
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Coloring Algorithms on Subcubic Graphs∗

SAN SKULRATTANAKULCHAI

and

HAROLD N. GABOW

Department of Computer Science, University of Colorado at Boulder,

Boulder CO 80309-0430 USA

{skulratt,hal}@cs.colorado.edu

ABSTRACT

We present efficient algorithms for three coloring problems on subcubic graphs. (A
subcubic graph has maximum degree at most three.) The first algorithm is for 4-edge
coloring, or more generally, 4-list-edge coloring. Our algorithm runs in linear time, and
appears to be simpler than previous ones. The second algorithm is the first randomized

EREW PRAM algorithm for the same problem. It uses O(n/ log n) processors and runs
in O(log n) time with high probability, where n is the number of vertices of the graph.

The third algorithm is the first linear-time algorithm to 5-total-color subcubic graphs.
The fourth algorithm generalizes this to get the first linear-time algorithm to 5-list-total-
color subcubic graphs. Our sequential algorithms are based on a method of ordering the
vertices and edges by traversing a spanning tree of a graph in a bottom-up fashion. Our
parallel algorithm is based on a simple decomposition principle for subcubic graphs.

Keywords: List Edge Coloring, Total Coloring, List Total Coloring, Subcubic Graphs

1. Introduction

We present efficient algorithms for three coloring problems on subcubic graphs.

(A subcubic graph has maximum degree at most three.) The problems we attack

are by now well-studied generalizations of standard vertex and edge coloring [19].

The first algorithm is for 4-edge coloring, or more generally, 4-list-edge coloring.

Our algorithm runs in linear time, and appears to be simpler than previous ones.

The second algorithm is the first randomized EREW PRAM algorithm for the same

problem. It uses O(n/ log n) processors and runs in O(log n) time with high prob-

ability, where n is the number of vertices of the graph. The third algorithm is

the first linear-time algorithm to 5-total-color subcubic graphs. The fourth algo-

rithm generalizes this to the first linear-time algorithm to 5-list-total-color subcubic

graphs. Our sequential algorithms are based on a method of ordering the vertices

and edges by traversing a spanning tree of a graph in a bottom-up fashion. Our

parallel algorithm is based on a simple decomposition principle for subcubic graphs.

We now discuss these problems and previous work in detail.
∗A preliminary version of this paper appeared in Proceedings of the 8th Annual International

Computing & Combinatorics Conference.

1

1.1. Background

All graphs treated in this paper can have parallel edges. We use the term simple

graphs to denote the ones without parallel edges. A graph is cubic if every vertex

has degree three. A graph is subcubic if none of its vertices has degree more than

three [22]. Subcubic graphs are also called at most cubic in the literature [16].

We prefer the former term since it reminds us of the fact that a subcubic graph

is always an induced subgraph of some cubic graph. (And furthermore, a simple

subcubic graph is an induced subgraph of some simple cubic graph.) Subcubic

graphs are interesting and important theoretically and in practice [16, 8, 3] for

several reasons. First, graphs of maximum degree three are often the borderline

cases between the hard and easy problems. Most NP-hard problems and some

APX-hard problems do not become easier even when restricted to such graphs [15,

16, 1, 24, 25], but become polynomial-time solvable for graphs of smaller maximum

degree [15, 16]. Second, several graph problems admit linear-time transformations

from a general graph to a cubic or subcubic graph such that a solution to the

transformed graph yields a solution to the general graph. Examples are the famous

Four Color Problem [34] and the Maximum Matching Problem [2]. Third, some

real-world applications are problems on subcubic graphs [3, 8]. There are a number

of reasons why subcubic graphs are good models for these real-world problems, but

in the area of computational geometry it is often due to the fact that the dual of a

plane triangulation is cubic.

Reference [38] introduces a method for decomposing subcubic graphs that seems

to be well-suited for solving the edge coloring problem. We show in a preliminary

version of this paper [13] that the method is also useful for designing both sequential

and parallel algorithms for the list-edge and list-total coloring problems. In this

paper we introduce a method of ordering the vertices and edges by traversing a

spanning tree in a bottom-up fashion. This method, called the B-ordering method,

conceptually simplifies our sequential algorithms previously presented in [13]. It is

also used in [37] to obtain linear-time algorithms for acyclic coloring problems.

1.2. Graph Coloring

We follow the terminology of [5]. Let G = (V,E) be a loopless (multi)graph

having n vertices and m edges. A total coloring is a map ϕ : V ∪E → N satisfying

(i) no adjacent vertices or edges have the same image, and (ii) the image of each

vertex is distinct from the images of edges incident with it. To k-total-color G is

to find a total coloring whose image is included in [k] = {1, 2, . . . , k}. The graph

is k-total-colorable when such a map exists. The total chromatic number χ′′ is the

least k for which G is k-total-colorable.

Let X stand for either V , E, or V ∪ E; and let λ : X → 2N be an assignment

of lists of colors to elements of X. A λ-coloring on X is a map ϕ : X → N such

that ϕ(x) ∈ λ(x) for all x ∈ X, and ϕ(x1) = ϕ(x2) implies x1 is neither adjacent

nor incident to x2. A λ-vertex-coloring is a λ-coloring on V . A λ-edge-coloring is a

λ-coloring on E. A λ-total-coloring is a λ-coloring on V ∪ E.

2

A graph is k-choosable if there exists a λ-vertex-coloring for any λ satisfying

|λ(v)| = k for all v ∈ V . The notions of k-edge-choosability and k-total-choosability

are defined similarly. The choice number (or list chromatic number) χ` is the least k

for which G is k-choosable. The list chromatic index χ′

` is the least k for which G

is k-edge-choosable. The total choosability χ′′

` is the least k for which G is k-total-

choosable.

1.3. List Edge Coloring

By Vizing’s Theorem [42] the chromatic index χ′ of any simple graph with

maximum degree ∆ is either ∆ or ∆+1. A simple graph can be edge-colored using

∆ + 1 colors in O(m
√

n log n) time [12]. However, Holyer [18] shows that deciding

whether the chromatic index of a given simple cubic graph equals 3 or 4 is NP-

complete [15]. Reference [38] gives an algorithm to 4-edge-color any (not necessarily

simple) subcubic graph in O(n) time.

The List Edge Coloring Conjecture (LECC) states that the list chromatic

index χ′

` of a graph equals its chromatic index χ′ (see [4, 9]). Graphs that are

known to satisfy the LECC are the bipartite graphs [14], certain families of 1-

factorable graphs [10], line-perfect graphs [31], multicircuits [44], simple series-

parallel graphs [23], and simple outerplanar graphs [23]. Clearly χ′

` ≥ χ′. By

Vizing’s Theorem [42], a simple graph would satisfy χ′

` ≤ ∆ + 1 if the LECC were

true. Even this upper bound has not been established for all simple graphs.

The authors of reference [22] show subcubic graphs satisfy this upper bound, i.e.,

they are 4-edge-choosable. They study subcubic graphs with halfedges, i.e., edges

with only one endpoint. They obtain their result through case-by-case analysis of

4-edge-coloring of paths, cycles with halfedges, and some special types of graphs;

reduction of the input graph to a specific form; and coloring procedures that avoid

known obstructions. Even though the algorithm derived from their proof has linear

time bound, it appears to be too complicated for practical use.

Independently, Vizing [43] and Erdős et al. [11], prove the following list version

of Brooks’ theorem [7]: the choice number of any connected simple graph that is

neither complete nor an odd cycle does not exceed its maximum degree. Refer-

ence [39] gives an O(m + n)-time algorithm to ∆-list-vertex-color any graph that

satisfies the hypotheses of the above theorem. Suppose G is subcubic. By reduc-

ing the problem of list-edge-coloring G to that of list-vertex-coloring its line graph

and using the above theorem we see that G is 4-edge-choosable. Thus G can be

4-list-edge-colored in O(n) time by executing the algorithm of [39] on its line graph.

We will present a direct, simple, O(n)-time sequential algorithm, and the first

randomized O(n)-work, O(log n)-time with high probability, EREW PRAM algo-

rithm to 4-list-edge-color subcubic graphs.

1.4. Total Coloring

The Total Coloring Conjecture (TCC) states that the total chromatic num-

ber χ′′ of a simple graph is at most ∆ + 2. Clearly χ′′ ≥ ∆ + 1. However, deciding

3

whether or not a given simple cubic, bipartite graph satisfies χ′′ = ∆ + 1 is NP-

complete [36, 35]. In fact, the problem of determining the total chromatic number

of a k-regular bipartite graph is NP-hard, for each fixed k ≥ 3 [30]. The TCC has

been shown to hold for some families of graphs [45]. Rosenfeld [33] shows it holds

for subcubic graphs. Vijayaditya [41] shows it holds for simple subcubic graphs.

The proof of [33] yields a super-linear time algorithm because it has to find a short-

est cycle in each recursive step. The algorithm in [41] requires a routine to find a

perfect matching in a bridgeless, cubic graph. The current best known algorithm [3]

to find such a matching runs in O(n log4 n) time.

We will present the first O(n)-time algorithm to 5-total-color subcubic graphs.

Our algorithm has nothing in common with [33] or [41]. Moreover, it works on any

graphs, not necessarily simple ones.

1.5. List Total Coloring

The List Total Coloring Conjecture (LTCC) states that the total choosabil-

ity χ′′

` of any graph equals its total chromatic number χ′′ [21, 6]. Clearly χ′′

` ≥ χ′′.

The LTCC is wide open. Graphs that are known to satisfy the LTCC are the out-

erplanar graphs [20] and the multicircuits [26, 27]. A simple graph would satisfy

χ′′

` ≤ ∆ + 2 if the TCC and the LTCC were both true. This upper bound has not

been established for all simple graphs.

The authors of reference [21] show subcubic graphs satisfy this upper bound,

i.e., they are 5-total-choosable. They claim their proof gives a polynomial-time

algorithm, without specifying the degree of the polynomial. Their algorithm has

super-linear running time because it has to find a shortest cycle in each recursive

step.

We will present the first O(n)-time algorithm to 5-list-total-color subcubic graphs.

It does not use the result of [21]. Our 5-total coloring algorithm is in fact a special

case of our 5-list-total coloring algorithm. We present it separately and before the

list version because it is simpler.

1.6. Organization

This paper is organized as follows. The rest of this section gives notations and

defines terms to be used in later sections. Section 2 presents our high level principles:

the B-ordering method, the subcubic graph decomposition theorem, and some list

vertex and list edge coloring lemmas of cycles. The results therein are used in

Sections 3 & 4. Section 3 concerns the list edge coloring algorithms. Section 4

concerns the total and list total coloring algorithms. Section 5 concludes our paper.

Definitions. A triple bond is a graph consisting of two vertices and three

parallel edges. A cycle is a connected graph every vertex of which has degree two.

It is even if it has an even number of vertices, and odd otherwise. Note that a cycle

can have length two. Let C be a cycle in G. A chord is an edge of G joining two

vertices of C but is itself not an edge of C. An edge e is a pendant edge of cycle C

if exactly one of e’s endpoints is on C. A k-cycle is a cycle on k vertices. We write

4

a labeled k-cycle as either 〈v1, v2, . . . , vk, v1〉 or 〈v1, e1, . . . , vk, ek, v1〉, depending,

respectively, on whether we are interested in the vertices vi only, or in both the

vertices vi and the edges ei.

The word “(color) list” as used in the list coloring problems actually means

“(color) set.” We use the terms neighbor and available color at several places in

this paper. Let x be either a vertex or an edge and let λ(x) be its list of colors.

By a neighbor of x we mean any vertex/edge adjacent/incident to x. During the

execution of an algorithm, a color α ∈ λ(x) is available for x if no neighbor of x has

yet been assigned color α by the algorithm; it is unavailable otherwise.

2. Basic Techniques

2.1. B-ordering

It seems Lovász [28, 29] originated the idea of solving a coloring problem by

cleverly imposing a coloring order on the graph elements to be colored. He used

it to prove Brooks’ theorem [7] on vertex coloring:the chromatic number of any

connected simple graph that is neither complete nor an odd cycle does not exceed

its maximum degree. Our B-ordering method is a generalization of Lovász’s to both

edge coloring and total coloring.

Consider a connected graph G = (V,E). Let T be a spanning tree of G with

root x. A B-ordering of V ∪ E with respect to x is an ordering of the vertices and

edges as y1, y2, . . . , ym+n such that the nontree edges come last and the remaining

order is gotten by traversing T bottom up, visiting each tree edge right after its

child vertex, and visiting each vertex right after having visited all its child edges.

(In all other respects the ordering is arbitrary.)

Lemma 1 Consider a connected (multi)graph G. Let y1, y2, . . . , ym+n be a B-

ordering with respect to a vertex x. The following statements hold.

(1) y1 is the vertex x.

(2) y2 is an edge incident with x.

(3) If k > 2, then any vertex or edge yk has a neighboring vertex yi with i < k

and a neighboring edge yj with j < k.

A B-ordering of G can be obtained in O(m + n) time.

Proof. Statements (1) & (2) clearly hold. Statement (3) holds if yk is a vertex

since every vertex other than the root has a parent vertex and a parent edge. It

holds if yk is an edge for the same reason unless yk is incident to the root. In that

case use (2) to get yj . A spanning tree of G can be found by any standard search

technique in O(m + n) time. �

Property (3) of Lemma 1 is what makes B-ordering useful. Consider the problem

of 4-list edge coloring. We are given a subcubic graph G whose every vertex has

its own list of four colors, and we are to list-edge-color G. Assume without loss of

generality that G is connected. Any edge of G has at most 4 neighboring edges.

Suppose we “greedily” color the edges in decreasing B-order, i.e., we assign to each

edge, whenever possible, any color available for it. Property (3) guarantees that all

5

Fig. 1. Example decomposition of a subcubic graph. Tree edges are rendered

solid. Cycle edges are rendered dashed. The 5-cycle has a chord. By making

the chord a cycle edge and changing the two leftmost cycle edges into tree

edges, we get a chordless decomposition on the larger connected component of

the graph.

edges except possibly the very first one (in B-order) can be colored! In fact, this

idea alone already gives us an O(n)-time 4-list edge coloring algorithm if G is not

cubic: simply B-order the edges with respect to some vertex x with d(x) < 3, and

greedily color them in backward B-order. Greedy coloring works correctly on such

graphs because the very first edge in B-order has at most three edge neighbors, so,

at all times, it has at most three colored neighbors. In Section 3 we will augment

this greedy approach to get a full 4-list edge coloring algorithm.

Now consider the problem of 5-list total coloring. We are given a subcubic

graph G whose every vertex and every edge has its own list of five colors, and we

are to list-total-color G. Assume without loss of generality that G is connected.

Any vertex of G has at most 3 neighboring vertices and at most 3 neighboring

edges. Any edge of G has exactly 2 neighboring vertices and at most 4 neighboring

edges. Suppose we “greedily” color the vertices and edges in decreasing B-order,

i.e., we assign to each vertex/edge, whenever possible, any color available for it.

Property (3) guarantees that all vertices/edges except possibly the very first edge

(in B-order) and the very first vertex (in B-order) can be colored! In fact, this idea

alone already gives us an O(n)-time 5-list total coloring algorithm if G is not cubic:

simply B-order the vertices and edges with respect to some vertex x with d(x) < 3,

and greedily color them in backward B-order. Greedy coloring works correctly on

such graphs because, at the time the algorithm is about to color it, the very first

edge (in B-order) has at most four colored neighbors, and the same holds for the

very first vertex. In Section 4 we will augment this greedy approach to get a full

5-list total coloring algorithm.

2.2. Subcubic Graph Decomposition

Theorem 1 A subcubic graph G can be decomposed into edge-disjoint subgraphs

C and T , where C is a collection of vertex-disjoint cycles, and T is a subcubic

forest. (See Fig. 1.) Furthermore, G admits a decomposition without chords unless

it contains a triple bond.

Proof. Let C be a maximal collection of edge-disjoint cycles in G. Any two cycles

6

of C are vertex-disjoint since G is subcubic. T = G−E(C) is a forest and obviously

subcubic. If G contains no triple bond then we can choose the cycles of C to be

chordless. �

The above decomposition theorem for subcubic graphs first appears in [38].

Note that decomposition of a subcubic graph into trees and cycles is not unique in

general. Nevertheless, we can classify the edges as either cycle edges or tree edges

for a given decomposition.

2.3. List Colorings of Cycles

Lemma 2 Let C be a cycle with color lists L(·) assigned to its vertices. If every

list has at least two colors, then C is L-vertex-colorable in linear time unless C is

odd and all lists are the same list of size two.

Proof. Procedure 1 produces an L-vertex-coloring of C if it runs to completion.

Its input consists of a labeled cycle C = 〈v1, v2, . . . , vk, v1〉, color lists L(·), and

a color α ∈ L(v1).

Procedure 1
1. assign color α to v1

2. for i← 2 to k − 1 do
3. assign to vi any color in L(vi) distinct from that of vi−1

4. assign to vk any color in L(vk) distinct from that of vk−1 or v1

Statements 1 & 3 can always be carried out since |L(vi)| ≥ 2 for all i. We show

Statement 4 can always be carried out also by judiciously labeling C and picking

the color α.

First suppose |L(x)| > 2 for some x. Label C so that x = vk. Pick any α ∈ L(v1).

At most two colors are unavailable for vk in Statement 4. Since |L(vk)| > 2,

Statement 4 can be carried out. Next suppose some adjacent vertices x, y satisfy

L(x) 6= L(y), say that L(y) \ L(x) 6= ∅. Label C so that x = vk and y = v1. Pick

α ∈ L(v1)\L(vk). Since Statement 1 assigns α to v1 and |L(vk)\{α}| = |L(vk)| ≥ 2,

Statement 4 can be carried out. The remaining possibility is for every vertices x, y

to satisfy L(x) = L(y) and |L(x)| = 2. Assume C is even or else there is nothing to

prove. Choose any valid labeling of C. Pick any α ∈ L(v1). Suppose L(vi) = {α, β}
for all i. It is easy to see the vertices are colored alternately α and β.

The time is clearly linear. �

Lemma 3 Let C = 〈v1, v2, . . . , vk, v1〉 be an odd cycle. For each i let L(vi) be a

nonempty list of colors for vertex vi such that L(v1) ⊂ L(v2), |L(v2)| = 2, L(vi) ⊇
L(v2) for 3 ≤ i < k, and L(vk) \ L(v2) 6= ∅. Then C is L-vertex-colorable in linear

time.

Proof. By throwing away all excess colors, we may assume L(vi) = L(v2) for

all 3 ≤ i < k. Color v1, v2, . . . , vk in that order, using any color available for each

vertex. We now show this coloring procedure never fails. Say that L(v1) = {α}
and L(vi) = {α, β} for all 2 ≤ i < k. When vk is about to be colored, one

of its neighbor v1 is colored α and its other neighbor vk−1 is colored β. Since

7

L(vk) \ {α, β} 6= ∅, there is some color that can be assigned to vk. The time is

clearly linear. �

To edge-color a graph is the same as to vertex-color its line graph. Since the

line graph of a cycle is a cycle, these corollaries follow from the above lemmas.

Corollary 1 Let C be a cycle with color lists L(·) assigned to its edges. If every

list has at least two colors, then C is L-edge-colorable in linear time unless C is odd

and all lists are the same list of size two. �

Corollary 2 Let C = 〈v1, e1, . . . , vk, ek, v1〉 be an odd cycle. For each i let L(ei)

be a nonempty list of colors for edge ei such that L(e1) ⊂ L(e2), |L(e2)| = 2,

L(ei) ⊇ L(e2) for 3 ≤ i < k, and L(ek) \ L(e2) 6= ∅. Then C is L-edge-colorable in

linear time. �

3. List Edge Coloring Algorithms

Let G be a subcubic graph every edge of which has its own list of four colors.

Assume without loss of generality that G is connected.

3.1. Sequential Algorithm

We have already described in Section 2 how to 4-list-edge color G if it is not

cubic. So assume G is cubic. If G is a triple bond, then it can clearly be 4-list-

edge-colored. So assume further that G is not a triple bond. Since its minimum

degree δ equals 3, graph G contains some cycle, and thus it contains some chordless

cycle since it is not a triple bond. Let C be a chordless cycle. Let G′ be the graph

obtained from G by contracting C to a vertex [C]. B-order the edges of G′ with

respect to [C]. For each edge e of G′ in backward B-order except the very first

edge e1, assign to e any color that is available for it (in G). It remains to color e1

and the edges of C. In G, only two edges adjacent to e1 are colored since e1 is a

pendant edge of C. Thus, two colors are available for e1 (in G). If C is even, we

color e1 using any color available for it. If C is odd, we color e1 by choosing a color

available for it in such a way that it does not result in all edges of C having the

same list of 2 available colors. Now color the edges of C by invoking Corollary 1.

We now prove the algorithm correct by showing it never gets stuck. Observe that

if edges ei and ej are adjacent in G′ and ej is not incident with the root [C], then

ei and ej are adjacent in G as well. This fact and property (3) of Lemma 1 imply

that the algorithm does not get stuck on any edge not incident with the root [C].

Every edge that is incident with [C] is adjacent in G to two uncolored edges on

the cycle C, so it has two available colors when the time comes for the algorithm

to color it. Hence the algorithm does not get stuck on it either. The edges of C

can be colored using their available colors because all hypotheses of Corollary 1 are

satisfied. The running time is O(m + n), which is O(n) since G is subcubic.

3.2. Parallel Algorithm

We now describe a randomized EREW PRAM algorithm for 4-list edge coloring.

It uses O(n/ log n) processors and runs in O(log n) time with high probability. The

8

algorithm has two stages. The first stage obtains, by Theorem 1, a decomposition

of G into a collection C of cycles and a forest T . The second stage does the coloring.

The trees are colored first; the cycles are colored later.

Here is how to decompose G into cycles C and forest T . First find a spanning

tree T of G, using the randomized O(log n)-time, O(m + n)-work, EREW PRAM

algorithm of [17]. This algorithm assumes the input graph G is specified using

doubly-linked adjacency lists, with each edge uv appearing on the list of u having

a pointer to its opposite edge vu on the list of v. It returns a spanning tree T by

marking all edges of T as tree edges. Now, each nontree edge ei (1 ≤ i ≤ m−n+1)

has an associated fundamental cycle C(ei). Let C be the direct sum, i.e., the mod-2

sum, of all fundamental cycles C(e1), C(e2), . . . , C(em−n+1). Then C is a collection

of edge-disjoint cycles. In fact, C is a collection of vertex-disjoint cycles since G is

subcubic. Also, C contains all the nontree edges ei. So we need only compute C and

output the decomposition consisting of cycles C and forest T = T − {edges of C}.
To find the edges of C, we have to compute, for each tree edge f , the parity of

the number of fundamental cycles C(ei) containing f . Edge f is in C if and only

if this number is odd. This can be done as follows. First make T into a rooted

out-tree. For every tree edge f = wv, where w is the parent of v, compute the

sum, over all descendants u of v, of the vertex degrees dG−T (u) in the graph G−T .

Edge f is in C if and only if this sum is odd. Computing this sum for all tree edges

can be done on an EREW PRAM in O(log n) time and O(n) work by parallel prefix

computation on the Euler tour of T [40, 32]. Once the edges of C and T are known,

we create an adjacency list representation of T , and a doubly-linked circular list

representation for each cycle in C.
To list-edge-color a tree in T , number every vertex by its depth (using a parallel

prefix computation on the Euler tour). Each vertex r of even depth will color the

subtree of ≤ 6 edges that descend from it but no other even-depth vertex. The

procedure is as follows. Let the subtree consist of edges rai for i = 1, 2, and aiaij

for i = 1, 2 and j = 1, 2. Some of these edges may not exist. The coloring is in 2

parallel steps.

Step 1. There are two substeps.

1. Assign each edge rai 2 colors from its list, such that the 4 colors assigned to

these 2 edges are distinct. This can be done since all lists have length 4.

2. For i = 1, 2 do

(a) Let c1, c2 be the colors on rai.

(b) Assign color dj to aiaij for j = 1, 2, where dj is in the edge’s list and

c1, c2, d1, d2 are 4 distinct colors. This can be done since all lists have length 4.

Step 2. Color rai with c1 or c2, whichever is distinct from the color of r’s parent

edge (which was chosen in substep 2(b) of Step 1).

This tree coloring procedure is clearly an EREW PRAM algorithm. We make

the coloring of T work-optimal as follows. Assign each processor log n vertices

(so that n/ log n processors are used in total). Each processor looks at each of its

assigned vertices. It performs the above coloring steps for all even-depth vertices;

it does nothing for odd-depth vertices. Note that depths enable the algorithm to

9

decide which edges go down the tree.

Each cycle C ∈ C is colored by invoking Corollary 1. For each e ∈ E(C), let L(e)

be the set of colors available for e. Any edge of C has at least 2 available colors since

it has four colors in its list and it is adjacent to at most 2 colored edges (because

each of its endpoints is adjacent to at most one colored edge). So Corollary 1 applies

unless C is a bad cycle, i.e., it is odd and every edge in it has the same two colors

available. Suppose C is a bad cycle. Then every vertex of C has degree 3 (in G),

and it is incident with a pendant edge or a chord. Let e be a pendant edge (chord)

of C. Since C is a bad cycle, e is adjacent to exactly two (four) edges of C if e is a

pendant edge (chord). Thus, recoloring e changes the available colors for some but

not all edges of C. So again Corollary 1 applies.

Given the doubly-linked circular list representation of each cycle in C, we can

easily implement the entire cycle coloring process in O(log n) parallel time and O(n)

work using standard techniques as mentioned above.

4. Total Coloring Algorithms

Let G be a subcubic graph every vertex/edge x of which has its own list λ(x) of

five colors. We have to find a λ-total-coloring. To specialize the following description

to the 5-total-coloring problem, simply set λ(x) = [5] for all x.

Assume without loss of generality that G is connected. We have already de-

scribed in Section 2 how to 5-list-total color G if it is not cubic. So assume G is

cubic. If G is a triple bond, then clearly it can be 5-list-total-colored. So assume

further that G is not a triple bond. Since δ = 3, graph G contains some cycle, and

thus G contains some chordless cycle since it is not a triple bond. Let C be a chord-

less cycle. Let G′ be the graph obtained from G by contracting C to a vertex [C].

B-order the vertices and edges of G′ with respect to [C]. For each vertex or edge yi

of G′ in backward B-order except vertex [C] and edges incident with it, assign to yi

any color that is available for it. Property (3) of Lemma 1 guarantees this is always

possible.

It remains to show we can complete the coloring by extending it to cover the

pendant edges & the vertices and edges of C, using their lists of available colors.

Let us adopt the following naming convention. Suppose cycle C is labeled

〈v1, e1, . . . , vk, ek, v1〉. Denote the pendant edge incident with vi by fi, and name

fi’s other endpoint wi. Observe that no wi is the same as any vi since C is chordless.

However, it is possible that wi = wj for some distinct i, j. For each vertex/edge x,

write L(x) for the set of colors still available for x. If x is colored, let ϕ(x) denote

its color. When i = 1 (resp. i = k), vertex vi−1 (resp. vi+1) refers to vk (resp. v1);

similarly for vertex wi−1 (resp. wi+1) and edge fi−1 (resp. fi+1).

Since G is cubic, every vertex x on C is incident with a pendant edge xy with

y already colored. Choose any valid labeling of cycle C. Observe that each fi has

at most three colored neighbors; and thus |L(fi)| ≥ 2 in the current coloring ϕ.

The rest of the 5-total-coloring algorithm is described in Subsection 4.1. The

rest of the λ-total-coloring algorithm is described in Subsection 4.2.

10

3

1 2

2

(a)

2

3

1 2

1

3

2

2 1

31

1

3

(b)

2

3

1 2

1

3

2

2 1

3

31

1

4

(c)

Fig. 2. Example Case 1 of the 5-total-coloring algorithm. (a) Original config-

uration. (b) After execution of the first for loop of Procedure 2. (c) After the

second for loop. Vertex v1 is doubly circled. The indices of vertices & edges of
the cycle increase in the direction indicated by the arrow.

4.1. The 5-total-coloring Algorithm

There are two cases to consider. In Case 1 we first color all the uncolored

(pendant & cycle) edges but leave all the vertices uncolored. However, we make

sure that each of the vertices has 2 colors available. We then color the vertices by

invoking Lemma 2 if possible. If not possible, we recolor one cycle edge so that

the vertices can be colored by invoking Lemma 3. In Case 2, we first color all the

uncolored pendant edges and cycle vertices but leave all the cycle edges uncolored.

However, we make sure that each of the cycle edges has at least 2 colors available.

We then color the cycle edges by invoking Corollary 1 if possible. If not possible,

we recolor one cycle vertex so that the cycle edges can be colored by invoking

Corollary 2. Here are the details.

Case 1 Some index i satisfies ϕ(wi) 6= ϕ(wi+1). By relabeling if necessary, we

may assume that ϕ(wk) 6= ϕ(w1). (See Fig. 2.) We will color all the fi and ei

so that, for all i, either ϕ(ei) = ϕ(wi) or ϕ(ei−1) = ϕ(wi). We do this using

Procedure 2.

Procedure 2
ϕ(f1)← any color in L(f1) \ {ϕ(wk)}
ϕ(e1)← ϕ(w1)
for i← 2 to k do {

ϕ(fi)← any color in L(fi)
if ϕ(wi) ∈ L(ei) then

ϕ(ei)← ϕ(wi) }
for i← 2 to k do

if ei is still uncolored then
ϕ(ei)← any color in L(ei)

11

1

2

1

3 2

2

1

3

3

1

2

1

3
3

2

Fig. 3. Example obstruction in Case 1 of the 5-total-coloring algorithm, when

an edge-colored cycle cannot be extended to a total coloring of that cycle.

Changing the color of a single edge on the cycle allows such an extension to be

carried out.

It is easy to see that Procedure 2 never gets stuck and it extends ϕ to cover all

fi and ei. Procedure 2 assigns the color of w1 to edge e1, and for all i = 2 to k in

order, the if statement in its first for loop assigns the color of wi to edge ei if it is

still available for ei. Clearly this color can be unavailable for ei only if ei−1 and wi

have the same color. Thus, Procedure 2 results in |L(vi)| = 2 for every i, because

4 neighbors of vi, viz., wi, fi, ei−1, and ei, are colored, with exactly two of them

colored the same (either ϕ(ei) = ϕ(wi) or ϕ(ei−1) = ϕ(wi)).

If all the hypotheses of Lemma 2 are satisfied, then ϕ can be extended to a total-

coloring of C and we are done. So suppose C is odd and all L(vi) consist of the same

two colors. Consider edge ek. Since L(vk) = L(v1), we have {ϕ(ek−1), ϕ(fk)} =

{ϕ(e1), ϕ(f1)}. Hence there exists some color α ∈ L(ek) different from the current

color ϕ(ek) of ek. Change the color of ek to α. This affects L(vk) and L(v1)

but leaves the remaining L(vi) intact. Following this color change, either all the

hypotheses of Lemma 2 or all the hypotheses of Lemma 3 are satisfied. (See Fig. 3.)

Note that we may have to relabel the cycle in the opposite orientation to get the

hypotheses of Lemma 3 to hold. Therefore, ϕ can be extended to a total-coloring

of C.

Case 2 All wi receive the same color. (See Fig. 4.) Color all the fi and vi using

Procedure 3.

Procedure 3
ϕ(f1)← any color in L(f1)
for i← 2 to k do {

ϕ(vi)← ϕ(fi−1)
ϕ(fi)← any color in L(fi) }

if ϕ(fk) 6= ϕ(f1) then
ϕ(v1)← ϕ(fk)

else
ϕ(v1)← any color in L(v1)

It is easy to see that Procedure 3 never gets stuck and it extends ϕ to cover all

fi and vi. It results in either

(i) ϕ(fi) = ϕ(vi+1) and ϕ(fi) 6= ϕ(fi+1) for all 1 ≤ i ≤ k, or

(ii) ϕ(fk) = ϕ(f1), but ϕ(fi) = ϕ(vi+1) and ϕ(fi) 6= ϕ(fi+1) for all 1 ≤ i < k.

12

4

4

44

4

1

5

(a)

4

4

44

4

5

1

3

23

1

32

3

2

1

2

(b)

4

4

44

4

5

2

(c)

4

4

44

4

5

2 1

3

23

1

1

32

3

2

(d)

Fig. 4. Example Case 2 of the 5-total-coloring algorithm. Two possible sce-
narios (i)-(ii): (i) Original configuration in (a), and after Procedure 3 in (b).
(ii) Original configuration in (c), and after Procedure 3 in (d).

In both cases we have |L(ei)| ≥ 2 for all 1 ≤ i ≤ k. If all the hypotheses of

Corollary 1 are satisfied, then ϕ can be extended to a total-coloring of C and we are

done. So suppose C is odd and all L(ei) consist of the same two colors, say α and β.

Let γ, δ, and ε be the colors of f1, f2, and v1 respectively. By the supposition and

by the way Procedure 3 works, we see that 3 | k and for all 1 ≤ i ≤ k we have

ϕ(fi) = ϕ(vi+1) =

γ, if i ≡ 1 (mod 3),
δ, if i ≡ 2 (mod 3),
ε, if i ≡ 0 (mod 3).

(1)

(See Fig. 5.) Moreover, we must be in case (i) above.

Change the color of v2 to the only remaining color in [5] \ {γ, δ, ε, ϕ(w2)}. This

changes L(e1) and L(e2) but leaves the remaining L(ei) intact. Following this color

change, all the hypotheses of Corollary 2 are satisfied. Note that we have to relabel

the cycle to get the hypotheses of Corollary 2 to hold. Therefore, ϕ can be extended

to a 5-total-coloring of C.

This completes the 5-total-coloring algorithm.

4.2. The λ-total-coloring Algorithm

To understand the algorithm of this subsection, one needs to study the relation-

ships that hold among the color lists of wi, fi, vi, and ei (1 ≤ i ≤ k), and the effects

of recoloring on these lists. First some definitions.

13

5 5 5

5

5

5

5

5

2

2

1

1

3

3
2

2
1

1
3

3
2

2
1

1
3

3

5

6k + 3

Fig. 5. Example obstruction in Case 2 of the 5-total-coloring algorithm, when

a vertex-colored cycle cannot be extended to a total coloring of that cycle.

Changing the color of a single vertex on the cycle allows such an extension to

be carried out.

Definitions Let 1 ≤ i ≤ k. The neighbors of vertex vi that are not vertices of

cycle C feature prominently in our algorithm. These are wi, fi, ei−1, and ei. Any

of these neighbors is a safety witness for vi if it is colored with a color not in λ(vi).

Edge ei−1 or ei can also be a safety witness for vi if it is colored with the same

color as ϕ(wi). Vertex vi is safe if it has a safety witness; it is unsafe otherwise.

Similarly, the neighbors of edge ei that are not edges of C feature prominently

in our algorithm. These are fi, vi, fi+1, and vi+1. Any of these neighbors is a

safety witness for ei if it is colored with a color not in λ(ei). Any of these neighbors

can also be a safety witness for ei if it is colored and it participates in one of the

following conditions: (a) ϕ(fi) = ϕ(fi+1) (b) ϕ(fi) = ϕ(vi+1) (c) ϕ(vi) = ϕ(fi+1).

Edge ei is safe if it has a safety witness; it is unsafe otherwise.

Define σ(i) =
(

λ(ei)\λ(vi)
)

∪
(

λ(ei)∩{ϕ(wi)}
)

. The motivation for the definition

of σ(i) is that assigning a color in σ(i) to edge ei will make vi safe. Note that our

coloring algorithm will maintain the following invariant.

Invariant: ϕ(x) ∈ λ(x) for any colored vertex/edge x, and no two neighbors

receive the same color.

Claim 1 Suppose for all 1 ≤ i ≤ k it is true that fi and ei are colored but vi is

not. Then any vertex vi is safe if and only if |L(vi)| ≥ 2. The following conditions

are equivalent.

• |L(vi)| = 2.

• vi has exactly one safety witness.

•
{

ϕ(wi), ϕ(fi), ϕ(ei−1), ϕ(ei)
}

∩ λ(vi) has exactly 3 colors.

Proof. By definitions of safe vertex and safety witness, and by the fact that the

algorithm maintains the Invariant at all time. �

Claim 2 Suppose for all 1 ≤ i ≤ k it is true that fi and vi are colored but ei is

not. Then any edge ei is safe if and only if |L(ei)| ≥ 2. The following conditions

are equivalent.

• |L(ei)| = 2.

• either exactly one of ϕ(fi), ϕ(vi), ϕ(fi+1), ϕ(vi+1) is not a color in λ(ei), or

they are all in λ(ei) and exactly one condition in (a)–(c) in the definitions

of safety witness for ei holds.

•
{

ϕ(fi), ϕ(vi), ϕ(fi+1), ϕ(vi+1)
}

∩ λ(ei) has exactly 3 colors.

14

Proof. By definition of safe edge and by the fact that the algorithm maintains

the Invariant at all time. �

Claim 3 For any pair of vertices/edges x, y and for any 1 ≤ i ≤ k we have

(i) |λ(x) \ λ(y)| = |λ(y) \ λ(x)|.
(ii) σ(i) ⊆ λ(ei) and assigning any color in σ(i) to ei makes vi safe.

(iii) If ϕ(wi) ∈ λ(vi) then σ(i) is nonempty.

(iv) If vi is unsafe then σ(i) is nonempty.

Proof. (i) This holds since |λ(x)| = 5 for every vertex/edge x.

(ii) By definitions of σ and safety witness for vi.

(iii) By definition of σ and part (i).

(iv) If vi is unsafe, then wi is not a safety witness for vi, i.e., ϕ(wi) ∈ λ(vi), and we

are done by part (iii). �

Claim 4 Assume some vertex vi is safe, and wi, fi, ei−1, ei are colored. Suppose

it is possible to change the color of ei, while maintaining the Invariant and keeping

the colors of wi, fi, ei−1 the same. There are two possibilities.

(I) Suppose ei is a safety witness for vi. After recoloring, the set L(vi) satisfies

either (i) |L(vi)| = 1 by having a color removed from the old L(vi), or (ii) L(vi)

stays the same. Case (i) occurs if and only if the color used to recolor ei belongs to

the old L(vi).

(II) Suppose ei is not a safety witness for vi. After recoloring, the set L(vi)

satisfies either (i) |L(vi)| = 2 by having exactly one color in the old L(vi) changed

to the old color of ei, or (ii) |L(vi)| = 3 by having the old color of ei added to the

old L(vi). Case (i) occurs if and only if the color used to recolor ei belongs to the

old L(vi).

Proof. Let L(vi) = {α, β}. Let γ be the current color of ei. Let δ be the color to

be used for recoloring ei.

Table 1 shows what can happen if ei is a safety witness for vi. There are 2 choices

of γ; with 3 choices of δ for the first choice of γ, and 2 choices of δ for the second

choice of γ. The last column gives the values of L(vi) after recoloring for all possible

combinations of γ and δ.

Table 1. Case (I) of Claim 4: ei is a safety witness for vi

γ /∈ λ(vi)
δ /∈ λ(vi) {α, β}

δ ∈ λ(vi), δ = ϕ(wi) {α, β}
δ ∈ λ(vi), δ 6= ϕ(wi) {α} or {β}

γ = ϕ(wi)
δ /∈ λ(vi) {α, β}

δ ∈ λ(vi), δ 6= ϕ(wi) {α} or {β}

Table 2 shows what can happen if ei is not a safety witness for vi. Since ei is not

a witness for vi, we have γ ∈ λ(vi) and γ 6= ϕ(wi). There are 3 choices of δ. The

last column gives the values of L(vi) after recoloring for all possible choices of δ.

Our claim is easily verified with the help of these two tables. �

Note that the roles of ei−1 and ei in Claim 4 are completely interchangeable.

In fact, Claim 4 has a symmetric version whose only difference is that ei−1 and ei

15

Table 2. Case (II) of Claim 4: ei is not a safety witness for vi

γ ∈ λ(vi), γ 6= ϕ(wi)
δ /∈ λ(vi) {α, β, γ}

δ ∈ λ(vi), δ = ϕ(wi) {α, β, γ}
δ ∈ λ(vi), δ 6= ϕ(wi) {α, γ} or {β, γ}

are interchanged. From now on whenever we invoke Claim 4 we will not make a

distinction between these two versions and will let context decide which version is

meant.

We are now ready to continue with the algorithm. By Claim 3(iii), σ(i) is

nonempty if ϕ(wi) ∈ λ(vi). Therefore, σ(i) 6= ∅ in Cases 1 & 2 below. The

following three cases thus exhaust all possibilities.

1. Some index i satisfies ϕ(wi) /∈ λ(vi) or L(fi) \ λ(vi) 6= ∅.
2. Not 1, and some valid labeling of C has some index i satisfying σ(i) 6= σ(i−1)

or |σ(i)| > 1.

3. Not 1, and any valid labeling of C has all σ(i) as the same one-color set.

Note that for any vertex x on C, there are two possible valid labelings of C with x

labeled v1. This is because one can tour C starting from x in either clockwise or

counterclockwise direction.

We will invoke Lemma 3 and Corollary 2 several times in the following descrip-

tion. In all such situations, we want to apply the lemma/corollary to some labeled

cycle. However, we may have to relabel the cycle before we can apply the statement

of the lemma/corollary. To avoid monotony, we will drop the necessary phrase “By

relabeling if necessary,” in all such situations. Note that relabeling may involve

changing the direction of traversal.

Our strategy is as follows. In Cases 1 & 2 we will first color all the fi and ei so

as to make all vi safe, and then extend ϕ to cover all the vi as well, after making

any necessary color changes on some (no more than two) edges. In Case 3 we will

first color all the fi and vi so as to make all ei safe, and then extend ϕ to cover all

the ei as well, after making any necessary color change on a vertex. Here are the

details.

Case 1 Some index i satisfies ϕ(wi) /∈ λ(vi) or L(fi)\λ(vi) 6= ∅. By relabeling if

necessary, we may assume that i = k satisfies the condition. Color all the fi and ei

using Procedure 4.

Procedure 4
for i← 1 to k do {

if L(fi) \ λ(vi) 6= ∅ then
ϕ(fi)← any color in L(fi) \ λ(vi)

else
ϕ(fi)← any color in L(fi)

if vi is unsafe /∗ always false if i = k ∗/ then
ϕ(ei)← any color in σ(i) }

for i← 1 to k do
if ei is still uncolored then

ϕ(ei)← any color in L(ei)

16

Case 2 ϕ(wi) ∈ λ(vi) and L(fi) ⊆ λ(vi), and some valid labeling of C has some

index i satisfying σ(i) 6= σ(i − 1) or |σ(i)| > 1. By relabeling if necessary, we may

assume that i = 1 satisfies the condition. Let ζ ∈ σ(1) and η ∈ σ(k) be distinct

colors. Define a function c by setting c(1) = ζ, c(k) = η, and setting c(i) to be

some color in σ(i) for each 1 < i < k. The function c is well-defined since σ(i) 6= ∅
for every i (by Claim 3(iii)). Color all the fi and ei using Procedure 5.

Procedure 5
ϕ(f1)← any color in L(f1) \ {c(k)}
ϕ(e1)← c(1)
for i← 2 to k do {

ϕ(fi)← any color in L(fi)
if c(i) ∈ L(ei) then

ϕ(ei)← c(i) }
for i← 2 to k do

if ei is still uncolored then
ϕ(ei)← any color in L(ei)

By Claims 1 & 3(ii) & 3(iv), we see that Procedures 4 & 5 extend ϕ to cover all

fi and ei and make all vi safe, while maintaining the Invariant. If all the hypotheses

of Lemma 2 are satisfied, then ϕ can be extended to a λ-total-coloring of C and

we are done. So suppose C is odd and all L(vi) consist of the same two colors,

say α and β. Consider edge ei that is not a safety witness for both vi and vi+1.

Existence of such an edge is guaranteed because k ≥ 3, and |L(vi)| = 2 for all i (so

every vi has exactly one safety witness by Claim 1). By relabeling if necessary, we

may assume ei is not a safety witness for vi.

First suppose L(ei) ⊃ {ϕ(ei)}. Change the color of ei to some other color

in L(ei). This color change affects only lists L(vi) and L(vi+1). By Claim 4, either

Lemma 2 or Lemma 3 applies after the color change, irrespective of whether ei is a

safety witness for vi+1 or not.

Next suppose L(ei) = {ϕ(ei)}, but L(ei+1) ⊃ {ϕ(ei+1)}. Say γ is the current

color of ei+1 and δ is some other color in L(ei+1). Recolor ei+1 by δ. If either

Lemma 2 or Lemma 3 applies, then we are done. Otherwise, we must have δ ∈ {α, β}
and γ must have been a safety witness for both vi+1 and vi+2. In that case, also

recolor ei by γ. Now Lemma 3 applies (use Claim 4).

Last suppose L(ei) = {ϕ(ei)} and L(ei+1) = {ϕ(ei+1)}. Then we can switch the

colors of ei and ei+1 and still maintain the Invariant! Lemma 2 applies after the

color switch (use Claim 4).

Case 3 ϕ(wi) ∈ λ(vi) and L(fi) ⊆ λ(vi), and any valid labeling of C has all

σ(i) as the same one-color set, say {α}. This case can happen only when there exist

distinct colors β, γ, δ, ε all different from α such that for each i we have λ(ei) =

{α, β, γ, δ, ε} and either λ(vi) = λ(ei) or
(

{α} = λ(ei) \λ(vi) and {ϕ(wi)} = λ(vi) \
λ(ei)

)

. Color all the fi and vi using Procedure 3.

It is easy to see that Procedure 3 extends ϕ to cover all fi and vi while main-

taining the Invariant. It also results in safe ei for every i (use Claim 2). If all the

hypotheses of Corollary 1 are satisfied, then ϕ can be extended to a λ-total-coloring

17

of C and we are done. So suppose C is odd and all L(ei) consist of the same two

colors, say α and β. By this supposition and by the way Procedure 3 works, we

see that 3 | k and there exist distinct colors γ, δ, ε all different from α, β such that

Equation (1) holds for all i.

Change the color of v2 to the only color in λ(v2) \ {γ, δ, ε, ϕ(w2)}. This changes

L(e1) and L(e2) but leaves the remaining L(ei) intact. Following this color change,

all the hypotheses of Corollary 2 are satisfied. So ϕ can be extended to a λ-total-

coloring of C.

This completes the λ-total-coloring algorithm.

5. Conclusion

We propose two general methods and use them to design several efficient coloring

algorithms for subcubic graphs. The first method, called B-ordering, orders the

vertices and edges of any graph in such a way that we can color all or almost

all of the graph elements in a semi-greedy fashion. The second method is a simple

structure theorem for subcubic graphs whose consideration leads to efficient coloring

algorithms, both sequential and parallel. Using the methods, we are able to obtain

O(n)-time sequential algorithms for the following problems on subcubic graphs: (1)

4-list-edge-coloring (2) 5-total-coloring (3) 5-list-total-coloring. Our algorithm for

problem (1) is simpler than previous algorithms. Our algorithms for problems (2)

& (3) are the first O(n)-time algorithms. For problem (1), we also obtain the first

randomized EREW PRAM algorithm that uses O(n/ log n) processors and runs

in O(log n) time with high probability. We expect to use both methods to solve

more coloring problems. We also anticipate the use of the second method to attack

non-coloring problems on subcubic graphs.

References

1. Paola Alimonti and Viggo Kann. Hardness of approximating problems on cubic
graphs. Theoretical Computer Science, 237:123–134, 2000.

2. Therese C. Biedl. Linear reductions of maximum matching. Technical Report CS-
2000-17, University of Waterloo Department of Computer Science, October 2000.

3. Therese C. Biedl, Prosenjit Bose, Erik D. Demaine, and Anna Lubiw. Efficient
algorithms for Petersen’s Matching Theorem. Journal of Algorithms, 38:110–134,
2001.

4. Béla Bollobás and A. J. Harris. List-colourings of graphs. Graphs and Combina-

torics, 1:115–127, 1985.

5. J. Adrian Bondy and U. S. R. Murty. Graph Theory with Applications. The
Macmillan Press Ltd, 1976.

6. Oleg V. Borodin, Alexandr V. Kostochka, and Douglas R. Woodall. List edge and
list total colourings of multigraphs. Journal of Combinatorial Theory Series B,
71:184–204, 1997.

7. R. L. Brooks. On colouring the nodes of a network. Proceedings of the Cambridge

Philosophical Society. Mathematical and Physical Sciences, 37:194–197, 1941.

8. Tiziana Calamoneri. Does Cubicity Help to Solve Problems? PhD thesis, Università
Degli Studi di Roma “La Sapienza”, 1997. IX-97-2.

18

9. Amanda G. Chetwynd and Roland Häggkvist. A note on list-colorings. Journal of

Graph Theory, 13(1):87–95, 1989.

10. M. Ellingham and L. A. Goddyn. List edge colourings of some 1-factorable multi-
graphs. Combinatorica, 16(3):343–352, 1996.

11. Paul Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. In Proceedings

of the West-Coast Conference on Combinatorics, Graph Theory and Computing,
volume XXVI of Congressus Numerantium, pages 125–157, Arcata, California, 1979.

12. Harold N. Gabow, Takao Nishizeki, Oded Kariv, Daniel Leven, and Osamu Ter-
ada. Algorithms for edge-coloring graphs. Technical Report TRECIS-8501, Tohoku
University, 1985.

13. Harold N. Gabow and San Skulrattanakulchai. Coloring algorithms on subcubic
graphs. In Oscar H. Ibarra and Louxin Zhang, editors, Proceedings of the 8th Annual

International Computing & Combinatorics Conference, volume 2387 of Lecture Notes

in Computer Science, pages 67–76, Berlin, 2002. Springer-Verlag.

14. Fred Galvin. The list chromatic index of a bipartite multigraph. Journal of

Combinatorial Theory Series B, 63:153–158, 1995.

15. Michael R. Gary and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W.H. Freeman & Co., San Francisco, CA, 1979.

16. Raymond Greenlaw and Rossella Petreschi. Cubic graphs. ACM Computing Sur-

veys, 27(4):471–495, 1995.

17. Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for
finding spanning forests. Journal of Algorithms, 39:1–46, 2001.

18. Ian J. Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing,
10(4):718–720, 1981.

19. Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. John Wiley & Sons,
New York, New York, 1995.

20. Martin Juvan and Bojan Mohar. List colorings of outerplanar graphs. Unpublished
Manuscript, 1996.

21. Martin Juvan, Bojan Mohar, and Riste Škrekovski. List total colorings of graphs.
Combinatorics, Probability & Computing, 7:181–188, 1998.

22. Martin Juvan, Bojan Mohar, and Riste Škrekovski. On list edge-colorings of sub-
cubic graphs. Discrete Mathematics, 187:137–149, 1998.

23. Martin Juvan, Bojan Mohar, and Robin Thomas. List edge-colorings of series-
parallel graphs. The Electronic Journal of Combinatorics, 6:#R42, 1999.

24. Viggo Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete.
Information Processing Letters, 37:27–35, 1991.

25. Viggo Kann. On the Approximability of NP-Complete Optimization Problems. PhD
thesis, Department of Numerical Analysis and Computing Science, Royal Institute
of Technology, Stockholm, 1992.

26. Alexandr V. Kostochka and Douglas R. Woodall. Total choosability of multicircuits
I. Journal of Graph Theory, 40:26–43, 2002.

27. Alexandr V. Kostochka and Douglas R. Woodall. Total choosability of multicircuits
II. Journal of Graph Theory, 40:44–67, 2002.

28. László Lovász. Three short proofs in graph theory. Journal of Combinatorial

Theory Series B, 19:269–271, 1975.

29. László Lovász. Combinatorial Problems and Exercises. North-Holland, Amsterdam,
second edition, 1993.

19

30. Colin J. H. McDiarmid and Abdón Sánchez-Arroyo. Total colouring regular bipartite
graphs is NP-hard. Discrete Mathematics, 124:155–162, 1994.

31. Dale Peterson and Douglas R. Woodall. Edge-choosability in line-perfect multi-
graphs. Discrete Mathematics, 202:191–199, 1999.

32. John H. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann Publish-
ers, California, 1993.

33. M. Rosenfeld. On the total coloring of certain graphs. Israel Journal of Mathemat-

ics, 9:396–402, 1971.

34. Thomas L. Saaty and Paul C. Kainen. The Four-Color Problem, Assaults and

Conquest. Dover Publications, Inc., New York, second edition, 1986.

35. Abdón Sánchez-Arroyo. Determining the total colouring number is NP-hard. Dis-

crete Mathematics, 78:315–319, 1989.

36. Abdón Sánchez-Arroyo. Total colourings and complexity. Master’s thesis, Univer-
sity of Oxford, 1989.

37. San Skulrattanakulchai. Acyclic colorings of subcubic graphs. Manuscript.

38. San Skulrattanakulchai. 4-edge-coloring graphs of maximum degree 3 in linear time.
Information Processing Letters, 81:191–195, 2002.

39. San Skulrattanakulchai. ∆-list vertex coloring in linear time. In Martti Penttonen
and Erik Meineche Schmidt, editors, Proceedings of the 8th Scandinavian Workshop

on Algorithm Theory, volume 2368 of Lecture Notes in Computer Science, pages
240–248, Berlin, 2002. Springer-Verlag.

40. Robert E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm.
SIAM Journal on Computing, 14:862–874, 1985.

41. N. Vijayaditya. On total chromatic number of a graph. Journal of the London

Mathematical Society, 3(2):405–408, 1971.

42. Vadim G. Vizing. On an estimate of the chromatic class of a p-graph. Metody

Diskret. Analiz., 3:25–30, 1964. (In Russian).

43. Vadim G. Vizing. Coloring the vertices of a graph in prescribed colors. Metody

Diskret. Anal. v Teorii Kodov i Schem, 29:3–10, 1976.

44. Douglas R. Woodall. Edge-choosability of multicircuits. Discrete Mathematics,
202:271–277, 1999.

45. Hian-Poh Yap. Total Colourings of Graphs, volume 1623 of Lecture Notes in Math-

ematics. Springer-Verlag, Berlin, 1996.

20

