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Abstract Steingrimsson’s coloring complex and Jonsson’s unipolar complex are in-
terpreted in terms of hyperplane arrangements. This viewpoint leads to short proofs
that all coloring complexes and a large class of unipolar complexes have convex ear
decompositions. These convex ear decompositions impose strong new restrictions on
the chromatic polynomials of all finite graphs. Similar results are obtained for char-
acteristic polynomials of submatroids of type Bn arrangements.
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1 Introduction

Since its introduction by Birkhoff almost a century ago [1], the chromatic polyno-
mial has been the object of intense study. Nonetheless, a satisfactory answer to Wilf’s
question, “What polynomials are chromatic?” [13] remains elusive. In [8], Jonsson
proved that Steingrimsson’s coloring complex is Cohen-Macaulay, and thereby es-
tablished new restrictions on such polynomials. Our main result is that the coloring
complex has a convex ear decomposition, which implies that the chromatic polyno-
mials of all finite graphs satisfy much stronger inequalities than those provided by [8,
Theorem 1.4].
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We also apply our methods to Jonsson’s unipolar complex and to characteristic
polynomials of submatroids of type Bn arrangements. On the other hand, we give
examples indicating that these results cannot be extended to the characteristic poly-
nomials of all matroids or even to large classes that seem to be particularly natural
candidates.

The coloring complex �G of a graph was introduced in [11] and was proven to
be constructible, hence Cohen-Macaulay, in [8]. The (r − 1)-dimensional faces of
the coloring complex are ordered lists T1|T2|T3| · · · |Tr of nonempty disjoint sets of
vertices with the property that at least one Ti includes a pair of vertices that comprise
an edge of G and ∪1≤i≤rTi �= V (G). Steingrimsson showed that the h-polynomial
of the double cone of the coloring complex is related to the chromatic polynomial by
the following formula.

(1 − t)n
∞∑

j=0

[(j + 1)n − PG(j + 1)]tj = h0 + h1t + · · · + hnt
n. (1)

This expression allows any new constraints on the h-vector of the coloring complex
to be translated into new constraints on chromatic polynomials of all finite graphs.
Steingrimsson proved this formula by a Hilbert series calculation, so next we describe
the rings involved.

Following [11], let G be a graph with vertex set V = [n]. Set A = k[xS |S ⊆ [n]],
I = 〈xSxT |S �⊆ T and T �⊆ S〉, and let R = A/I. By definition, R = k[�(Bn)], the
Stanley-Reisner ring of the order complex of the Boolean algebra Bn. Let KG be
the ideal in R generated by monomials xS1xS2 · · ·xSr such that for each i ≥ 1 we
have that Si \ Si−1 does not include any pairs {i1, i2} in E(G), the edge set of G. By
convention, S0 = ∅ so that S1 \ S0 = S1 must be a disconnected set of vertices. KG

is often called the coloring ideal of G. It turns out that R/KG is the Stanley-Reisner
ring of the double cone of �G.

In [2], Brenti asked whether there exists, for an arbitrary graph G, a standard
graded algebra whose Hilbert polynomial is the chromatic polynomial of G. In gen-
eral it is not possible for the Hilbert function of a standard graded algebra to agree
identically with the values of the chromatic polynomial of a graph since the latter is
zero below the graph’s chromatic number. However, Steingrimsson showed that KG

is an ideal whose Hilbert function agrees (up to a shift of one) with the values of
the chromatic polynomial [11], and thereby obtained the above formula as a corol-
lary. In [11], he also attributes to G. Almkvist an earlier, nonconstructive affirmative
answer to Brenti’s question.

Steingrimsson’s idea was to give a correspondence between the monomials in
KG of degree r and the proper r + 1 colorings of G as follows: the monomial
(xS1)

d1 · · · (xSl
)dl corresponds to the coloring in which the vertices in S1 are col-

ored 1, the vertices in S2 \ S1 are colored d1 + 1, the vertices in S3 \ S2 are colored
d1 +d2 +1, etc. Note that S1 = ∅ if no vertices are colored 1. We then have r = ∑

di ,
in other words, the degree of the monomial.

In addition to proving that coloring complexes are constructible in [8], Jonsson
also introduced the unipolar complex, proved it to be constructible, and determined
its homotopy type. By examining these complexes from the viewpoint of hyperplane
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arrangements we will prove that the coloring complex has a convex ear decomposi-
tion and that if the graph contains a vertex of degree n− 1, then the unipolar complex
also has a convex ear decomposition. From these results, we obtain new restrictions
on the chromatic polynomials of all finite graphs in Section 5. See Section 3 for the
definition of convex ear decomposition. Applying this idea to subarrangements of
type Bn arrangements leads to restrictions on their characteristic polynomials.

We assume the reader is familiar with Stanley-Reisner rings and h-vectors of fi-
nite simplicial complexes as presented in [10]. In Section 6 we assume the reader
is familiar with the characteristic polynomial of a matroid and its connection to the
chromatic polynomial of a graph. See, for instance, [3, Section 6.3]

2 An arrangements interpretation for the coloring complex

Given a graph G with n vertices, let AG be the real hyperplane arrangement gener-
ated by the hyperplanes of the form xi = xj for each edge {i, j} present in E(G).
When G is Kn, the complete graph on n vertices, AKn is usually called the type
A braid arrangement. In this case the intersection of all the hyperplanes is the line
x1 = x2 = · · · = xn. Let H be the hyperplane {(a1, . . . , an) ∈ R

n : ∑
ai = 0}. Then

AKn ∩H induces a simplicial cell decomposition on Sn−2, the unit sphere of H . The
faces of the complex correspond to ordered partitions S1|S2| · · · |Sr−1|Sr, r ≥ 2, of
[n]. A point (a1, a2, . . . , an) is in the cell in which S1 consists of those coordinates
which are all equal to each other and are smaller than all other coordinates, and where
Si is defined inductively to consist of all coordinates that are all equal to each other
and are smaller than all other elements of {a1, . . . , an} \ (S1 ∪ · · · ∪ Si−1). The top
dimensional faces have dimension n − 2 and correspond to partitions with |Si | = 1
for all i. Identifying ordered partitions S1|S2| · · · |Sr−1|Sr of [n] with ordered parti-
tions S1|S2| · · · |Sr−1 of proper subsets of [n], the above discussion makes it clear that
�Kn is simplicially isomorphic to the codimension one skeleton of Sn−2 ∩ AKn. In
addition, we can see from its definition, that �G is isomorphic as a simplicial com-
plex to the restriction of AKn to (Sn−2 ∩ AG). The above discussion is essentially
a special case of an idea appearing in [5]. We sum up the above with the following
theorem.

Theorem 1 The coloring complex of G is isomorphic as a simplicial complex to the
restriction of AKn ∩ Sn−2 to the arrangement AG.

One consequence is a new, short proof of the following result (also see Theo-
rem 4.2 of [5] for a generalization of this result).

Theorem 2 (Jonsson) The coloring complex of G is homotopy equivalent to a wedge
of spheres, where the number of spheres is the number of acyclic orientations of G,
and each sphere has dimension n − 3.

Proof First notice that the number of regions into which AG subdivides the sphere is
the number of acyclic orientations of G, since points in the same region are all linear
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extensions of the associated acyclic orientation. Therefore, �G is the codimension
one skeleton of a regular cell decomposition of an (n − 2)-ball obtained by removing
any single (n − 2)-cell of Sn−2. Since the ball has AG − 1 cells of dimension n − 2,

its (n − 3)-skeleton, and hence �G, is homotopy equivalent to a wedge of AG − 1
spheres, all of dimension n − 3. �

Jonsson also proved that �G is constructible, and hence Cohen-Macaulay. As we
will see below, �G has a convex ear decomposition which implies, by [12, Theorem
4.1], that it is in fact doubly Cohen-Macaulay. Specifically, if we remove any vertex
from AG it remains an (n − 2)-dimensional Cohen-Macaulay complex.

The arrangements viewpoint on the coloring complex follows easily from a con-
nection between bar resolutions and arrangements as developed in [5] and further
exploited in [6] and [9]. In particular, [5] deals with rings in which one mods out by
ideals in exactly the way the coloring complex arises, and [5] makes the connection
in its more general setting to arrangements.

3 Convex ear decomposition for the coloring complex

The following notion was introduced by Chari in [4].

Definition 3 Let � be a (d − 1)-dimensional simplicial complex. A convex ear de-
composition of � is an ordered sequence �1, . . . ,�m of pure (d − 1)-dimensional
subcomplexes of � such that

(1) �1 is the boundary complex of a d-polytope. For each j ≥ 2, �j is a (d −1)-ball
which is a proper subcomplex of the boundary of a simplicial d-polytope.

(2) For j ≥ 2, �j ∩ (∪i<j�i) = ∂�j .
(3)

⋃
j �j = �.

The subcomplexes �1, . . . ,�m are the ears of the decomposition. The key ingre-
dient in proving our main result is the lemma stated next, after requisite terminol-
ogy is introduced. An arrangement A = {H1, . . . ,Hs} is central if each Hi includes
the origin, and A is essential if ∩s

i=1Hi consists of exactly one point. For A any
essential central arrangement in R

n, a polytopal realization of A ∩ Sn−1 is any n-
polytope containing the origin whose face fan is the fan of the arrangement. Poly-
topal realizations of A can be constructed by taking the polar dual of Minkowski
sums of line segments through the origin perpendicular to the hyperplanes (see, for
instance, [15]).

Lemma 4 ([12, Lemma 4.6]) Let A = {H1, . . . ,Hs} be an essential arrangement
of hyperplanes in R

n. Let P be any n-polytope whose face fan is the fan of A. Let
H+

i1
, . . . ,H+

it
be closed half-spaces of distinct hyperplanes in A. If B = ∂P ∩ H+

i1
∩

· · · ∩ H+
it

is nonempty, then ∂B is combinatorially equivalent to the boundary of an
(n − 1)-polytope.
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Theorem 5 The coloring complex of a graph has a convex ear decomposition. More-
over, any simplicial complex obtained by replacing AKn in Theorem 1 by an essential,
central, simplicial arrangement and AG by any subarrangement will have a convex
ear decomposition.

Proof Suppose that G is connected. Then AG ∩ H is an essential arrangement. Let
P be a polytopal realization of Sn−2 ∩ AG, and let F1,F2, . . . ,Ft be a line shelling
of the facets of P (as in e.g. [15]). Identify each facet with the corresponding region
of AG ∩ Sn−2 and, after further subdivision, a subcomplex of AKn ∩ Sn−2. By the
lemma (applied in AKn ∩ Sn−2), the boundary of each such region is combinatori-
ally equivalent to the boundary of a simplicial polytope. Theorem 1 and the proper-
ties of line shellings imply that setting �1 = ∂F1, and for 2 ≤ i ≤ t − 1,�i equal
to the closure of ∂Fi \ (∂F1 ∪ · · · ∪ ∂Fi−1), produces a convex ear decomposition
of �G.

For general finite graphs G, the intersection of all of the hyperplanes in AG is
a k-dimensional subspace of R

n, where k is the number of components of G. The
lemma still implies that as a subcomplex of AKn ∩ Sn−2 the boundary of each region
of AG ∩ Sn−2 is combinatorially equivalent to the boundary of a simplicial polytope.
Let H ′ be the subspace of R

n orthogonal to the intersection of all of the hyper-
planes in AG. Then the collection A′ = {H1 ∩ H ′,H2 ∩ H ′, . . . ,Hs ∩ H ′}, where
the Hi are the hyperplanes in AG, is an essential arrangement in H ′. The facets of
a polytopal realization of A′ correspond to the regions of AG ∩ Sn−2. Order the re-
gions of AG ∩ Sn−2 in a way which corresponds to a line shelling of a polytopal
representation of A′. Proceeding as before gives a convex ear decomposition of �G.

Indeed, the ears (and their intersections) are (k − 1)-fold suspensions of a convex
ear decomposition of the codimension one skeleton of a polytopal representation
of A′.

The only property of AKn used above was the fact that it was a simplicial arrange-
ment, so the above proof carries over immediately to the more general setting. �

Remark 6 When G is connected, the above reasoning also leads to an obvious
shelling of �G. However, the question of shellability is more subtle for G having
k > 1 components since not all the facets of the coloring complex actually intersect
with the perpendicular space H ′ to the k-dimensional space U shared by all the hy-
perplanes in AG. See [7] for a shelling of the coloring complex for any G.

4 The unipolar complex of a graph

The unipolar complex of G was introduced by Jonsson in [8]. Let vi be a vertex of G.

The unipolar complex of G at vi , denoted �G(vi), is defined to be the subcomplex
of G� consisting of faces σ such that vi /∈ ⋃r−1

j=1 Sj , where S1| . . . |Sr−1 is the or-
dered partition associated to σ . From the arrangements point of view, �G(vi) may
be realized by taking the restriction of �G to the intersection of half spaces of the
form xj ≤ xi for all j �= i. It is easy to see that this is still a simplicial complex and
is the codimension one skeleton of a pure subcomplex of the boundary of a convex
polytope.
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Jonsson proved that �G(vi) is constructible, hence Cohen-Macaulay. In general,
it does not have a convex ear decomposition. For instance, if G is not connected,
then any unipolar complex of G is contractible, which is impossible for complexes
with a convex ear decomposition. However, if vi has degree n − 1, then we have the
following.

Theorem 7 Let vi be a vertex of degree n − 1 in G. Then the unipolar complex of G

at vi has a convex ear decomposition.

Proof As noted above, �G(vi) is the restriction to AG of the codimension one skele-
ton of the subcomplex of AKn given by restriction to the half-planes xi ≥ xj . Since
vi is incident to every vertex of G, this is actually a subdivision of a subcomplex
of AG. The proof of the lemma (see [12]) shows that there is a point in R

n which
“sees” only the regions of the aforementioned subcomplex of AG. Hence, there is
a line shelling of a polytopal realization of AG such that the regions of the subcom-
plex are first. Now we can use exactly the same reasoning as in the connected case of
Theorem 5. �

Remark 8 When vi has degree n−1, the above reasoning leads to an obvious shelling
of �G(vi).

Question 9 For which pairs (G,vi) does �G(vi) have a convex ear decomposition?

5 Enumerative consequences

The following connection between the coloring complex �G and the chromatic poly-
nomial PG(t) was first given in [11].

Theorem 10 ([11]) Let �G be the coloring complex of G and let the h-vector of the
double cone of �G be (h0, . . . , hn). Then

(1 − t)n
∞∑

j=0

[(j + 1)n − PG(j + 1)]tj = h0 + h1t + · · · + hnt
n. (2)

Similarly, the h-vector of a unipolar complex can be computed from PG. Interest-
ingly, it does not depend on the choice of vertex.

Theorem 11 ([8, Theorem 2.5]) Let �G be the coloring complex of G and let
(h′

0, . . . , h
′
n−2) be the h-vector of a unipolar complex of �G. Then

(1 − t)n−1
∞∑

j=0

(j + 1)n − PG(j + 1)

j + 1
tj = h′

0 + h′
1t + · · · + hn−2t

n−2. (3)
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Since the h-vector of a cone equals the h-vector of the original complex, hn−1 =
hn = 0. In order to state the enumerative consequences of Theorems 5 and 7, we first
recall the definition of an M-vector.

Definition 12 A sequence of nonnegative integers (h0, h1, . . . , hd) is an M-vector
if it is the Hilbert function of a homogeneous quotient of a polynomial ring. Equiva-
lently, the terms form a degree sequence of an order ideal of monomials.

Another definition given by arithmetic conditions is due to Macaulay. Given posi-
tive integers h and i there is a unique way of writing

h =
(

ai

i

)
+

(
ai−1

i − 1

)
+ · · · +

(
aj

j

)

so that ai > ai−1 > · · · > aj ≥ j ≥ 1. Define

h<i> =
(

ai + 1

i + 1

)
+

(
ai−1 + 1

i

)
+ · · · +

(
aj + 1

j + 1

)
.

Theorem 13 ([10, Theorem 2.2]) A sequence of nonnegative integers (h0, . . . , hd) is
an M-vector if and only if h0 = 1 and hi+1 ≤ h<i>

i for all 1 ≤ i ≤ d − 1.

Theorem 14 Suppose � is a (d − 1)-dimensional complex with a convex ear decom-
position. Then,

(1) h0 ≤ h1 ≤ · · · ≤ h�d/2�.
(2) For i ≤ d/2, hi ≤ hd−i .

(3) (h0, h1 − h0, . . . , h�d/2� − h�d/2�−1) is an M-vector.

Proof The first two inequalities are due to Chari [4]. The last statement is in [12]. �

Theorem 15 Let G be a graph with n vertices. Define h0, . . . , hn by the generating
function equation

h0 + h1t + · · · + hnt
n = (1 − t)n

∞∑

j=0

[(j + 1)n − PG(j + 1)]tj .

Then

(1) h0 ≤ h1 ≤ · · · ≤ h�(n−2)/2�.
(2) For i ≤ (n − 2)/2, hi ≤ hn−2−i .

(3) (h0, h1 − h0, . . . , h�(n−2)/2� − h�(n−2)/2�−1) is an M-vector.

Proof Theorems 5, 10 and 14. �
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Theorem 16 Let G be a graph with n vertices. Suppose G is chromatically equiva-
lent to a graph which contains a vertex of degree n − 1. Define (h′

0, . . . , h
′
n) by the

generating function formula

h′
0 + h′

1t + · · · + h′
n−2t

n = (1 − t)n−1
∞∑

j=0

(j + 1)n − PG(j + 1)

j + 1
tj .

Then
(1) h′

0 ≤ h′
1 ≤ · · · ≤ h′

�(n−2)/2�.
(2) For i ≤ (n − 2)/2, h′

i ≤ h′
n−2−i .

(3) (h′
0, h

′
1 − h′

0, . . . , h
′
�(n−2)/2� − h′

�(n−2)/2�−1) is an M-vector.

Proof Theorems 7, 11 and 14. �

Let A be a subarrangement of the Bn arrangement. The Bn arrangement consists
of all the hyperplanes in AKn and all coordinate hyperplanes xi = 0. In [7] Hultman
proved the following relationship between χA(t), the characteristic polynomial of A

viewed as a matroid, and (h′′
0, . . . , h

′′
n−1), the h-vector of Bn ∩ Sn−1 restricted to A.

Theorem 17 ([7]) Let A be a subarrangement of Bn and let r be the rank of A as
a matroid. Then

h′′
0 + · · · + h′′

n−1t
n−1 = (1 − t)n

∞∑

j=0

[(2j + 1)n − χA(2j + 1)(2j + 1)n−r ]tj . (4)

Combining Theorem 5, Theorem 14 and (4) we obtain the following.

Theorem 18 Let A be a subarrangement of Bn. Define (h′′
0, . . . , h

′′
n−1) by (4). Then

1. h′′
0 ≤ h′′

1 ≤ · · · ≤ h′′
�(n−1)/2�.

2. For i ≤ (n − 1)/2, h′′
i ≤ h′′

n−1−i .

3. (h′′
0, h

′′
1 − h′′

0, . . . , h
′′
�(n−1)/2� − h′′

�(n−1)/2�−1) is an M-vector.

Remark 19 Characteristic polynomials of subarrangements of Bn correspond to chro-
matic polynomials of signed colorings introduced by Zaslavsky. See [14].

In order to apply these methods to other arrangements it is essential that sub-
arrangements with the same characteristic polynomial (as matroids) have the same
h-vector when restricted to the unit sphere. In particular, all the simplicial subdivi-
sions of the codimension one spheres corresponding to the hyperplanes must have the
same h-vector.

Question 20 Are there other (classes of) hyperplane arrangements such that the h-
vectors of subcomplexes induced by subarrangements only depend on the character-
istic polynomials of the subarrangements?
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6 Matroids

Given the close connection between the chromatic polynomial of a graph and the
characteristic polynomial of the associated cycle matroid, it does not seem unrea-
sonable to hope that it is possible to generalize Theorem 15 or Theorem 18 to
matroids. However, as the examples below show, it is not clear that there is any
large class of matroids for which this is possible, though it is certainly possible that
there is.

In these examples we let χM(t) be the characteristic polynomial of the matroid M.

When G is connected, PG(t) = tχMG
(t), where MG is the cycle matroid of the graph.

We will therefore use

h0 + h1t + · · · + hnt
n = (1 − t)n

∞∑

j=0

[(j + 1)n − (j + 1)χM(j + 1)]tj , (5)

as the analog of the h-vector of the coloring complex for a rank n − 1 matroid M.

Let us now give examples violating various parts of Theorem 15.

Example 21 Let M be PG(5,2), the matroid whose elements correspond to the
nonzero elements of the five-dimensional vector space over the field of cardinality
two with their natural independence relations. Then χM(t) = t5 − 31t4 + 310t3 −
1240t2 + 1984t − 1024. Like the matroid associated to the braid arrangements, M is
binary and supersolvable. However, (5) gives, h3 = −1678, a negative integer.

Example 22 Let M be the matroid associated to the B3 arrangement, the hyperplanes
fixed by the symmetries of the cube. Like the braid arrangements, B3 is a free arrange-
ment associated to a root system. χM(t) = t3 −9t2 +23t −15. Using (5) we find that
h0 = 1, h1 = 6, h2 = 47. The hi are nonnegative, but do not form an M-vector.

Example 23 Let χM(t) = (t − 1)3(t − 2)(t − 8)(t − 10). Then χM(t) is the char-
acteristic polynomial of the direct sum of 2 coloops and the parallel connection of
a 3-point line, 9-point line, and an 11-point line [2, Cor. 4.7]. Now we find

(h0, . . . , h5) = (1,121,472,4424,9167,2375).

This is an M-vector and satisfies (1) and (2) of Theorem 15. However, (3) is not
satisfied as

(1,120,351,3952)

is not an M-vector.

Since every AG is a subarrangement of the Bn arrangement, characteristic polyno-
mials of graphic matroids must satisfy Theorem 18. One might hope that this possibly
weaker condition is satisfied by all matroids. However, this is also not true.

Example 24 Let M be the matroid of PG(2,6). Using (4) as a definition with n = 6,

we obtain h1 = −3047 and h3 = −65638.
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Let us conclude by mentioning one class of matroids closely related to graphic
matroids to which Theorem 15 or 18 could perhaps apply.

Question 25 Let M be a regular matroid, namely a matroid representable over every
field. Does M satisfy either Theorem 15 or Theorem 18?
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