Colorimetric Cyanide Detection Using an Azobenzene Acid in Aqueous Solutions Xiaoding Lou, Jingui Qin and Zhen Li* Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China. Fax: +86-27-6875-6757; Phone: +86-27-6225-4108; E-mail: lizhen@whu.edu.cn. **Equation S1**: the reaction between Cu²⁺ and CN⁻ $$2Cu^{2+} + 4CN^{-} = 2CuCN + (CN)_{2}$$ (CuCN is white precipitant). **Equation S2**: the reaction between CuCN and CN⁻ CuCN + (x-1)CN⁻ = $$[Cu(CN)_x]^{1-x}$$, (x = 2, 3, or 4) The stability constants (K), $[Cu(CN)_2]^-$: $K = 1.00 \times 10^{24}$; $[Cu(CN)_4]^{3-}$: $K = 2.00 \times 10^{30}$. **Figure S1.** UV-vis spectra of compound **I** with increasing amounts of Cu^{2+} in water at pH 6.7. The concentration of **I** was 3.0×10^{-5} mol/L. **Figure S2.** UV-vis spectra of compound **I** with increasing amounts of Cu^{2+} in water at pH 6.7. The concentration of **I** was 1.5×10^{-5} mol/L. **Figure S3.** UV-vis spectra of the solution of compound **I** $(3.0 \times 10^{-5} \text{ mol/L})$ and Cu^{2+} $(3.0 \times 10^{-5} \text{ mol/L})$ with increasing amounts of CN⁻ in water at pH 6.7. **Figure S4.** UV-vis spectra of the solution of compound **I** $(1.5 \times 10^{-5} \text{ mol/L})$ and $\text{Cu}^{2+} (7.0 \times 10^{-6} \text{ mol/L})$ with increasing amounts of CN⁻ in water at pH 6.7. **Figure S5.** UV-vis spectra of complex **I** (A) at the presence of different cations mixture $(1.0 \times 10^{-5} \text{ mol/L})$ in water at pH 7.4 (20 mM HEPES, 135 mM NaCl). The concentration of compound **I** was 6.0×10^{-5} mol/L, and that of Cu²⁺ was 1.0×10^{-5} mol/L. **Figure S6.** UV-vis spectra of complex **I** (A) at the presence of different cations mixture $(1.0 \times 10^{-5} \text{ mol/L})$ in water at pH 7.4 (20 mM HEPES, 135 mM NaCl). The concentration of compound **I** was $6.0 \times 10^{-5} \text{ mol/L}$ (Cu²⁺: $1.0 \times 10^{-5} \text{ mol/L}$; CN⁻: $6.0 \times 10^{-5} \text{ mol/L}$). **Figure S7.** Different solutions of compound **I** and copper ions $(1.0 \times 10^{-4} \text{ and } 5.0 \times 10^{-5} \text{ mol/L}$, respectively) in water at pH 7.4 (20 mM HEPES, 135 mM NaCl) in the presence of different concentrations of CN⁻. From left to right (×10⁻⁵ mol/L): no copper ions and no cyanide, 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 and 9.0. **Figure S8.** From left to right: compound **I** $(1.0\times10^{-4} \text{ mol/L})$, compound **I** $(1.0\times10^{-4} \text{ mol/L})$ + $Cu^{2+}(5.0\times10^{-5} \text{ mol/L})$, compound **I** $(1.0\times10^{-4} \text{ mol/L})$ + $Cu^{2+}(5.0\times10^{-5} \text{ mol/L})$ + $CN^{-}(6.0\times10^{-5} \text{ mol/L})$ at pH 7.4 (20 mM HEPES, 135 mM NaCl). **Figure S9.** Different solutions of compound **I** and copper ions in water at pH 7.4[20 mM HEPES, 135 mM NaCl] $(1.0\times10^{-4} \text{ and } 5.0\times10^{-5} \text{ mol/L}, \text{ respectively})$ in the presence of anion $(6.0\times10^{-5} \text{ mol/L})$. From left to right: no copper ions and no anion; no anion, CN⁻, SCN⁻, F⁻, ClO₄⁻, HSO₄⁻, Br⁻, H₂PO₄⁻, NO₂⁻, SO₄²⁻, I⁻, Cl⁻, IO₃⁻, the mixture.