Horvitz, H. R.: The Combined Action of Two In-
tercellular Signaling Pathways Specifies Three Cell Fates during Vulval
Induction in C. Elegans. In: Cell 58 (1989), Nr. 4, pp. 679–693 {95}

[SH09] Schwarick, M.; Heiner, M.: CSL Model Checking of Biochemical Net-
works with Interval Decision Diagrams. In: Proc. of the 7th International
Conference on Computational Methods in Systems Biology, Springer, 2009
(LNCS 5688), pp. 296–312 {84}

[SM08] Sandmann, W.; Maier, C.: On the Statistical Accuracy of Stochastic
Simulation Algorithms Implemented in Dizzy. In: Proc. of the 5th Inter-
national Workshop on Computational Systems Biology, 2008, pp. 153–157
{103}

[SMC+08] Spicher, A.; Michel, O.; Cieslak, M.; Giavitto, J. ; Prusinkiewicz,
P.: Stochastic P Systems and the Simulation of Biochemical Processes with
Dynamic Compartments. In: BioSystems 91 (2008), Nr. 3, pp. 458–472
{127, 134, 137}

[Smi02] Smith, G. D.: Modeling the Stochastic Gating of Ion Channels. In:
Computational Cell Biology 20 (2002), pp. 285–319 {111}

[SOM10] Streif, S.; Oesterhelt, D. ; Marwan, W.: A Predictive Computational
Model of the Kinetic Mechanism of Stimulus-Induced Transducer Methy-
lation and Feedback Regulation through CheY in Archaeal Phototaxis and
Chemotaxis. In: BMC Systems Biology 4 (2010), Nr. 27 {11}

[SRH11] Schwarick, M.; Rohr, C. ; Heiner, M.: MARCIE - Model Checking and
Reachability Analysis Done efficiently. In: Proc. of the 8th International
Conference on Quantitative Evaluation of SysTems, IEEE, 2011, pp. 91–
100 {82, 83, 119, 122}

[ST11] Schwarick, M.; Tovchigrechko, A.: IDD-based model validation of
biochemical networks. In: Theoretical Computer Science 412 (2011), Nr.
26, pp. 2884–2908 {111, 120}

[SW05] Snoep, J. L.; Westerhoff, H. V.: From Isolation to Integration, a
Systems Biology Approach for Building the Silicon Cell. In: Topics in
Current Genetics 13 (2005), pp. 13–30 {1}

[Ter06] Terrier, V.: Closure Properties of Cellular Automata. In: Theoretical
Computer Science 352 (2006), Nr. 1-3, pp. 97–107 {38}

157

Bibliography

[TMK+06] Täubner, C.; Mathiak, B.; Kupfer, A.; Fleischer, N. ; Eckstein,
S.: Modelling and Simulation of the TLR4 Pathway with Coloured Petri
Nets. In: Proc. of the 28th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, IEEE, 2006, pp. 2009–2012
{2}

[Tsa93] Tsang, E. P. K.: Foundations of Constraint Satisfaction. London and
San Diego: Academic Press, 1993 {61}

[Ull98] Ullman, J. D.: Elements of ML Programming. Prentice-Hall, 1998 {43}

[VHK03] Voss, K.; Heiner, M. ; Koch, I.: Steady State Analysis of Metabolic
Pathways Using Petri Nets. In: In Silico Biology 3 (2003), pp. 0031 {2}

[VKBL02] Vilar, J.; Kueh, H. Y.; Barkai, N. ; Leibler, S.: Mechanisms of Nois-
eresistance in Genetic Oscillators. In: Proceedings of National Academy of
Sciences of the United States of America 99 (2002), Nr. 9, pp. 5988–5992
{28}

[Wat09] van der Wath, R. C.: Computational Modelling of Hematopoietic Stem
Cell Division and Regulation Dynamics, University of Cambridge, PhD
thesis, 2009 {13}

[YBG04] Yoo, A.; Bais, C. ; Greenwald, I.: Crosstalk Between the EGFR and
LIN-12/Notch pathways in C. Elegans Vulval Development. In: Science
303 (2004), Nr. 5658, pp. 663–66 {95}

[YKNP06] Younes, H. L. S.; Kwiatkowska, M.; Norman, G. ; Parker, D.: Nu-
merical vs. Statistical Probabilistic Model Checking. In: International
Journal on Software Tools for Technology Transfer 8 (2006), Nr. 3, pp.
216–228 {84}

158

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Background
	Petri Nets
	Colored Petri Nets
	Systems Biology

	Contributions
	Organization of Thesis

	A Colored Petri Net Framework
	Overview
	Colored Petri Nets
	Multiset
	Definition
	Dynamic Behavior

	Colored Qualitative Petri Nets
	Extended Petri Nets
	Colored Qualitative Petri Nets

	Colored Stochastic Petri Nets
	Stochastic Petri Nets
	Deterministic and Stochastic Petri Nets
	Colored Stochastic Petri Nets

	Colored Continuous Petri Nets
	Continuous Petri Nets
	Colored Continuous Petri Nets

	Scenarios for Using Colored Petri Nets in Systems Biology
	Encoding Components of Systems as Colors
	Closing Remarks

	Some Implementation Aspects
	Computation of Enabled Transition Instances
	Patterns
	Binding Process
	Algorithms
	Optimization Techniques
	Related Work
	Conclusions

	Unfolding of Colored Petri Nets
	Equivalent Standard Petri Nets
	Unfolding Algorithm
	Algorithms for Computing Transition Instances
	Optimization Techniques
	Experimental Results
	Related Work
	Conclusions

	Folding of Petri Nets
	Colorizing T-invariants of Petri Nets
	Colorizing Master Petri Nets
	Colorizing Twin Nets
	Conclusions

	Closing Remarks

	Analysis Techniques
	Structural Analysis
	Model Checking
	Linear Temporal Logic
	Computation Temporal Logic
	Model Checking of QPNC

	Numerical Model Checking
	Continuous Stochastic Logic
	CSL Model Checking of SPNC

	Simulative Model Checking
	Probabilistic Linear Temporal Logic with Numerical Constraints
	PLTLc Model Checking of SPNC

	Analysis of QPNC Using CPN Tools
	CPN Tools
	Transformation from QPNC Models to CP-Net Models
	Analysis of QPNC Models with CPN Tools

	Discussions
	Comparison of Two Approaches: Folded versus Unfolded
	Partial Unfolding - Tackling Dynamic Color Sets

	Closing Remarks

	Case Studies
	Modeling C. Elegans Vulval Development
	C. Elegans Vulval Development
	Modeling
	Structural Analysis
	Determining the Fate of VPCs Using Simulative Model Checking
	Results and Discussions
	Conclusions

	Modeling Coupled Ca2+ Channels
	Ca2+-Regulated Ca2+ Channels
	Modeling
	Analysis and Validation
	Discussions
	Conclusions

	Modeling Membrane Systems
	Membrane Systems
	Modeling Using Petri Nets
	Modeling Using Colored Petri Nets
	An Example: the Viral Infection
	Conclusions

	Closing Remarks

	Conclusions and Outlook
	Conclusions
	Outlook

	Bibliography

