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COLORING GRAPHS WITH FIXED GENUS AND GIRTH

JOHN GIMBEL AND CARSTEN THOMASSEN

Abstract. It is well known that the maximum chromatic number of a graph
on the orientable surface Sg is θ(g1/2). We prove that there are positive con-
stants c1, c2 such that every triangle-free graph on Sg has chromatic number

less than c2(g/ log(g))1/3 and that some triangle-free graph on Sg has chro-

matic number at least c1
g1/3

log(g)
. We obtain similar results for graphs with

restricted clique number or girth on Sg or Nk. As an application, we prove

that an Sg-polytope has chromatic number at most O(g3/7). For specific sur-
faces we prove that every graph on the double torus and of girth at least
six is 3-colorable and we characterize completely those triangle-free projective
graphs that are not 3-colorable.

1. Introduction

Grötzsch [14] proved that every planar graph with no triangles can be 3-colored.
A short proof is given in [23]. Kronk and White [18] proved that every toroidal
graph with no triangles can be 4-colored and that every toroidal graph with no
cycles of length less than six can be 3-colored. Kronk [17] studied the chromatic
number of triangle-free graphs on certain surfaces. Thomassen [23] showed that
every graph on the torus with girth at least five is 3-colorable (as conjectured in
[18]) and in the same work showed that a graph which embeds on the projective
plane with no contractible 3-cycle nor 4-cycle is 3-colorable. Cook [5] showed that
if G is a graph of genus g and the girth of G is at least Max{9, 6 + 2 log2(g)} then
G is 3-colorable.

In the following, we will be concerned with finite undirected connected graphs
without loops or multiple edges. With c, c1, c2, c3, . . . we shall indicate positive
constants. By v(G) we indicate the number of vertices in a graph G; g(G) and
k(G) indicate the genus and crosscap number, respectively. Further, e(G) is the
number of edges; q(G) the girth. By Sg we mean the orientable surface of genus g.
Further, Nk denotes the sphere with k crosscaps added. For a graph G embedded
on a surface, we let r(G) be the number of regions. Sometimes we write v, e, etc.
instead of v(G), e(G), etc. For undefined terms and concepts the reader is referred
to [3] and [4].

In Section 2 of this paper we estimate the maximum chromatic number of a
triangle-free graph on a fixed surface as described in the abstract. In Section 3 we
extend the method to graphs of fixed genus and bounded clique number or girth. As
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an application, we show that Sg-polytopes have chromatic number at most O(g3/7)
in response to a question of Croft, et al. [6]. In that section we also determine
the asymptotic behavior of the maximum cochromatic number of a graph on Sg,
a question raised by Straight [21, 22]. In Section 4 we investigate the complexity
of coloring graphs on a fixed surface. In particular, we produce a polynomially
bounded algorithm for finding the chromatic number of such graphs when the girth
is at least six.

In Section 5 we prove that a projective graph of girth at least four has chromatic
number at most three if and only if it does not contain a nonbipartite quadrangu-
lation, as conjectured by D. Youngs [25]. In particular, we obtain a polynomially
bounded algorithm for finding the chromatic number of triangle-free projective
graphs.

In Section 6 we identify the relevant unsolved problems for the torus and Klein
bottle. Finally, we prove in Section 7 that every graph of girth at least six on the
double torus is 3-colorable.

It is perhaps remarkable that the only embedding properties that are needed for
the upper bounds on the chromatic number described above (except for [14, 23])
and also those in the present paper (except for projective graphs) are the upper
bounds on the number of edges which follow from Euler’s formula. In other words,
the actual structure of the embedding plays no role. We shall make this precise as
follows. If G is a graph on Sg or Nk, Euler’s formula says:

v − e+ r ≥ 2− 2g

or

v − e+ r ≥ 2− k.

If, in addition, G has girth at least q(q ≥ 3) and at least one cycle, then

2e ≥ qr.

Hence,

e(1− 2/q) ≤ v − 2 + 2g

or

e(1− 2/q) ≤ v − 2 + k.

Motivated by this we say that a graph G is (a, b)-restricted (a ≥ 0 and b ≥ 3) if G
has girth at least b and for each induced subgraph H of G,

e(H)(1− 2/b) ≤ v(H)− 2 + a.

Now all known upper bounds for chromatic number of graphs of girth q on Sg,
including those in the present paper but excluding those of [14, 23], hold for (2g, q)-
restricted graphs. Hence they hold for nonorientable surfaces as well. This leads to
the following general question.

Problem 1. Do the following hold for all k ≥ 3 and g ≥ 1 and q ≥ 3:

Max{χ(G) : g(G) ≤ g, q(G) ≥ q} = Max{χ(G) : G is (2g, q)-restricted}
and

Max{χ(G) : k(G) ≤ k, q(G) ≥ q} = Max{χ(G) : G is (k, q)-restricted}?
Given graphs G1 and G2 with edges u1v1 and u2v2 taken respectively from G1 and
G2, let us form a new graph by identifying u1 and u2, adding the edge v1v2, and
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COLORING GRAPHS WITH FIXED GENUS AND GIRTH 4557

removing the edges u1v1 and u2v2. This operation, discussed in [15], is known as
the Hajós construction.

We cannot have equality in Problem 1 for surfaces of positive Euler characteristic
because of the Hajós construction. (If we apply the Hajós construction to two copies
of K5 we obtain a (0, 3)-restricted graph of chromatic number five; whereas every
graph on the sphere S0 has chromatic number at most four by the 4-color theorem.)
Also, we have to exclude the Klein bottle, since K7 is a (2, 3)-restricted graph of
chromatic number seven whereas every graph on the Klein bottle N2 has chromatic
number at most six.

2. Triangle-free graphs on a fixed surface

Let Cm
g (respectively Qm

g ) be the maximum chromatic number of all graphs of

genus g and clique number (girth) less than (greater than) m. Thus, C3
g = Q3

g.

Theorem 2.1. There exist c1 and c2 such that

c1
3
√
g

log g
≤ Q3

g ≤ c2 3

√
g

log g
.

Proof. Erdös [8] proved the existence of a triangle-free graph of order bg2/3c having
at most g edges and an independence number less than cg1/3 log(g). Clearly, such
a graph can be embedded on a surface of genus g. Dividing the order by the
independence number establishes the lower bound. In [1, 2] the existence of a c1
is established having the property that any triangle-free graph of order n must
contain an independent set of order at least c1

√
n log(n). Suppose G is a triangle-

free graph of genus g. Let us set s = 3

√
g

log g . We wish to show the existence of

a c2 where χ(G) ≤ c2s. Now, successively remove from G vertices of degree less
than s until all remaining vertices have degree at least s. Let H denote the graph

that remains. Then e(H) ≥ sv(H)
2 . Note, G − H can be colored with s colors.

Assuming H is non-empty, we will color H with at most c3s colors. By Euler’s
formula e(H) ≤ 3v(H) − 6 + 6g. Hence, v(H) < c4g

2/3(log g)1/3. Let us set this
last expression equal to w. Suppose some triangle-free graph has order t, where
w

4m+1 ≤ t < w
4m . We note it must contain an independent set of order at least

c1

√
w

2m+1

√
log(w) − (m+ 1) log(4)

by [1, 2]. After assigning this set a color, let us remove it and repeat the process
until at most w

4m+1 vertices remain. In doing so, we will have used at most
√
w

c12m−1
√

log(w) − (m+ 1) log(4)

colors. Let us apply this process to H , increasing m until w
4m ≤ s. Such a process

generates at most

M∑
m=0

√
w

c12m−1
√

log(w) − (m+ 1) log(4)

color classes, where M = dlog4(w/s)e + 1. But this sum is bounded above by
8
c1

√
w

logw . Further, this expression is less than some multiple of s. At this point,
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at most s vertices are uncolored. We may assign each a distinct color and in doing
so, we color G with fewer than some multiple of s colors.

Recently an improved bound on the Ramsey number R(3,m) was found by R. H.
Kim [16]. The proof allows log g in the lower bound of Theorem 2.1 to be replaced
by (log g)2/3.

3. Clique number, girth, polyhedral surfaces, cochromatic number

The method of Theorem 2.1 extends to the following result.

Theorem 3.1. For fixed s, there exist c1 and c2 where for sufficiently large g,

c1
g
s−1
2s

(log g)
≤ Cs

g ≤ c2

(
g

log g

) s−2
2s−3

.

Theorem 3.2. For fixed s, there exist c1 and c2 where for arbitrarily small ε > 0
and sufficiently large g,

c1g
1−ε
2s+2 ≤ Qs

g ≤ c2g
2

s+3 .

The proofs of these remarks are similar to the proof of Theorem 2.1. And so,
we simply point out that the lower bound of Theorem 3.1 follows from a result of
Bollobás [3]. (See the proof of Theorem 11, pages 287–289.) For the upper bound
we use [3, Theorem 17, page 298] instead of [1, 2]. The lower bound of Theorem 3.2
follows from the proof of inequality (4) in [7] and the upper bound follows from
inequality (5) in the same document.

An Sg-polytope is a topological subspace in the 3-space R3 which is homeomor-
phic to Sg and which is the union of a finite collection of convex polygons. Its
chromatic number is the smallest number of colors needed to color its dual graph.
Croft, Falconer and Guy [6] suggest a comparison between the maximum chromatic
number of an Sg-polytope with the Heawood bound θ(g1/2). In [24] it is pointed
out that the dual graph of an Sg-polytope contains no K5. Hence, Theorem 3.1
implies:

Theorem 3.3. Every Sg-polytope has chromatic number o(g3/7).

No doubt, it is possible in the preceding theorem to decrease the constant 3/7.
But perhaps it would be more interesting to look for some lower bound.

Problem 2 ([24]). Does there exist an Sg-polytope with chromatic number at least
100?

Given G, the cochromatic number, z(G), of G is the minimum order of all parti-
tions of V (G) where each part induces a complete or empty graph. Straight asked
in [21, 22] what is the largest possible z for graphs embeddable on a given surface.
Using a proof-technique similar to that above, we can give an asymptotic solution
for orientable surfaces. Let us denote by z(Sg) the maximum cochromatic number
of all graphs which embed on Sg.

Theorem 3.4. With the preceding notation, z(Sg) = θ(
√
g

log g ).

Proof. As is shown in [13], there exists a graph of order b√gc which has cochromatic

number at least c1
√
g

log g and embeds on Sg. So, suppose Gg is a graph of genus g.

Remove from Gg all vertices of degree less than
√
g

log g . Repeat this process until all
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COLORING GRAPHS WITH FIXED GENUS AND GIRTH 4559

vertices that remain have degree at least
√
g

log g . Let Hg be the graph that remains at

the end of this process. As before, we can color Gg −Hg using at most
√
g

log g colors.

We note e(Hg) ≥ v(Hg)
√
g

2 log g . By Euler’s formula e(Hg) < 7g, for g sufficiently

large. From [9] we know that a graph with this size can have cochromatic number

at most c2
√
g

log g .

4. Critical graphs and computational complexity

Let us say G is k-critical if for each edge e, χ(G − e) < χ(G) = k. In this
section we consider the following general question. Let g, k, q be natural numbers
where q ≥ 3. Does there exist infinitely many k-critical graphs of girth at least q
embedded on Sq?

Since the 3-critical graphs are the odd cycles, we shall assume that k ≥ 4. For
g = 0 and q = 3, the answer is affirmative as shown by repeatedly applying Hajós’
construction to K4. (Note, Hajós’ construction applied to two k-critical graphs
produces a new k-critical graph.) By Grötzsch’s theorem (see [23]) there exists no
4-critical graph of girth at least four on the sphere. So for g = 0, the above question
is settled completely.

We now turn to the case g at least one. If G is k-critical, G 6= Kk and k ≥ 4,
then

2e(G) ≥ (k − 1)v(G) +
k − 3

k2 − 3
v(G) +

k − 1

k2 − 3
.

This inequality was first established by Gallai [11] with a slight improvement by
Dirac (see [19]). This bound leads to the following.

Theorem 4.1. If G is triangle-free of genus g and k-critical, k ≥ 4, with order v,
then

8g − 8− k − 1

k2 − 3
≥
(
k − 5 +

k − 3

k2 − 3

)
v.

Proof. If G embeds on Sg with r regions, then 4r ≤ 2e. Thus, from Euler’s formula,
4v − 8 + 8g ≥ 2e. Using the preceding bound we achieve the desired bound.

If g and k are fixed, and k ≥ 5, then the preceding bounds v from above. Hence
the following.

Corollary 4.2. If k ≥ 5, there are only a finite number of k-critical triangle-free
graphs which embed on a given surface.

We note that this corollary is the best possible in the sense that Mycielski-
Grötzsch graphs [14, 20] are 4-critical and triangle-free, yet embed on the torus.

In general, computing a bound on the chromatic number is difficult. If k ≥ 3
then by [12] determining if χ(G) ≤ k is NP-complete. Even if G is a planar graph
with ∆(G) = 4, by [12], determining if χ(G) ≤ 3 is NP-complete. However, for
triangle-free graphs of bounded genus we have:

Corollary 4.3. If k ≥ 4, and G is a triangle-free graph of bounded genus, then we
can determine in polynomial time if χ(G) ≤ k.

Proof. If G is triangle-free and of bounded genus and χ(G) > k then G contains a
(k + 1)-critical subgraph. But as there are only a finite number of (k + 1)-critical
graphs, we can check in polynomial time if G contains such a subgraph.
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Of course, we can tell in polynomial time if χ(G) = 2. This leads us to an open
question:

Problem 3. If G is triangle-free and of bounded genus or crosscap number, can
we tell in polynomial time if χ(G) = 3?

In Section 5 we answer this for graphs in the projective plane N1.
If χ(G) ≥ 5, then in any embedding of G, there must be a non-contractible

cycle. Therefore Corollary 4.2 includes the following result—discovered by Fisk
and Mohar [10].

Corollary 4.4. Given g, there exists a constant cg so that if G is triangle-free and
embeds on Sg with all non-bounding cycles having length at least cg then χ(G) ≤ 4.

By similar arguments we get

Theorem 4.5. If t ≥ 4, there are only a finite number of t-critical graphs of girth
at least six which embed on a given surface.

Corollary 4.6. The chromatic number of a graph of girth at least six on a fixed
surface can be found in polynomial time.

We do not know if Corollary 4.6 remains true when “six” is replaced by “five”
or “four”.

Problem 4. Can the chromatic number of a graph of girth five (respectively four)
on a fixed surface be found in polynomial time?

By Corollary 4.3 only the 3-color problem in Problem 4 remains open.
As we pointed out, k-critical graphs are useful for polynomial time algorithms.

Thomassen [24] proved that there are only finitely many 6-critical graphs on a fixed
surface. Examples due to Fisk (see [24]) show that infinitely many 5-critical graphs
embed on the torus. Corollary 4.2 and Theorem 4.5 are in the same spirit. One
case remains open:

Problem 5. Does there exist a surface S with an infinite family of 4-critical graphs
of girth five?

5. The projective plane N1

Albertson and Hutchinson [26] showed that each graph in N1 is 5-colorable un-
less it contains K6. It is easy to see that each graph of girth four in N1 is 4-
colorable. Thomassen [23] proved that every projective graph of girth at least five
is 3-colorable. More precisely

Theorem 5.1 ([23]). If G is a graph in N1 with no contractible cycle of length
three or four, then G is 3-colorable.

Theorem 5.1 is the best possible in a strong sense by the following result of
Youngs [25].

Theorem 5.2 ([25]). If G is a nonbipartite quadrangulation of N1, then χ(G) = 4.

In other words, a quadrangulation of N1 may have chromatic number two or
four, but it cannot have chromatic number three. Youngs [25] also conjectured
that if a triangle-free graph in N1 has chromatic number four, then it contains a
nonbipartite quadrangulation. We shall prove that conjecture. First we prove an
extension of Grötzsch’s theorem which is of interest in its own right. As the method
is the same as [23], some details which can be found in [23] are omitted here.
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Theorem 5.3. Let G be a planar triangle-free graph with chordless outer cycle
C : x1, x2, x3, x4, x5, x6, x1. Let c be a coloring of C in colors 1, 2, 3. Then c can
be extended to a 3-coloring of G if and only if G doesn’t contain a 2-connected
subgraph H with outer cycle C such that all other facial cycles are 4-cycles and
such that opposite vertices of C have the same color.

Proof. The “only if” part of Theorem 5.3 follows from Theorem 5.2. For if H exists
and we identify any two opposite vertices of C, then H becomes a nonbipartite
quadrangulation of N1. Assume therefore that H does not exist. We prove, by
induction on V (G), that c can be extended to a 3-coloring.

Assume first that G − C has a vertex x joined to at least two vertices of C. If
x cannot be colored by 1, 2, or 3, then G(V (C) ∪ {x}) can play a role of H . If x
can be colored, then we color x and apply the induction hypothesis to the two or
three faces of G(V (C) ∪ {x}). (In Grötzsch’s theorem a cycle of length 4 or 5 is
allowed to be precolored, see [23].) So assume that no vertex of G−C is joined to
two vertices of C.

We may also assume that each vertex of G − C has degree at least three since
otherwise we delete it and use induction.

If G has a separating cycle S of length at most five, then we delete the interior and
apply the induction hypothesis to the remaining graph. Then we apply Grötzsch’s
Theorem to the interior of S. So assume that G has no separating cycle of length
four or five.

If G has girth at least five, then c can be extended to a 3-coloring by [23, Theorem
3.1]. So assume that C1 : y1, y2, y3, y4, y1 is a 4-cycle in G. As G has no separating
4-cycle, C1 is facial. Since G − C has no vertex joined to two vertices of C, it is
possible to identify either y1, y3 or y2, y4 (say the former) into a vertex y0 such that
C is still chordless. Also, we do not create a triangle, since G has no separating 5-
cycle. By the induction hypothesis, we may assume that the new graph (containing
y0) contains a quadrangulation, say H ′, and that x1, x2, x3, x4, x5, x6 are colored
1, 2, 3, 1, 2, 3, respectively. If y0 6∈ V (H ′), then we are finished. So assume that
y0 ∈ V (H ′). Let H ′′ be obtained from H ′ by splitting y0 into y1 and y2 and adding
the edges and vertices of C1. If y2, y4 ∈ V (H ′), then H ′′ can play the role of H .
So assume that y2 6∈ V (H ′). Using the induction hypothesis, we may assume that
c can be extended to a 3-coloring of G minus the interior of the unique 6-cycle C2

which contains two edges incident with y2 and four edges of H ′. Now the resulting
coloring can be extended to a 3-coloring of G unless the interior of C2 contains
a subgraph H1 with outer cycle C2 such that all other facial cycles are 4-cycles.
If y4 6∈ V (H ′) then we find similarly a subgraph H2 inside a 6-cycle containing
y1, y4, y3 and four edges of H ′ such that all bounded faces of H2 are bounded by
4-cycles. Now H ′ ∪H1 ∪H2 can play the role of H .

Theorem 5.4. Let G be a graph in the projective plane N1 such that all contractible
cycles have length at least four. Then G is 3-colorable if and only if G does not
contain a nonbipartite quadrangulation.

Proof. The “only if” part follows from Theorem 5.2. We prove the “if” part by
induction.

If G has a 3-cycle C, then C is noncontractible. We color C by 1, 2, 3 and we
cut C into a 6-cycle and apply Theorem 5.3. So assume that G has no 3-cycle.
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We may also assume that G has no vertex of degree less than three nor a separat-
ing contractible 4-cycle or 5-cycle since otherwise we use the method of Theorem 5.3.

By Theorem 5.1, we may then assume that G has a facial 4-cycle y1, y2, y3,
y4, y1. We now identify y1 and y3. As G has no 3-cycle we create no loops. As G
has no vertex of degree two and no separating contractible cycle of length at most
five, we create no contractible 3-cycle. Now we complete the proof by induction
as in Theorem 5.3. If χ(G) > 3, then we obtain a subgraph H of G which is a
quadrangulation of N1. It only remains to prove that χ(H) > 2. But, otherwise
any 2-coloring of H can be extended to a 3-coloring of G by Grötzsch’s theorem.

Corollary 5.5. There exists a polynomially bounded algorithm for finding the chro-
matic number of a triangle-free projective graph G.

Proof. It is easy to decide if χ(G) = 1 or χ(G) = 2. So assume that χ(G) ≥ 3.
By the first remark of Section 5, χ(G) ≤ 4. To decide whether χ(G) < 4 we use
Theorem 5.4. We delete successively the interior of every contractible 4-cycle until
we have a graph H in N1 with no contractible 4-cycle. Then χ(G) ≤ 3 if and only if
χ(H) ≤ 3 by Grötzsch’s theorem. By Theorem 5.4, χ(H) ≤ 3 if and only if H is not
a quadrangulation or H is a bipartite quadrangulation (which is easy to test).

6. The torus S1 and the Klein bottle N2

It is well known that each graph in S1 or N2 is 6-colorable unless it contains K7.
(Note that K7 can be embedded in S1 but not in N2.) Kronk and White [18] proved
that every graph of girth at least four in S1 is 4-colorable. The proof also works for
(2, 4)-restricted graphs and hence also for graphs on the Klein bottle. The result
is the best possible for S1 because of the Mycielski-Grötzsch graphs [14, 20] and
for N2 because of the graphs in Theorem 5.2. Going to girth five, Thomassen [23]
proved

Theorem 6.1 ([23]). Every graph on the torus with no contractible cycle of length
less than five is 3-colorable.

As K4 can be drawn on N2 such that all cycles are noncontractible, Theorem 6.1
does not extend to N2. Instead we have the following problem.

Problem 6. Is every graph of girth at least five on N2 3-colorable?

We may also seek an analogue of Theorem 5.4.

Problem 7. Characterize the graphs of girth four on S1 which are not 3-colorable.

Or even more generally:

Problem 8. Characterize the (2, 4)-restricted graphs which are not 3-colorable.

Recall that (2, 4)-restricted guarantees that no subgraph has more than twice as
many edges as vertices. A precise solution to Problem 8 would also solve Problems 6
and 7 and prove Theorem 6.1.

7. The double torus S2

Problem 9. Is every graph on S2 of girth four 4-colorable?

Problem 10. Is every graph on S2 of girth five 3-colorable?
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By Corollary 4.2, Problem 9 is decidable whereas this is not known for Prob-
lem 10 (compare with Problem 5). So we focus on Problem 10.

An affirmative answer to Problem 10 would imply the corollary of Theorem 6.1
that every toroidal graph of girth at least five is 3-colorable.

Our final result is weaker than Problem 10 but stronger than the result of Cook
[5] that a graph of girth at least six which embeds on the double torus has chromatic
number at most four.

Theorem 7.1. Every graph of girth at least six and genus two is 3-colorable.

This theorem can be expanded to the more general family of (4, 6)-restricted
graphs. As the problem is finite, we merely present an outline of the proof. Suppose
the statement is false. Let G be a 4-critical (4, 6)-restricted graph. We wish to show
that G is 3-colorable. The minor of G is the graph induced by all vertices of degree
three in G. The major of G is the graph induced by all vertices of G not in the
minor. From Gallai [11] we know that each block of the minor is a clique or odd
cycle. Given the restrictions on the girth of G, each block of the minor is an edge
or an odd cycle of length at least seven. We note that 2

3e ≤ v + 2. As 2e equals
the sum of degrees in G, there are at most six vertices in the major. We can color
G by first 3-coloring the major and then extending this to each component of the
minor. We note that if two vertices in the minor are adjacent in some cycle in the
minor, and these two vertices are adjacent to vertices assigned different colors in
the major, then the 3-coloring can be extended to the entire component. Likewise,
if a vertex v has degree zero or one in the minor, and this vertex is adjacent to
two vertices in the major which are given the same color, then the 3-coloring of
the major can be extended to the component containing v. There are a number
of cases to consider, but in each case one of these two coloring extensions can be
applied to 3-color all of G.
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23. C. Thomassen, Grötzsch’s 3-color theorem and its counterparts for the torus and the projective

plane, J. Comb. Theory (B) 62 (1994), 268–279. MR 95j:05098
24. , Color critical graphs on a fixed surface, to appear.
25. D. A. Youngs, 4-chromatic projective graphs, J. Graph Theory 21 (1996), 219–227. MR

96h:05081
26. M. Albertson and J. Hutchinson, The three excluded cases of Dirac’s map-color theorem, Ann.

New York Acad. Sci. 319 (1979), 7–17. MR 81c:05037

Department of Mathematical Sciences, University of Alaska, Fairbanks, Alaska

99775

E-mail address: ffjgg@aurora.alaska.edu

Mathematical Institute, Building 303, Technical University of Denmark, 2800

Lyngby, Denmark

E-mail address: cthomassen@mat.dtu.dk

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


