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1 Introduction

Non-perturbative QCD is dominated by the phenomena of color confinement and sponta-

neous chiral symmetry breaking (χSB). The non-perturbative nature of these phenomena

is caused by the non-triviality of the QCD vacuum. There is still intensive discussion about

the nature of the quantum fluctuations responsible for this non-triviality. The idea that

the QCD vacuum is dominated by center vortices [1–6], by quantized magnetic flux tubes,

is strongly supported by lattice simulations [7–12] and infrared models [13–19]. Via the

Stokes theorem vortices piercing Wilson loops modify the trace of these loops by center

elements. A non-vanishing density of center vortices causes an exponential decay of Wilson

loops proportional to the minimal area of the loops and a confinement potential getting

linear in the infrared. Vortex removal destroys confinement and restores chiral symme-

try [20, 21]. This observation encourages the conclusion that vortices are responsible for

χSB, but it does not yet explain how vortices may lead to this phenomenon.

According to the Banks-Casher relation [22], the density of near-zero modes of the

Dirac operator is proportional to the value of the chiral condensate, the order parameter

of χSB. The Atiyah-Singer index theorem [23–25] relates the difference in the numbers

of zero-modes of positive and negative chirality to the topological charge of gauge field

configurations. A well established theory of χSB relies on instantons [26–29], which are

localized in space-time and carry a topological charge of modulus one. A zero mode of

the Dirac operator arises, which is concentrated at the instanton core. The instanton

liquid model [30–32] provides a mechanism how overlapping would-be zero modes split into

low-lying nonzero modes which create a chiral condensate. But instantons are minima

of the action and therefore only of indirect importance in the ensemble of gauge field

configurations as far as they increase the number of local minima of the action and all

lumps of topological charge can finally be deformed via cooling or smoothing procedures to

instantons. Since smooth deformations of field configurations do not change the homotopy

class, these observations indicate that all types of contributions to the topological charge

may influence the density of near-zero modes via their interaction.
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Lattice simulations have shown that center vortices contribute to the topological charge

via writhing, vortex intersections [33–40] and their color structure [41–44]. Vortices lead

also to spontaneous χSB [45–56]. As Engelhardt and Reinhardt [33, 45] have indicated

in SU(2) gauge theory in addition to the location of the vortex surfaces, one needs their

orientation to determine contributions of vortices to the topological charge. This relates

to the common vortex identification method on the lattice, resulting in P-vortices [7],

thin connected surfaces consisting of plaquettes projected to center elements. Regions

of different orientations are separated by lines, attributed to the worldlines of magnetic

monopoles in maximal abelian gauge [57]. In a Monte-Carlo ensemble of field configuration

vortices are neither thin nor do they have a given orientation, they have a certain average

thickness and colors of the full gauge group. At present the determination of the color

structure of vortices is impossible. Therefore, the only possibility to study the influence

of the color structure of thick vortices on the topological charge density and low lying

eigenmodes of the Dirac operator is by studies of artificial gauge configurations. In recent

articles the importance of colorful vortices has been underlined [39, 44]. The contributions

of intersections with such colorful vortices has not been investigated yet and is at the focus

of this article.

We restrict our investigation to SU(2) lattice gauge theory. On periodic lattices plane

vortices have to appear in parallel or anti-parallel pairs. We arrange two such pairs appro-

priately to get intersections in four points, as discussed in ref. [52] where the intersections

of uni-color vortices, of vortices in a U(1)-subgroup are investigated. In this paper we mod-

ify such a configuration and follow the suggestion of ref. [39] and make one of the plane

vortices colorful, this means the links of this colorful vortex are distributed over the full

SU(2) gauge group. After a gauge transformation it gets obvious that a colorful vortex is

a vacuum to vacuum transition along a direction perpendicular to the vortex.

In section 2 we describe the gluon field configurations investigated in this article: two

perpendicular plain anti-parallel vortex pairs intersecting in four points, where one of the

vortices is colorful around one of the intersections. We investigate the influence of the

position of the colorful region on the topological charge Q in section 3. There we check

also the details of the topological charge density and give an interpretation of its behavior.

In section 4 we analyze the low lying modes of the overlap Dirac operator [58–61] in the

background of the considered vortex configurations. We study the influence of the distances

of the vortex pairs on the lowest eigenvalues of the overlap Dirac operator. We determine

the chiral densities of zero modes and near-zero modes and compare them with excited

modes. We find pronounced peaks and regions with oscillating chiral density and try to

find correlations of chiral and topological charge densities.

2 Uni-color and colorful SU(2) plane vortices

The configurations which we want to investigate in SU(2) lattice gauge theory are thick

plane vortices [37, 41] extending along two coordinate axes, thickness in a third coordinate

direction and formulated with non-trivial links in the forth direction. One of these vortices

will get a special color structure and will be smoothed in the forth direction. On periodic

– 2 –
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lattices due to their quantization with the non-trivial center element, plane vortices have to

occur in pairs. We use two different arrangements of vortex sheets, xy-vortices formulated

with t-links in a given t-slice t⊥ changing in z-direction and zt-vortices with non-trivial

y-links at the y-slice y⊥ varying in x-direction. For uni-color vortices the nontrivial links

are elements in a U(1) subgroup of SU(2), usually the σ3-subgroup with links of the form

Uµ(x) = exp{iα(x)σ3}. (2.1)

To such U(1)-vortices we can assign an orientation given by the gradient of the angle α.

We treat pairs of anti-parallel plane vortices where in a region of 2d given by the vortex

thickness the angle α increases in the first vortex linearly from 0 to π and decreases in

the next vortex linearly from π to 0. We define the profile function α(z) for a pair of

xy-vortices as

α(z) =



























































0 0 < z ≤ z1 − d,

π

2d
[z − (z1 − d)] z1 − d < z ≤ z1 + d,

π z1 + d < z ≤ z2 − d,

π

[

1−
z − (z2 − d)

2d

]

z2 − d < z ≤ z2 + d,

0 z2 + d < z ≤ Nz.

(2.2)

A diagram for such a profile function is shown in figure 1(a), see also ref [37]. An analog

profile we use for α(x) for a pair of anti-parallel zt-vortices centered around x1 and x2. The

two vortex pairs intersect in the y⊥, t⊥-plane at four points with the coordinates x1, x2 and

z1, z2. The intersection of such vortex pairs is displayed in figure 1(b).

There is a two-dimensional manifold of U(1)-subgroups of SU(2). These subgroups can

be characterized by a unit vector ~n in the SU(2) group element exp{iα~n~σ} defining a unit

sphere S2 in R
3. Mapping this S2 to a two-dimensional vortex plane leads to a colorful

vortex as introduced in ref. [39]. We map this S2 to the time-like links of a circular region

with radius R around x0, y0 of the xy-vortex at z1, t⊥ by

~n~σ = σ1 sin θ(ρ) cosφ(x, y) + σ2 sin θ(ρ) sinφ(x, y) + σ3 cos θ(ρ),

ρ =
√

(x− x0)2 + (y − y0)2,

θ(ρ) = π

(

1−
ρ

R

)

H(R− ρ) ∈ [0, π], φ = arctan2
y − y0
x− x0

∈ [0, 2π),

(2.3)

where H is the Heaviside step function. The color structure of such a vortex is displayed in

figure 1(c). As discussed in refs. [39, 44] colorful vortices defined by links in one time-slice

of the lattice do not contribute to ~Ea
~Ba and have vanishing gluonic topological charge.

The sum over the index a runs over the 3 directions σa of the SU(2) color algebra. The

vanishing of this contribution is a lattice artifact due to the singularity of the vortex in

time direction. By a gauge transformation rotating the non-trivial time-like links to unit

matrices it gets obvious that a colorful plane vortex defines a transition between vacua
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(a) (b) (c)

Figure 1. (a) The profile function α(z) of an anti-parallel xy vortex pair with t-links varying in

z-direction. The arrows indicate t-links rotating in z direction. The centers of the thick vortices

(dashed lines) are located at z1 and z2. In the shaded areas the links have positive, otherwise neg-

ative trace. (b) Three-dimensional detail of two pairs of intersecting vortices in 4D. The horizontal

planes represent xy-vortices and the vertical lines a t-slice of zt-vortices. The two pairs intersect

in four points of a yt-plane. (c) Diagram of a colorful xy-vortex. The color direction ~n of t-links is

displayed in the xy-plane for R = 1 and x0 = y0 = 0 by maps to RGB-colors, ±î 7→ green, ±ĵ 7→

red and ±k̂ 7→ blue.

of different winding number. After this gauge transformation it is possible to smooth the

vortex in time direction without creating a singularity of the gauge field [39, 44]. Increasing

the smoothing region ∆t of the colorful vortex described in eq. (2.3) the gluonic topological

charge approaches Q = −1, as will be also described in section 3.

After defining uni-color and colorful vortices we are ready to compare the topological

charge contributions of colorful intersections with those of uni-color intersections.

3 Topological charges and their densities

According to the definition

Q = −
1

32π2

∫

d4x ǫµνρσ tr[FµνFρσ] =
1

4π2

∫

d4x ~Ea · ~Ba (3.1)

only regions with common presence of electric and magnetic fields of same spatial direc-

tions and colors a contribute to the topological charge Q. The configurations introduced

in section 2, two perpendicular plain anti-parallel vortex pairs, contribute at vortex in-

tersections and in colorful regions. We intersect an anti-parallel xy- with an anti-parallel

zt-vortex pair, as shown in figure 1(b). For uni-color vortices each intersection point gives

rise to a lump of topological charge Q = ±1/2 [62]. For anti-parallel vortex pairs two of

the intersection points carry topological charge Q = +1/2 while the other two intersection

points have Q = −1/2 [37]. They sum up to total topological charge Q = 0.

It is interesting to investigate the modification of these contributions when one of the

uni-color vortices is substituted by a colorful vortex, with the colorful region centered at

one of the intersection points. The continuum action S for a colorful region with radius R

– 4 –
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Figure 2. (a) The total topological charge of the vortex configurations corresponding to figure 3(a)

and 3(b). In the left (right) diagram the colorful region in the xy-plane is centered at x0 = x1 (x0 =

x2) and y0 = y⊥. Increasing the radius R of the colorful region and increasing the lattice size the

total topological charge converges to Q = −2 for the configuration of figure 3(a) and to Q = 0 for

figure 3(b).

and smoothing region ∆t is calculated as [39]

S(∆t)

SInst
=

0.51∆t

R
+

1.37R

∆t
(3.2)

where the instanton action SInst = 8π2/g2. Its minimum value is reached around R = ∆t

with 1.68 SInst.

The total topological charge of the configuration with the colorful region around (x1, z1)

is shown in figure 2(a) and with the colorful region around (x2, z1) in figure 2(b) for ∆t = R

for various values of R and increasing lattice sizes. The values of the topological charge

approach the values Q =-2 and 0. To explain these asymptotic values we display in figure 3

schematic diagrams for the intersection planes of these configurations. These diagrams

show that by the insertion of the colorful regions the topological charge contributions

at the intersection points change sign leading to sums of their four contributions of ∓1.

Such a sign change corresponds to the change of orientation of the corresponding uni-color

vortex within a circle of radius R, by the insertion of a circular monopole line around the

intersection point. But in the case of a colorful vortex it is a monopole line which changes

its color along the circle in a non-trivial way, such that this line contributes itself with a

value of -1 to the total topological charge Q = ∓1−1 of the two investigated configurations.

To check the details of the contribution to the topological charge we show in figures 4(a)

and 4(b) characteristic charge densities of an anti-parallel xy-vortex pair at (z1 = 6, z2 =

13) with an anti-parallel zt-pair at (x1 = 6, x2 = 13) at t⊥ = y⊥ = 6 with thickness d = 3

and ∆t = R = 4 on a 164-lattice. In both diagrams, the center of the colorful region with

radius R = 4 in the xy plane is located at x0 = x1 = 6, y0 = y⊥ = 6. In figure 4(a)

the topological charge density of the vortex configuration is plotted in the intersection

plane, the xz-plane with y = y⊥, t = t⊥, where we can identify the positive and negative

contributions indicated in figure 3(a). In figure 4(b) we show the perpendicular yt-plane at

– 5 –
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(a) (b)

Figure 3. The geometry, field strength and the contribution to the topological charge of the

intersection regions in the intersection plane of two anti-parallel vortex pairs. In diagram (a)

the red line at the intersection point (x1, z1) indicates that the uni-color vortex is in this region

substituted by a colorful region. In the right diagram (b) the region around (x2, z1) is substituted.

the colorful intersection with the coordinates x1 = z1 = 6. The broad shallower structure

of the colorful vortex extends in y-direction with radius R and in t-direction with ±∆t/2

around t⊥. There is a further contribution to the topological charge density from the

intersection region of the xy-vortex with the zt-vortex. It is narrow in y since the zt-vortex

is constructed from non-trivial y-links in one y-slice at y⊥ only.

When the colorful region is shifted from x1 to x2 as schematically depicted in figure 3(b)

the total topological charge gets Q = 0. Since the orientation of the xy-vortex is now

flipped at the intersection point (x2, z1), the contribution of this intersection changes sign,

−1

2
→ +1

2
, as indicated in figure 3(b). Since the colorful region contributes again with −1

this results in the total topological charge Q = 0. It is not difficult to imagine the analog

of figure 4(a) after this shift of the colorful region. Therefore, it is not shown by a diagram.

But it may be instructive to see the analog of figure 4(b). It is displayed in figure 4(c).

The shallower negative contribution reflects the contribution of the colorful vortex and the

ridge in t-direction originates in the contribution of the vortex intersection which in this

case is positive.

Eqs. (2.2) and (2.3) can also be used to insert a colorful region with topological charge

contribution of +1 instead of −1 which was discussed above. From eq. (2.2) we can read

that the gradient of α has opposite z-direction at z1 and z2. Thus, a shift of the center

coordinate z0 from z1 to z2 flips the sign of this gradient, but it leaves the xy-structure (2.3)

untouched and leads therefore to a sign change of the topological charge of the colorful

region. Combined with the contributions of the intersections, one of them modified by a

surrounding colorful region, we get total topological charges Q = 0 for (x0 = x1, z0 = z2)

and Q = 2 for (x0 = x2, z0 = z2). By symmetry considerations we can easily imply

the consequences on the topological charge densities and also on eigenvalues of the Dirac

operator and chiral densities which are discussed in the next section.

– 6 –
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Figure 4. The topological charge density in two characteristic planes for two intersecting anti-

parallel xy- and zt-vortex pairs with (z1 = 6, z2 = 13) and (x1 = 6, x2 = 13) at t⊥ = y⊥ = 6

with thickness d = 3 and ∆t = R = 4 on a 164-lattice is displayed in the diagrams (a) and (b)

for the situation of figure 3(a), where the center of the colorful region of the xy-vortex surrounds

the intersection at lower x and lower z, x0 = x1 and z0 = z1. Diagram (a) shows the topological

charge density in the intersection plane y⊥ = t⊥ = 6 with the four intersection regions. The area

around the intersection point x1 = z1 = 6 is influenced by the surrounding color structure shown in

the perpendicular yt-plane in diagram (b) as a broad, shallow depression. The intersection region

at x1 = z1 = 6 forms a narrow, deep structure since the zt-vortex is defined by y-links in one

y-slice only. For the situation of figure 3(b) the two contributions at the intersection point x0 = x2
and z0 = z1, a broad structure from the colorful region and a narrow one from the intersection,

can be better distinguished in diagram (c), due the difference in their signs. Diagram (c) displays

the topological charge density in the yt-plane at the intersection point (x2, z1) for the situation of

figure 3(b), where now this other intersection is surrounded by the colorful region.

4 Dirac eigenmodes and chiral densities

In the previous section, we defined two colorful configurations which are combinations of

two anti-parallel plane vortex pairs. Now, we investigate the effect of these configurations

on fermions ψ by determining the low-lying eigenvectors and eigenvalues |λ| ∈ [0, 2/a] of

the overlap Dirac operator [58–61]

Dov =
1

a

[

1 + γ5
H

|H|

]

with H = γ5A, A = aDW −m, (4.1)

where m describes one species of single massless Dirac fermions and has to be in the range

(0, 2) and the massless Wilson Dirac operator DW [63, 64] on a lattice with lattice constant

a reads

DW(x, y) =
4

a
δx,y −

1

2a

±4
∑

µ=∓1

(1− γµ) Uµ(x) δx+µ̂,y with γ−µ = −γµ, U−µ(x) = U †
µ(x− µ̂).

(4.2)

The coordinates and the results for eigenvalues and densities we give in units of the lattice

constant a, i.e we put further on a = 1. The vectors µ̂ connect nearest neighbors x and y

in xµ-direction. Uµ(x) ∈ SU(2) are the parallel transporters from x to x + µ̂. The mass

parameter m is chosen with m = +1.5. The eigenvalues of the overlap Dirac operator as

– 7 –
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Figure 5. (a) The lowest overlap eigenvalues for the vortex configurations schematically displayed

in figure 3 with Q = −2 (figure 3(a)) and Q = 0 (figure 3(b)). These values are compared with

those of the free Dirac operator on a 164 lattice. (b) The influence of the distance between the

vortex sheets is investigated for the Q = −2 configuration. Increasing this distance the interaction

decreases and the lowest lying non-zero modes move from the lowest Matsubara frequency towards

zero.

a Ginsparg-Wilson operator are restricted to a circle in the complex plane. The absolute

value |λ| of the two complex conjugate eigenvalues of Dov is simply written as λ.

According to the Atiyah–Singer index theorem [23] a configuration with non-vanishing

topological charge has to be related to zero modes of the Dirac operator. If lumps with

topological charge are parts of a larger configuration they could localize the fermionic

modes, interact and contribute to a finite density of near-zero modes. According to the

Banks-Casher relation [22] a finite density of near-zero modes leads to non-zero chiral

condensate and spontaneous χSB.

As mentioned above, the topological charge of two intersecting anti-parallel vortex pairs

where one of the vortices is colorful, negatively charged, leads to a total topological charge

Q = −2 or Q = 0 depending on the location of the colorful region. In figure 5 we study the

lowest eigenvalues of the overlap Dirac operator in the background of these configurations

and compare them with those of the free overlap Dirac operator. For the fermions we use

anti-periodic boundary conditions in temporal direction and periodic boundary conditions

in spatial directions on a 164-lattice. In diagram (a) the parameters of the configurations

are the same as those in the previous section, in diagram (b) these data are compared with

analogous vortex configurations where the distances between the vortices in each pair are

reduced from 7 to 3 and the vortex thickness parameters d of eq. (2.2) are correspondingly

decreased from 3 to 1.5. The topological charge of these configurations agrees with the

analytical index, indD[A] = n− − n+ = Q [23–25]. For a single configuration, one never

finds zero modes of both chiralities and at least one of the numbers n− or n+ vanishes.

As shown in figure 5(a), we find two zero modes of positive chirality for the Q = −2

configuration and no zero-mode for Q = 0. Note, for better comparison we indicated the

two zero-modes with mode numbers #(−1) and #0. By the influence of the vortices the

eigenvalues occupy the space between the Matsubara frequencies, visible in the spectrum of

– 8 –
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(a) (b) (c)

Figure 6. The chiral densities χn(x) of the first three modes of the Q = −2 configuration in the

x-z-planes through the points with the maximal (absolute) values of the chiral density. The plot

titles indicate the plane positions, the chirality (chi=0,±1), the numbers n = # of plotted modes

and the maximal (minimal) density in the plotted area, “max=. . .” (“min=. . .”). “n = −1” means

we plot the density χ−1(x) for the mode with number #(−1). Note, to ease the comparison of the

various modes in figure 5 we use the mode numbers #(−1) and #0 for the two zero-modes and

start counting positive mode numbers for non-zero modes.

the trivial configuration. For both non-trivial configurations four of the modes move from

the first Matsubara frequency down towards zero eigenvalues. Some of them let expect to

contribute in the infinite volume limit to the density of near-zero modes. In figure 5(b) we

compare the lowest eigenvalues of configurations with decreased distances, as mentioned

above, with those of the original, larger distances. With increasing distance between the

lumps of topological charge we expect decreasing interaction and observe that the four

lowest non-zero modes shift down from the first Matsubara frequency towards zero for

both topological charges.

The two gauge field configurations with Q = −2 and Q = 0 give the nice opportunity

to study the properties of zero modes and near-zero modes and to compare them with

excited modes. For the first one, Q = −2, we compare in figure 6 the chiral densities of the

first three modes in the x-z-planes through the points with the maximal values of the chiral

density. The first two modes, #(−1) and #0, are zero-modes with positive chirality. The

corresponding diagrams, figures 6(a) and b show clear maxima, located in the intersection

plane close to the center of the colorful region with topological charge Q = −1, slightly

shifted against each other by ∆xµ = (2, 1, 0, 1) lattice units. The maximum of the first

mode is more pronounced than that of the second mode. The same clear peak structure

we can find also in all other cross-section through the maxima. This means the peaks

are nearly spherical in four dimensions. Due to the missing space we do not show the

corresponding cross-sections. The next modes are non-zero modes, see figure 5(a). The

third mode, depicted in figure 6(c) looks completely different. Oscillations extend through

the whole intersection plane, but they have large amplitudes only in a region of a few lattice

constant in the perpendicular y- and t-directions. The corresponding densities are again

not shown. Comparing figure 6(c) with figure 4(a) we see that the maxima and minima of

χ1(x) reflect the position of the topological charge density. The lumps of topological charge

at the intersection points of the vortex pairs seem to contribute jointly to the shape of this

– 9 –
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Figure 7. Maximal and minimal values of the chiral densities of the 20 lowest modes for the above

described configuration with Q = −2 (left) and Q = 0 (right).

mode. Lumps with positive topological charge density are correlated with the components

with negative chiral density and vice versa. The chiral densities of the next modes we can

only discuss in words. χ2(x) behaves similar to χ1(x), χ3(x) and χ4(x) have again positive

peaks similar to χ−1(x) and χ0(x) but only around 1/3 of their height. This indicates that

the maxima and minima of the topological density keep their influence on some of the next

modes. In this respect it may be interesting to compare the values of maxima and minima

of the chiral densities of the lowest modes.

Figure 7(a) depicts the values of maxima and minima of the chiral densities for the 20

lowest modes for Q = −2 configuration. Large maxima of the density indicate localized

peaks influenced by the colorful vortex region centered at xµ = (6, 6, 6, 6). Besides the two

zero-modes such maxima can be found for the mode numbers #3,#4,#11,#12 and #13.

Inspections of these modes shows nice peaks with a height given in figure 6 and a shallow

negative see compensating the peak in order to reach the integrated chiral density χ = 0.

In regions far away from the peaks there appears a wavy character due to the neighborhood

of these modes to the corresponding Matsubara frequency. For points in figure 7(a) with

nearly equal sizes of maxima and minima we can imply a wavy character due to the four

vortex intersections and the increasing momenta of higher Matsubara frequencies.

Figure 7(b) depicts maximal and minimal values of the chiral densities of the 20 lowest

modes for the Q = 0 configuration. The modes #1,#5,#13 are striking for their large

maxima and point to their peaky structure at the position of the colorful vortex around

xµ = (13, 6, 6, 6) similar to figures 6(a) and b, but with lower height. These three modes

are interestingly some type of band-heads in the eigenvalue spectrum of figure 5(a). The

other modes have wavy character, e.g. mode #2 behaves similar to mode #1 of the Q = −2

configuration displayed in figure 6(c).
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5 Conclusion

In four dimensions vortices are two-dimensional surfaces with some thickness. On a periodic

lattice plain vortices can only be defined in parallel or anti-parallel pairs. In the past mainly

uni-color vortices were investigated. Intersections of plain uni-color vortices contribute to

the topological charge with ±1/2. The four intersections of two vortex pairs result therefore

in topological charges of Q = 0, ±1 or ±2. In this article we considered pairs of anti-

parallel vortices yielding Q = 0. It was shown recently that vortices can also have a color

structure with non-vanishing topological charge. To get more insight into the effect of such

color structures on vortices we investigated the influence of a circular colorful region with

topological charge Q = −1 around one of the four intersection points of two intersecting

anti-parallel vortex pairs. We studied the consequences of this insertion on topological

charge density, zero-modes and near-zero modes. To uni-color vortices one can attribute

an orientation. In this picture of unicolor vortices the above colorful region introduces a

monopole line on its vortex surface, a line surrounding the intersection point and changes

the surface orientation inside this circular region. This leads to a sign change of the

topological charge contribution at the intersection. The contributions of the intersections

aggregate thus to Q = ±1. The monopole line itself has a non-trivial topology and leads to

further contribution to the topological charge, in the considered cases with a contribution

of −1. For our configurations we can therefore distinguish the two cases Q = 0 and Q = −2.

In both configurations we have identified the regions with non-vanishing contributions to

the topological charge density.

Further, we have analyzed the low-lying modes of the Dirac operator. The number of

zero-modes agrees with the expectations from the Atiyah-Singer index theorem. In both

configurations we found four low lying modes which are shifted from the first Matsubara

frequency down towards zero eigenvalues. We increased the distance between the lumps of

topological charge in the expectation of decreasing interaction and observe a decrease of

the eigenvalues of these four modes.

We found that the lumps of topological charge influence strongly the spatial distribu-

tion of the low-lying modes of the Dirac operator. The colorful region with topological

charge Q = −1 leads in some of the lowest modes to distinct positive peaks of the chiral

density. The other modes reflect the positions of the intersections and their contributions to

the topological charge density. It turned out that a good indication for the chiral properties

of the eigenmodes is the relation between maxima and minima of the chiral densities.
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