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Abstract

We prove that the intersection hypergraph of a family of n pseudo-disks with respect
to another family of pseudo-disks admits a proper coloring with four colors and a
conflict-free coloring with O(log n) colors. Along the way we prove that the respective
Delaunay-graph is planar. We also prove that the intersection hypergraph of a family
of n regions with linear union complexity with respect to a family of pseudo-disks
admits a proper coloring with constantly many colors and a conflict-free coloring with
O(log n) colors. Our results serve as a common generalization and strengthening of
many earlier results, including ones about proper and conflict-free coloring points with
respect to pseudo-disks, coloring regions of linear union complexity with respect to
points and coloring disks with respect to disks.

Keywords Geometric hypergraph coloring · Intersection hypergraph ·

Delaunay-graph · Pseudo-disks · Regions with linear union complexity

1 Introduction

Proper colorings of hypergraphs and graphs defined by geometric regions are studied
extensively due to their connections to, among others, conflict-free colorings and to
cover-decomposability problems, both of which have real-life motivations in cellular
networks, scheduling, etc. For applications and history we refer to the surveys [25,28].
Here we restrict our attention to the (already long list of) results that directly precede
our results. We discuss further directions and connections to other problems in Sect. 6.
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Our central family of regions is the family of pseudo-disks. Families of pseudo-
disks have been regarded in many settings for a long time due to being the natural
way of generalizing disks while retaining many of their topological and combinatorial
properties. Problems regarded range from classic algorithmic questions like finding
maximum size independent (disjoint) subfamilies [6] to classical combinatorial geo-
metric questions like the Erdős–Szekeres problem [12]. Probably the most important
pseudo-disk family is the family of homothets of a convex region. Pseudo-disks are
also central in the area of geometric hypergraph coloring problems as we will see soon
in this section.

Before we state our results and their precursors, we need to introduce some basic
definitions.

Definition 1.1 Given a hypergraph H, a proper coloring of its vertices is a coloring
in which every hyperedge H of size at least 2 of H contains two differently colored
vertices.

Throughout the paper hypergraphs can contain hyperedges of size at least 2 only,
in other words we do not allow (or automatically delete, when necessary) hyperedges
of size 1.

Definition 1.2 Given a hypergraph H, a conflict-free coloring of its vertices is a color-
ing in which every hyperedge H contains a vertex whose color differs from the color
of every other vertex of H .

Definition 1.3 Given a family B of regions and a family F of regions, the intersection

hypergraph of B with respect to (wrt. in short) F is the simple (that is, it has no
multiple hyperedges) hypergraph I(B,F) which has a vertex vB corresponding to
every B ∈ B and for every F ∈ F it has a hyperedge H = {vB : B ∩ F �= ∅} (if this
set has size at least 2) which corresponds to F . The Delaunay-graph of B wrt. F is
the graph on the same vertex set containing only the hyperedges of I(B,F) of size 2.

Note that if B is finite, then even if F is infinite, I(B,F) has finitely many hyper-
edges. In particular, a hyperedge H can correspond to multiple members of F .

We also define the following subgraph of the Delaunay-graph:

Definition 1.4 The restricted Delaunay-graph of B wrt. F is the subgraph of the
Delaunay-graph containing only those (hyper)edges HF = {vB1 , vB2} for which the
corresponding F ∈ F intersects B1 and B2 in disjoint regions, that is, F ∩ B1 �= ∅,
F ∩ B2 �= ∅, F ∩ B1 ∩ B2 = ∅ and F ∩ B = ∅ for every B ∈ B \ {B1, B2}.

Observation 1.5 ([27]) If B and F are families for which every hyperedge of I(B,F)

contains a hyperedge of size 2, then a proper coloring of the Delaunay-graph is also

a proper coloring of I(B,F).

In the literature hypergraphs that have the property assumed in Observation 1.5 are
sometimes called rank two hypergraphs (e.g., in [27]).

Definition 1.6 We say that B can be properly/conflict-free/etc. colored wrt. F with
f (n) colors if for any B′ subfamily of B of size n, the hypergraph I(B′,F) can be
properly/conflict-free/etc. colored with f (n) colors.
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We note that one could further generalize this notion so that instead of intersection
we regard inclusion/reverse-inclusion as the relation that defines the hyperedges, as
it is done, e.g., in [18] for hypergraphs defined by intervals. For problems related to
such variants see Sect. 6.

In the majority of earlier results, coloring points wrt. a family of regions or coloring
a family of regions wrt. points were regarded. While they were not defined as intersec-
tion hypergraphs, they do fit into our general definition of intersection hypergraphs,
choosing either B or F to be the family of points of the plane. Notice that whenever
every point is (or can added to be) a member of the family F , e.g., for disks, for homo-
thets of a convex region and for pseudo-disks1, coloring intersection hypergraphs of
any finite subfamily F ′ of F wrt. to F is a common generalization both of coloring
any finite set of points wrt. F and of coloring any finite subfamily F ′ of F wrt. points.

There are only a few earlier results regarding this general setting. In [18] intersection
(and also inclusion and reverse-inclusion) hypergraphs of intervals of the line were
considered. In [10,14] they considered intersection hypergraphs (and graphs) of (unit)
disks, pseudo-disks, squares and axis-parallel rectangles.

1.1 Results Related to Pseudo-Disks

It is well known that the Delaunay-graph of points wrt. disks is planar and thus proper
4-colorable, and Observation 1.5 implies that the respective hypergraph is also proper
4-colorable.

In [27] Smorodinsky developed a general framework (based on the framework
presented in [9]): using proper colorings of the subhypergraphs of the hypergraph
with constantly many colors it can build a conflict-free coloring with O(log n) colors
(where n is the number of vertices of the hypergraph). The results mentioned from now
on use this framework to get a conflict-free coloring once there is a proper coloring.
First, using the precursor of this framework, it was proved by Even et al. [9] that points
wrt. disks admit a conflict-free coloring with O(log n) colors:

Theorem 1.7 ([9]) Let D be the family of disks in the plane and P a finite set of points,

I(P,D) admits a conflict-free coloring with O(log n) colors, where n = |P|.

Definition 1.8 A Jordan region is a (simply connected) closed bounded region whose
boundary is a closed simple Jordan curve.

A family of Jordan regions is called a family of pseudo-disks if the boundaries of
every pair of the regions intersect in at most two points.

Although we could not find it in the literature, it is well known that if instead of
a family of disks we take a family of pseudo-disks, the bound of Theorem 1.7 still
holds:

Theorem 1.9 (Folklore) Let F be a family of pseudo-disks and P a finite set of points,

I(P,F) admits a proper coloring with four colors and a conflict-free coloring with

O(log n) colors, where n = |P|.

1 See Corollary 2.3 for a precise formulation of this property for pseudo-disks.

123



Discrete & Computational Geometry (2020) 64:942–964 945

The proof is that the Delaunay-graph of points with respect to pseudo-disks is also
a planar graph (implied by, e.g., Lemma 2.6, see later) and thus proper 4-colorable and
then we can apply Observation 1.5 (we can assume that the hypergraph is rank two
by, e.g., Corollary 2.3) to conclude that the respective hypergraph is also 4-colorable.
Then the general framework of Smorodinsky mentioned above implies an O(log n)

upper bound for a conflict-free coloring.
The dual of Theorem 1.7 was also proved by Even et al. and was generalized to

pseudo-disks by Smorodinsky:

Theorem 1.10 ([9]) Let P be the set of all points of the plane and B a finite family of

disks, I(B, P) admits a proper coloring with four colors and a conflict-free coloring

with O(log n) colors, where n = |B|.

Theorem 1.11 ([27]) Let P be the set of all points of the plane and B be a finite family

of pseudo-disks, I(B, P) admits a proper coloring with a constant number of colors

and a conflict-free coloring with O(log n) colors, where n = |B|.

While for coloring pseudo-disks wrt. points there was no explicit upper bound, for
the special case of homothets of a convex region2, the constant was shown by Cardinal
and Korman to be 4, just like for disks:

Theorem 1.12 ([5]) Let P be the set of all points of the plane and B be a finite family

of homothets of a given convex region, I(B, P) admits a proper coloring with four

colors.

Recently it was proved by Keller and Smorodinsky that disks wrt. disks can also
be colored in such a way, a common generalization of Theorems 1.7 and 1.10 :

Theorem 1.13 ([14]) Let D be the family of all disks in the plane and B a finite family

of disks, I(B,D) admits a proper coloring with six colors and a conflict-free coloring

with O(log n) colors, where n = |B|.

While they did not prove the same for pseudo-disks, they solved two special cases
(they stated these only as part of the proof of their main result):

Claim 1.14 ([14]) Given a finite family F of pseudo-disks and a subfamily B of F , if

either B or F \ B contains only pairwise disjoint pseudo-disks, then I(B,F) admits

a proper coloring with a constant number of colors and a conflict-free coloring with

O(log n) colors, where n = |B|.

In this paper we generalize Theorem 1.13 to the case of coloring a pseudo-disk
family wrt. another pseudo-disk family, which is a common generalization of all the
above results (Theorems 1.7,1.10,1.11,1.12,1.13 and Claim 1.14). Moreover we prove
the optimal upper bound of four colors, which improves the bound of Theorem 1.11 for
coloring pseudo-disks wrt. points from some constant number of colors to four colors
and improves the bound of Theorem 1.13 for coloring disks wrt. disks from six colors
to four colors. Furthermore, it provides an alternative proof for Theorems 1.10 and
1.12 (both of these were originally proved using dualization and solving equivalent
problems about coloring points in the 3-dimensional space):

2 For further results about homothets of a convex region see Sect. 6.
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Theorem 1.15 Given a family F of pseudo-disks and a finite family B of pseudo-disks,

I(B,F) admits a proper coloring with four colors.

Along the way we prove that the respective Delaunay-graph is planar:

Theorem 1.16 Given a family F of pseudo-disks and a finite family B of pseudo-disks,

the Delaunay-graph of B wrt. F is a planar graph.

This was not known even for the Delaunay-graph of pseudo-disks wrt. points. With
standard methods (present also in the proof of Theorem 1.25) this already implies
Theorem 1.15 with six colors instead of four. To achieve the optimal bound we will
need some additional ideas.

We mention that if B and F are both families of pairwise disjoint simply connected
regions, then I(B,F) is a planar hypergraph3 and all planar hypergraphs can be
generated this way. From this perspective Theorem 1.15 says that even with a much
more relaxed definition of planarity of a hypergraph it remains 4-colorable.

Using the usual framework it easily follows from Theorem 1.15 that:

Corollary 1.17 Given a family F of pseudo-disks and a finite family B of pseudo-disks,

I(B,F) admits a conflict-free coloring with O(log n) colors, where n = |B|.

We note that Claim 1.14 implies in a straightforward way the main result of [14]
about conflict-free coloring the (open/closed) neighborhood hypergraphs of intersec-
tion graphs of pseudo-disks (for definitions and details see [14]). Thus, Theorem 1.15
also implies their main result.

Note that in Theorem 1.15, B and F are not related in any way, thus among oth-
ers, even though two convex regions can intersect infinitely many times, it implies
somewhat surprisingly the following:

Corollary 1.18 We can proper color with four colors the family of homothets of a

convex region A wrt. the family of homothets of another convex region B.

Buzaglo et al. [4] have shown that the VC-dimension of the hypergraph I(P,F),
defined by a finite point set P with respect to a family F of pseudo-disks, is at most 3
(and this bound is tight) and used this to prove that the number of hyperedges of size at
most k in such a hypergraph is O(k2n) (and this can be attained already by F being a
specific family of disks). More recently, Aronov et al. [3] proved independently from
us with an almost identical proof the case of Lemma 2.7 when B ⊂ F (for details see
later, it is a very special case of Theorem 1.16) and showed that this implies that for
a pseudo-disk family F and a finite subfamily B of F , the intersection hypergraph
I(B,F)has VC-dimension at most 4 (and this bound is tight). Using methods similar to
the ones in [4] they show that this implies that the number of hyperedges of size at most
k in I(B,F) in this case is O(k3n) (they do not give a construction with a matching
lower bound, however). We show that using Lemma 2.7 instead of their weaker variant
we get the following more general statements (where B is not necessarily a subfamily
of F):

3 The most common definition of a planar hypergraph is that its bipartite incidence graph is planar.
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Theorem 1.19 Given a family F of pseudo-disks and a finite family B of pseudo-disks,

the intersection hypergraph I(B F) has VC-dimension at most 4 (and this bound is

tight).

Theorem 1.20 Given a family F of pseudo-disks and a family B of n pseudo-disks,

the number of hyperedges of size at most k in the intersection hypergraph I(B F) is

O(k3n).

We note that in case of Theorem 1.20 we are again not aware of a matching lower
bound (and in fact this upper bound might easily not be tight).

1.2 Results Related to Families of Linear Union Complexity

In [27] Theorem 1.11 was shown by proving a more general statement about coloring
a family of regions that has linear union complexity wrt. points.

Definition 1.21 Let B be a family of finitely many Jordan regions in the plane such
that the boundaries of its members intersect in finite many points. The vertices of the
arrangement of B are the intersection points of the boundaries of regions in B, the
edges are the maximal connected parts of the boundaries of regions in B that do not
contain a vertex and the faces are the maximal connected parts of the plane which are
disjoint from the edges and the vertices of the arrangement.

Definition 1.22 The union complexity U(B) of a family of Jordan regions B is the
number of edges of the arrangement B that lie on the boundary of

⋃
B∈B B.

We say that a family of regions B has (c)-linear union complexity if there exists a
constant c such that for any subfamily B′ of B the union complexity of B′ is at most
c|B′|.4

Theorem 1.23 ([13]) Any finite family of pseudo-disks in the plane has a linear union

complexity.

Theorem 1.23 shows that the following result of Smorodinsky is indeed more gen-
eral than Theorem 1.11.

Theorem 1.24 ([27]) Let P be the set of all points of the plane and B be a finite

family of Jordan regions with linear union complexity. Then I(B, P) admits a proper

coloring with a constant number of colors and a conflict-free coloring with O(log n)

colors, where n = |B|.5

We generalize this in the following way:

4 Sometimes in the literature, in the definition of union complexity they count vertices rather than edges,
yet it is easy to see (see Lemma 5.1 later) that this does not affect the property of having linear union
complexity when B is a family of Jordan regions. Also note that linear union complexity is not always
defined hereditarily, we defined it this way in order to simplify our statements.
5 When a statement is about a family with (c-)linear union complexity, by a constant we mean a constant
that depends on c and the O notation similarly hides a dependence on c.
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Theorem 1.25 Given a family F of pseudo-disks and a finite family B of Jordan regions

with linear union complexity,I(B,F)admits a proper coloring with a constant number

of colors.

Note that using Theorem 1.23 we get that Theorem 1.25 implies Theorem 1.15 with
a (non-explicit and worse) upper bound.

Corollary 1.26 Given a family F of pseudo-disks and a finite family B of Jordan regions

with linear union complexity, I(B,F) admits a conflict-free coloring with O(log n)

colors, where n = |B|.

We note that the proof of Theorem 1.25 works without modification also when
instead of Jordan-regions (i.e., bounded regions whose boundary is a single closed
Jordan curve), B is a family of bounded regions whose boundary is a union of a finite
number of disjoint Jordan curves (in particular the regions are not necessarily simple
or connected). Observe that the definition of union complexity is well-defined for such
families as well, yet in this case we do need to count edges and not vertices to have
a true statement (recall that previously it did not matter). Thus Theorem 1.25 and
Corollary 1.26 hold in this more general setting as well.

The rest of the paper is structured as follows. In Sect. 2 we prove Theorem 1.16. In
Sect. 3 we prove Theorem 1.15. Implications about conflict-free colorings and VC-
dimensions and the number of bounded size hyperedges in intersection hypergraphs
are detailed in Sect. 4. In Sect. 5 we prove the results about regions of linear union
complexity. We also give an example that shows that we cannot always color properly
points wrt. a family of linear union complexity with constantly many colors. This
shows that Theorem 1.25 is strongest possible in the sense that we cannot change F

from pseudo-disks to a family with linear union complexity, even if B would be only
a finite family of points in the plane. Finally, in Sect. 6 we discuss some related (open)
problems.

2 The Delaunay-Graph of Pseudo-Disks wrt. Pseudo-Disks

In this section we prove Theorem 1.16. First we list some tools we need from the
papers of Pinchasi [26] and Buzaglo et al. [4] about pseudo-disks:

Lemma 2.1 ([26]) Let F be a family of pseudo-disks. Let D ∈ F and let x ∈ D be

any point. Then D can continuously be shrunk to the point x so that at each moment

F is a family of pseudo-disks.

Note that when shrinking this way, we can keep all shrunk copies of D in the family,
it remains a pseudo-disk family as their boundaries are pairwise disjoint.

Definition 2.2 We say that a pseudo-disk family F is shrinking-closed (for some
family of regions B) if we cannot add a new pseudo-disk F to F which is contained
in a pseudo-disk F ′ already in F (i.e., F ⊂ F ′) in a way that strictly increases the
number of hyperedges in I(B,F).
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We can enlarge F greedily until it becomes shrinking-closed (we need to add at
most 2|B| pseudo-disks—in fact at most polynomial many in |B| according to Theo-
rem 1.20):

Corollary 2.3 Given a family F of pseudo-disks and a finite family B of regions, there

exists a shrinking-closed (for B) family of pseudo-disks F ′ with F ′ ⊇ F and conse-

quently with I(B,F ′) ⊇ I(B,F). In particular, for every point p which is in some

F ∈ F , Hp = {vB : p ∈ B ∈ B} is a hyperedge of I(B,F ′) (which we call the

hyperedge that corresponds to p) if it is of size at least two.

The second part of Corollary 2.3 holds as for a point p contained in some F ∈ F

we can apply Lemma 2.1.
By Corollary 2.3 when proving our results, it will be enough to consider the case

when F is shrinking-closed as adding hyperedges to a hypergraph cannot remove
edges from its Delaunay-graph and cannot decrease the number of colors needed for
a proper (or conflict-free) coloring. The following corollary of Lemma 2.1 will be
useful when we deal with a shrinking-closed pseudo-disk family:

Corollary 2.4 ([26]) Let B be a family of pairwise disjoint regions in the plane and let

F be a family of pseudo-disks. Let D be a member of F and suppose that D intersects

exactly k members of B one of which is the set B ∈ B. Then for every 2 ≤ l ≤ k there

exists a set D′ ⊂ D such that D′ intersects B and exactly l − 1 other regions from B,

and F ∪ {D′} is again a family of pseudo-disks.

Lemma 2.5 ([4]) Let D1 and D2 be two pseudo-disks in the plane. Let x and y be two

points in D1 \ D2. Let a and b be two points in D2 \ D1. Let e be any Jordan arc

connecting x and y that is fully contained in D1. Let f be any Jordan arc connecting

a and b that is fully contained in D2. Then e and f cross an even number of times.

Lemma 2.6 ([26]) Given a family F of pseudo-disks and a finite family B of pairwise

disjoint connected sets in the plane, the Delaunay-graph of B wrt. F is a planar graph.

Note that for a family B of pairwise disjoint connected sets, the Delaunay-graph
and the restricted Delaunay-graph are the same. Assuming also that B is a family of
Jordan regions, Lemma 2.6 becomes a special case of Theorem 1.16. Before proving
Theorem 1.16 we prove another special case which for Jordan regions strengthens
Lemma 2.6, while its proof remains relatively simple:

Lemma 2.7 Given a family F of pseudo-disks and a finite family B of pseudo-disks

such that each member B ∈ B contains a point which is in no other C ∈ B, the

Delaunay-graph of B wrt. F is a planar graph.

Proof We will draw G in the plane in such a way that every pair of edges in G that do
not share a common vertex cross an even number of times. The Hanani–Tutte Theorem
[7,30] then implies the planarity of G. In our case the edges may have self-crossings
too but the Hanani–Tutte theorem holds in this case as well as we can easily redraw
the edges to avoid self-crossings (for further details see, e.g., [11]).

For every vB, B ∈ B choose a point pB ∈ B which is in no other C ∈ B. For an
illustration of the rest of the proof see Fig. 1.
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Fig. 1 The edges e f and e f ′ intersect an even number of times

If vB and vC are connected by an edge f in G, then e f , the drawing of the edge f ,
connecting pB and pC , is as follows. Let F ∈ F be a pseudo-disk corresponding to f .
Draw an arc aB inside B from pB to a point pB F ∈ B ∩ F (pB F ∈ C is allowed, also
pB F may coincide with pB). Similarly draw an arc aC inside C from pC to a point
pC F ∈ C ∩ F (pC F ∈ B is allowed and pC F may coincide with pC ). Finally, draw an
arc aBC inside F from pB F to pC F (pB F and pC F may also coincide in which case
aBC is of length zero). The concatenation of these three arcs is the drawing e f of the
edge f between the points pB and pC . Note that e f may have self-crossings.

We are left to prove that in this drawing of G every pair of edges that do not share
a vertex cross an even number of times.

Let B, C, B ′, C ′ ∈ B with edges f defined by F between vB and vC and f ′ defined
by F ′ between vB′ and vC ′ Suppose e f = aB ∪ aBC ∪ aC and e f ′ = aB′ ∪ aB′C ′ ∪ aC ′

are the drawings of the two edges. Notice that the two endpoints of aB are in B \ B ′

and the two endpoints of aB′ are in B ′ \ B. Thus using Lemma 2.5 we get that aB

with aB′ intersects an even number of times. The same way we get that aB with aC ′ ,
aC with aB′ and aC with aC ′ intersect an even number of times. As aBC (resp. aB′C ′ )
is disjoint from B ′ and C ′ (resp. B and C), there is no intersection between aBC and
aB′ , aC ′ nor between aB′C ′ and aB, aC . Finally, the two endpoints of aBC are in F \ F ′

and the two endpoints of aB′C ′ are in F ′ \ F thus again using Lemma 2.5 we get that
aBC and aB′C ′ intersect an even number of times. These together imply that indeed
e f and e f ′ intersect an even number of times, as required. ⊓⊔

We note that Pach and Sharir [23] proved that (among others) pseudo-disks have lin-
ear union complexity using a similar approach as the proof of Lemma 2.7, connecting
own-points of intersecting regions along their boundaries.

Corollary 2.8 Given a family F of pseudo-disks and a finite family B of pseudo-disks,

the restricted Delaunay-graph of B wrt. F is a planar graph.
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Proof We can delete a member of B from B which corresponds to a degree-0 vertex
in the restricted Delaunay-graph and then the restricted Delaunay-graph of the new
family contains the original restricted Delaunay-graph as a subgraph apart from the
degree-0 vertex (which does not alter planarity). We can keep doing this until possible,
thus we can assume that there are no degree-0 vertices. In this case for every B ∈ B we
have a point pB ∈ B which is in no other C ∈ B. Indeed, taking an edge f of G incident
to vB and the corresponding F ∈ F , by definition of the restricted Delaunay-graph
every point of B ∩ F is a point which is in B but in no other C ∈ B. Thus we can apply
Lemma 2.7 to conclude that the Delaunay-graph (and so the restricted-Delaunay-graph
as well) is planar. ⊓⊔

Observation 2.9 If F is shrinking-closed (for B), then for every F ∈ F the corre-

sponding hyperedge H = {vB : B ∩ F �= ∅} of I(B,F) either contains an edge of the

restricted Delaunay-graph or F contains a point contained in at least two members

of B.

Corollary 2.8 shows that Lemma 2.7 takes care of the planarity of the restricted
Delaunay-graph. From Observation 2.9 we may think that we are left to take care of
hyperedges that contain a point that is contained in at least two members of B. This
intuition turns out to be good, in all of our main results Lemma 2.7 will essentially
reduce the problem to regarding the intersection hypergraph of B wrt. all points of the
plane (instead of B wrt. F).

Before starting the proof of Theorem 1.16 we make some more preparations:

Definition 2.10 Given a family of regions B, a point is k-deep if it is contained in
exactly k members of B. We denote by ∂ B the boundary of some region B of B. We
call a point which is in B but no other C ∈ B, an own-point of B.

Definition 2.11 A hypergraph H′ supports another hypergraph H if they are on the
same vertex set and for every hyperedge H ∈ H there exists a hyperedge H ′ ∈ H′

such that H ′ ⊆ H .

Observation 2.12 If H′′ supports H′ and H′ supports H, then H′′ supports H.

Observation 2.13 If a hypergraph H′ supports another hypergraph H, then the

Delaunay-graph of H is a subgraph of the Delaunay-graph of H′.

Our last tool is the following theorem of Snoeyink and Hershberger (we write here
a special case of what they called as the Sweeping theorem):

Theorem 2.14 ([29]) Let Ŵ be a finite set of bi-infinite curves in the plane such that

any pair of them intersects at most twice. Let d be a closed curve which intersects at

most twice every curve in Ŵ. We can sweep d so that every member of the sweeping of

d intersects at most twice every other curve of Ŵ.

A sweeping of d in Theorem 2.14 is defined as a family d(t), t ∈ (−1, 1], of
pairwise disjoint curves such that d(0) = d, their union contains all points of the
plane and d(α) contains d(β) for every 1 ≤ β < α < 1 (d(−1) is a degenerate curve
consisting of a singular point). We note that Theorem 2.14 is stated in [29] for smooth
curves but considering instead Jordan curves is not a significant difference.
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Proof of Theorem 1.16 Using Corollary 2.3 we can assume that F is shrinking-closed
(for B) and in particular, for every point p which is in some F ∈ F , Hp = {vB : p ∈

B ∈ B} is a hyperedge of I(B,F) if it is of size at least two.
We can keep deleting members of B from B which correspond to a vertex with

degree 0 or 1 in the Delaunay-graph, during this process the Delaunay-graph of the
new family keeps containing the graph induced by the original Delaunay-graph on
the new (reduced) vertex set. If we can prove that the new Delaunay-graph is planar,
then adding back the degree 0 and 1 vertices in reverse order we see that the original
Delaunay-graph is also planar. Thus we can assume that every vertex of the Delaunay-
graph has degree at least two. In this case for every B ∈ B we have a point in B which
is in at most one other C ∈ B (as there are no degree-0 vertices) and there are no two
regions B, C ∈ B such that B ⊂ C (as there are no degree-0 or degree-1 vertices).

Given B and F we will modify B so that for the new family B̂ of pseudo-disks
every B ∈ B̂ contains an own-point and furthermore we do this in a way that I(B̂,F)

supports I(B,F). Using Lemma 2.7 we get that the Delaunay-graph of B̂ wrt. F is
planar and then by Observation 2.13 we get that the Delaunay graph of B wrt. F is
also planar.

We do this modification by repeating the below defined operation finitely many
times, at each time decreasing by at least one the number of members of B without an
own-point. We now define the three steps of this operation.

Step 1: Preparation. Take an arbitrary B ∈ B that does not contain an own-point. We
take a C ∈ B for which vB is connected to vC in the Delaunay-graph. Thus, there is a
point p which is in B ∩C but no other member of B. We morph the plane so that B ∩C

becomes a square R such that the two intersection points of the boundary of B and C

are on the horizontal halving line of the square (the upper part of ∂ R belongs to ∂ B and
the lower part of ∂ R belongs to ∂C) and no member of B (and F) intersects the vertical
sides of the square. This morphing is easily doable and it leaves intact the intersection
structure of B and F . Denote by pl and pr the intersection points of ∂ B and ∂C , that
is, the midpoints of the left and right side of R. This finishes the Preparation Step of
our operation. See the left side of Fig. 2(a) for what we get after this step.

Step 2: Pulling apart B ∩ C . Now we define the Pulling apart B ∩ C Step of the
operation which keeps the intersection structure of B and F outside B ∩ C intact.
First we morph the plane so that the square’s height is doubled to get the rectangle R′

while its horizontal halving line does not change (the part of ∂ R′ above the halving
line is part of ∂ B and the part below is part of ∂C) and the drawing inside R remains
untouched. We do this such that the intersections of members of B (and of F) with the
horizontal sides of the square are stretched to become vertical lines in R′ \ R. Next,
for every D ∈ B \ {B} which intersects exactly one (horizontal) side of R′, we redraw
the part of ∂ D inside B to be a half-circle inside B that has the same endpoints. See
the right side of Fig. 2(a), where these redrawn boundary parts are drawn with thin
red strokes. We get a modified family B′, while the topology of F is unmodifed.

It is easy to see that we modified B in a way that B′ remains a pseudo-disk family.
Next we show that I(B′,F) supports I(B,F), that is for every H ∈ I(B,F) there
exists an H ′ ∈ I(B′,F) such that H ′ ⊆ H . If F ∈ F contains only depth-1 points,
then it is disjoint from B ∩ C and so the hyperedge HF remains in the intersection
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hypergraph after pulling apart B∩C . Otherwise, F contains a depth-2 point q and then
HF contains the hyperedge Hq . So it is enough to prove that for every Hq there is a
hyperedge H ′ (also corresponding to some point) in I(B′,F) such that H ′ ⊆ Hq . For
q /∈ B∩C , Hq remains in the intersection hypergraph after pulling apart B∩C . Finally,
for q ∈ B ∩C the hyperedge Hq contains the hyperedge {vB, vC } which is exactly the
hyperedge corresponding to p in B′ (recall that this is the point that was only in B and
C and no other member of B, and this property remains true for B′ after the operation).

Step 3: Shrinking of C . Now we do the final step, the Shrinking of C Step of the
operation. Let arc aB (resp. aC ) be the part of ∂ R′ above (resp. below) the halving
line, which arc is also part of ∂ B (resp. ∂C) after the first two steps of the operation.
Let arc a∗ (resp. arc a∗) be the part of ∂ R which is above (resp. below) the halving
line. We perturb the vertical parts of a∗ and a∗ slightly so that they do not overlap (nor
intersect) with aB and aC . See right side of Fig. 2 (a) for an illustration.

If either a∗ or a∗ contains a point p which is 2-deep (thus contained by B and C

and no other member of B′), then we redraw ∂C so that we change aC to a∗ or a∗

(whichever contains the 2-deep point p) and then what we get remains a pseudo-disk
family B′′. This way the hyperedge {vB, vC } is still in I(B′′,F) as it is correspond-
ing to a point close to p. Thus I(B′′,F) supports I(B′,F), and so I(B,F) as well.
Furthermore, in B′′ there is a point close to p which is an own-point of B.

Unfortunately it can happen that none of a∗ and a∗ contains a 2-deep point and
so they are not suitable for redrawing aC . Nevertheless, we assumed that there exists
a 2-deep point p in B before the operation, which remains 2-deep after the first two
steps of the operation. In the following we find an arc ap connecting pl and pr that
goes inside R, goes through p and intersects exactly once every maximal part inside
R of the boundary of a member of B′, see Fig. 2(b). Assuming we have this arc ap we
can redraw ∂C such that we change aC to ap and what we get remains a pseudo-disk
family B′′. Also, the same way as in the previous case, we have that I(B′′,F) supports
I(B,F) and in B′′ there is a point close to p which is an own-point of B.

Step 3b: Drawing ap. While the existence of such an ap is intuitively not surprising,
proving its existence is a somewhat technical application of Theorem 2.14. Take the
maximal parts inside R of the boundaries of members of B′ \ {B, C}. Extending the
top and bottom of these with vertical half-lines we get a family Ŵ of bi-infinite curves
that pairwise intersect at most twice. Let d = aB ∪ a∗, it intersects every curve of Ŵ

exactly twice. Now we can apply Theorem 2.14 to this family of curves Ŵ to sweep
d. In particular, we get a closed curve dp through p which intersects every member
of Ŵ at most twice, see Fig. 2(b). Notice that it must intersect once every member
of Ŵ above the top side of R, thus it can intersect at most once (and easy to see that
actually exactly once) every member of Ŵ below the top side of R. Furthermore, dp

must intersect a∗ at least twice. Take the maximal connected part d ′
p of dp \ a∗ which

contains p. Take the curve ap which goes from pl along a∗ to the closest endpoint of
d ′

p on a∗, continues with d ′
p and then goes again along a∗ to pr . It is easy to see that

ap also intersects every member of Ŵ exactly once, as required.6

6 The existence of such an ap can be proved in various ways. Instead of making the curves bi-infinite we can
close them up so that they become boundaries of pseudo-disks all containing pl . Then by a result of Agarwal
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Fig. 2 Major steps of the operation used in the proof of Theorem 1.16: a pulling apart B ∩C , b drawing ap

Thus, with the above 3-step operation we changed B so that one more member, B,
contains an own-point. Also it is easy to see that no other member could have lost
its own-point, as we have redrawn members of B only inside B ∩ C , where there
were no 1-deep points. So after finitely many times repeating this operation we get a
family B̂ in which every member has an own-point and whose intersection hypergraph
I(B̂,F) supports the intersection hypergraph I(B,F) we started with, concluding the
proof. ⊓⊔

3 Proper Coloring Pseudo-Disks wrt. Pseudo-Disks

Note that Observation 1.5 can be rephrased equivalently so that if the Delaunay-graph
of H supports H, then a proper coloring of the Delaunay-graph is a proper coloring
of H. More generally, it is true that:

Observation 3.1 If a hypergraph H′ supports another hypergraph H, then a proper

coloring of H′ is a proper coloring of H.

Proof of Theorem 1.15 Given the pseudo-disk family F and the finite pseudo-disk fam-
ily B, we want to color the vertices of I(B,F) corresponding to the members of B so
that for every F ∈ F the hyperedge HF in B containing exactly those vB for which
B ∩ F �= ∅ is not monochromatic (assuming that |HF | ≥ 2). Using Corollary 2.3 and
Observation 3.1 we can assume that F is shrinking-closed (for B).

Footnote 6 continued
et al. [2] these pseudo-disks are star-shaped (we omit the definition) which implies that there is a half-infinite
curve (a ‘ray’) starting at pl and going through p intersecting all pseudo-disk boundaries once, which in
turn implies the existence of the required ap as before.
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Taking the direct product of a constant coloring provided by Theorem 1.11 and
a 4-coloring of the restricted Delaunay-graph which is planar by Corollary 2.8, it is
not hard to see that we get a required coloring with a constant number of colors (this
idea appears also in the proof of Theorem 1.25). Furthermore, as we mentioned in
the introduction, even the existence of a proper 6-coloring follows immediately from
Theorem 1.16 using known frameworks (e.g., [14], we utilize this framework also
in the fourth paragraph of the proof of Theorem 1.25). However, with the operation
introduced in the proof of Theorem 1.16 in hand we can show even the existence of a
proper 4-coloring, which is the optimal number of colors (see the end of this section).

We prove the existence of a 4-coloring by induction first on the size of B, second
on the size of the largest containment-minimal hyperedges and third on the number of
largest containment-minimal hyperedges. We say that a hypergraph H′ is better than
a hypergraph H (on the same vertex set) and that H is worse than H′ if either the size
of the largest containment-minimal hyperedges is smaller in H′ than in H or they are
of the same size but there are more of them in H.

If B contains two pseudo-disks B, C such that B ⊂ C , then we can proper color
I(B \ {B},F) by induction and then color vB with a color different from the color of
vC to get a proper coloring of I(B,F) as every hyperedge which contains vB must
contain vC as well. Thus, we can assume that no two pseudo-disks in B contain one
another.

We can assume that F is shrinking-closed (for B) as adding non-maximal hyper-
edges cannot make a hypergraph worse (and also cannot decrease its chromatic
number). In particular, we can assume that for every point p which is in some F ∈ F ,
I(B,F) contains a hyperedge Hp = {vB : p ∈ B ∈ B} (if it is of size at least two).

Take one of the largest containment-minimal hyperedges, H ∈ I(B,F).
If H is of size 2 that means that the Delaunay-graph supports I(B,F) and then by

Theorem 1.16 we can color it with four colors, which by Observation 3.1 is a proper
coloring of I(B,F), as required. This starts the induction.

Otherwise, H has l ≥ 3 vertices. Assume by induction that every intersection
hypergraph of pseudo-disks wrt. pseudo-disks better than I(B,F) admits a proper
4-coloring.

If H corresponds to some F that contains only 1-deep points, then using Corol-
lary 2.4 and that F is shrinking-closed we get that H is not containment-minimal, a
contradiction. Thus, F contains a point which is at least 2-deep and then using that
H is containment-minimal and F is shrinking-closed there must be a point p (any
point inside a pseudo-disk corresponding to H is such) for which actually H = Hp.
Take two members B, C ∈ B for which vB, vC ∈ Hp. On B ∩ C we do the first two
steps of the operation used in the proof of Theorem 1.16 to get a new pseudo-disk
family B′. As we have seen, the intersection hypergraph I(B′,F) supports I(B,F)

and thus I(B′,F) is not worse than I(B,F). If B ∩ C in B′ contains a 2-deep point,
then {vB, vC } is a hyperedge of I(B′,F) and the number of size-l hyperedges did
actually decrease (as H is not containment minimal anymore) and so I(B′,F) is bet-
ter than I(B,F). Then by induction I(B′,F) can be colored with four colors, which
by Observation 3.1 is a proper coloring of I(B,F) as well.

The only case left is when B ∩ C still does not contain a 2-deep point. In this case
similarly to Step 3 of the operation in the proof of Theorem 1.16, we redraw ∂C so
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that we change aC to a∗ (see again the right side of Fig. 2(a)). In the new family
B′′ every point in R is still covered at least twice, and nothing changed outside R,
thus I(B′′,F) supports I(B′, F) (and then in turn it suppors I(B,F)). Moreover, the
hyperedge corresponding to p is a subset of Hp but it does not contain vC anymore,
so it is a proper subset of H and is of size at least 2. This implies that the number of
size-l hyperedges did decrease. Then again I(B′′,F) is better than I(B,F) and then
by induction can be colored with four colors, which by Observation 3.1 is a proper
coloring of I(B,F) as well. ⊓⊔

Observe that already for coloring points wrt. disks we may need four colors (as there are
points whose intersection hypergraph wrt. disks is a complete graph on four vertices),
so 4 is also a lower bound for coloring pseudo-disks wrt. pseudo-disks.

Without going into details, we note that from the proofs we can create (low-degree)
polynomial time coloring algorithms, supposing that initially we are given reasonable
amount of information (e.g., the whole structure of the arrangement (all the vertices,
edges and faces) of the pseudo-disks of B and also for every hyperedge H in I(B,F)

we are given an F corresponding to H ).

4 Consequences

First we prove Corollary 1.17 about conflict-free coloring the intersection hypergraph
of pseudo-disks wrt. pseudo-disks.

Proof of Corollary 1.17 As mentioned already, the proof uses the by now standard
framework of [27]. Given the family B containing n regions, the first step is to color it
properly wrt. F using c dummy colors using Theorem 1.15 (c = 4). Take the biggest
color class C1 and give it color 1. We continue with B1 = B \ C1. In the s’th step we
start with the subfamily Bs−1 and we color it properly wrt. F using c dummy colors
and take the biggest color class Cs and give it color s and we continue the process
with Bs = Bs−1 \ Cs . We repeat this until we color all members of B. In each step the
remaining family is reduced by a ratio at least (c − 1)/c and so we finish in O(log n)

steps. It is easy to check that this coloring is indeed conflict-free, as in every hyperedge
HF defined by a region F ∈ F take the highest color s appearing on its vertices (cor-
responding to members of B). This color must appear only on one vertex otherwise at
step s the hyperedge defined by F would have been a monochromatic hyperedge with
at least two vertices in the dummy coloring, contradicting the fact that this dummy
coloring was proper. ⊓⊔

Now we continue with the results related to the VC-dimension of the intersection
hypergraph of pseudo-disks wrt. pseudo-disks. In order to do this, we assume that
the reader is familiar with the definitions of VC-dimension and shattering. As we
mentioned, Aronov et al. [3] proved that given a pseudo-disk family F and a finite
subfamily B of F , the intersection hypergraph I(B,F) has VC-dimension at most
4 and this bound is tight. We now show that the same way Lemma 2.7 implies that
I(B,F) has VC-dimension at most 4 when B is any finite pseudo-disk family, not
necessarily a subfamily of F :
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Proof of Theorem 1.19 The proof is essentially the same as in [3], except that we use
Lemma 2.7. In a shattered subset Vs of vertices in I(B,F) by definition every subset
of Vs is a hyperedge. Thus, for every vertex vB ∈ Vs , {vB} is a singleton hyperedge
defined by some FB ∈ F and so the points in B ∩ FB must be own-points of B. Also,
all pairs of vertices in Vs must define a Delaunay-edge by definition of shattering,
while the Delaunay-graph is planar by Lemma 2.7. In fact, Theorem 1.16 also implies
that this Delaunay-graph is planar, without using the fact that the singleton hyperedges
guarantee the existence of own-points.

As a planar complete graph has at most four points, |Vs | ≤ 4, as required.
Finally, the construction of [4] showing that the bound was tight already when B is

a subfamily of F shows that it is still tight in our more general setting. ⊓⊔

Theorem 1.20 follows directly from the arguments of [3], except that one needs
to use Theorem 1.19 instead of the weaker version the authors used (where B was a
subfamily of F). The details are left to the interested reader.

5 Coloring a Family with Linear Union Complexity wrt. Pseudo-Disks

As in the literature in the definition of union complexity sometimes vertices and other
times edges of the arrangement are counted, we first show that this does not affect the
property of having linear union complexity (apart from slightly changing the constant
c in having c-linear union complexity):

Lemma 5.1 Given a family B of n Jordan regions, whose boundary contains e(∂B)

edges and v(∂B) vertices of the arrangement, v(∂B) ≤ e(∂B) ≤ v(∂B) + n.

Proof Going clockwise around the closed Jordan curves forming ∂B, the boundary
of B, we see that every vertex of the arrangement is followed by a (different) edge of
the arrangement, hence v(∂B) ≤ e(∂B). On the other hand every edge is preceded
by a (different) vertex except the ones that alone form a closed Jordan curve, that is,
that form the boundary of a single region in B. There are at most n such edges, thus
e(∂B) ≤ v(∂B) + n. ⊓⊔

Before proving Theorem 1.25 we make some preparations. First we prove an easy
lemma using random sampling, that is, using the Clarkson–Shor method [8]. We say
that a face is k-deep if its interior points are k-deep, that is, the face is contained in
exactly k members of the family.

Lemma 5.2 In a family B of n Jordan regions with linear union complexity, the number

of k-deep faces is Ok(n).

Proof In the arrangement of B, associate with each k-deep face T one of the edges eT

on its boundary. No edge is associated with two faces this way.
We count the number s of associated edges eT . Take a random subfamily B′ of B

by taking each B ∈ B with probability 1/2. With probability at least 1/2k+3 an edge
eT counted in s ends up on ∂B′, the boundary of B′. Indeed, this happens whenever
the at most k regions that contain this edge in their interior are not in B′ but the region
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whose boundary contains eT and two other regions whose boundaries go through
the two endvertices of eT are in B′. Thus 1/2k+3s ≤ E(e(∂B′)) ≤ E(c|B′|) ≤ cn

implying that s = Ok(n). The second inequality followed from our assumption that
B has c-linear union complexity.

The number of k-deep faces equals the number s of associated edges, which is
Ok(n), concluding the proof. ⊓⊔

It will be comfortable to use the following definition:

Definition 5.3 A graph G is k-degenerate if every subgraph of G contains a point with
degree at most k.

If G is k-degenerate for some constant k we also simply say that G is degenerate.
For example planar graphs are 5-degenerate. The following is a well-known property
of degenerate graphs:

Observation 5.4 If a graph G is k-degenerate, then we can proper color it with k + 1
colors.

Proof Take a smallest degree vertex v of G and proper color with k + 1 colors by
induction the vertices of the subgraph induced by the rest of the vertices. Finally, color
v with a color different from the color of its at most k neighbors. ⊓⊔

Proof of Theorem 1.25 Given the family B of n regions with bounded union complexity
and the family F of pseudo-disks, we want to color the vertices of I(B,F) correspond-
ing to the members of B so that for every F ∈ F the hyperedge HF in B containing
those vB for which B ∩ F �= ∅ is not monochromatic whenever it is of size at least 2.

Using Corollary 2.3 we can assume that F is shrinking-closed (for B). In particular,
for every point p which is in some F ∈ F , Hp = {vB : p ∈ B ∈ B} is a hyperedge
of I(B,F) if it is of size at least two.

First we color B wrt. points, that is, we color the vertices vB with c1 many colors
for some constant c1 so that for an arbitrary point p in the plane the hyperedge Hp =

{vB : p ∈ B ∈ B} is not monochromatic whenever it is of size at least 2. Note that
this is the same as Theorem 1.24, we include its proof for the sake of completeness.

By Lemma 5.2 there are linearly many different Hp’s with |Hp| = 2, in other
words the Delaunay-graph of the regions of B wrt. points has linearly many edges.
Thus there is a vertex vB with degree bounded by a constant. Color by induction the
Delaunay-graph of the family we get by deleting B from B with constantly many
colors and then color vB with a color different from the colors of its neighbors in the
Delaunay-graph of B. We claim that this is a coloring in which each Hp of size at least
two is not monochromatic. By induction this is true for every Hp that contains at least
two vertices besides vB . Thus only Hp’s which are of size exactly two and contain
vB may be monochromatic at this point. However, we colored vB exactly in a way to
make these hyperedges also non-monochromatic.7

7 In order to proper color B wrt. points, it is tempting to simply proper color the Delaunay-graph by
Observation 5.4. This would not be correct, as the Delaunay-graph might not support the intersection
hypergraph of B wrt. points.
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B 22

B 12
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B 23 B 14

Fig. 3 Steps of the construction of the disjoint subregions

Take an arbitrary F ∈ F such that HF is of size at least 2.
If F ∈ F contains a point p which is in at least two members of B, then Hp is a

subset of HF and is not monochromatic, thus HF is also not monochromatic.
Thus, we only need to take care of the hyperedges defined by F ∈ F that do not

contain any point p that is in at least two members of B. We do this by defining a
second coloring using c2 many colors.

In this case F ∈ F intersects the members of B in disjoint regions. By Corollary 2.4
and as F is shrinking-closed, there exists an F ′ ∈ F , F ′ ⊆ F such that F ′ intersects
exactly two members of B. This means exactly that every such F contains as a subset
an edge of the restricted Delaunay-graph G of B wrt. F . Next we prove that G can be
colored properly with constantly many colors.

We define subregions of the regions of B in the following way (see Fig. 3 for
an example). By Lemma 5.2 there are linearly many 1-deep faces. Thus, there is a
B1 ∈ B which contains only constantly many 1-deep faces. Let B1

1 , B2
1 , . . . , B

zi

1 be
these faces. Now we repeat this process for B \ {B1} (and define in a B2 ∈ B \ {B1}

constantly many subregions, etc.) until there are no regions left. As by definition linear
union complexity is hereditary, we can apply Lemma 5.2 at every step and so at the
end in every region we defined constantly many subregions (with the same constant),
we collect these into the family B′.8 Observe that the regions in B′ are connected,
pairwise disjoint and their union equals the union of the regions in B (apart from the
boundaries). That is, B′ is a partition of the union of the regions in B (apart from the

8 Note that every region in B′ is a face of the arrangement of the subfamily of regions of B at that moment
in the process, but usually a union of more faces of the original arrangement B.
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Fig. 4 Construction with n = 4 points, three of the
(4
2
)

regions are shown, their union complexity is 4

boundaries). In particular, every 1-deep face of the arrangement B is contained in one
of the regions in B′. Notice that B′ has at most constant times n regions.

Now we define a graph G ′ with the same number of edges as G and with at most
constant times n vertices. For every B

j

i ∈ B′ it has a vertex v
j

i associated with B
j

i .

We connect two vertices v
j
i and v

j ′

i ′
whenever there exists an F ∈ F which intersects

exactly two members of B, Bi and Bi ′ and furthermore F∩Bi ⊆ B
j

i and F∩Bi ′ ⊆ B
j ′

i ′
.

Notice that G ′ is a subgraph of the restricted Delaunay-graph of B′ wrt. F and as B′

is a family of disjoint connected regions, by Lemma 2.6 this is a planar graph.
As G ′ is planar, it has at most three times as many edges as vertices and so it has

at most constant times n edges. By definition G and G ′ have the same number of
edges, associated with members F ∈ F which intersect exactly two members of B

with disjoint intersections. Thus G also has linearly many edges and so must have
a vertex with degree bounded by a constant. As we can apply this argument for any
subfamily of B and any induced subgraph of G is a subgraph of the Delaunay-graph
of the family of corresponding members of B, we get that G is degenerate. Thus by
Observation 5.4 it admits a proper coloring with c2 many colors for some constant c2.

The direct product of the above two colorings with c1 and c2 many colors is a proper
c1c2-coloring of the hypergraph, concluding the proof. ⊓⊔

Proof of Corollary 1.26 The proof is exactly the same as of Corollary 1.26 just instead
of Theorem 1.15 we need to use Theorem 1.25. ⊓⊔

We note again that the above proof of Theorem 1.25 works without modification
also when instead of Jordan-regions (i.e., bounded regions whose boundary is a single
closed Jordan curve), B is a family of bounded regions whose boundary is a union of
a finite number of disjoint Jordan curves (in particular the regions are not necessarily
simple or connected).
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Without going into details, we also note again that from the proofs we can create
efficient coloring algorithms.

Now we show that we cannot always color properly points wrt. a family of linear
union complexity with constantly many colors and so in particular in Theorem 1.25
F cannot be changed to be a family of linear union complexity.

Claim 5.5 For every n there exists a set S of n points and a family F of
(

n
2

)
simply

connected regions with linear union complexity such that I(S,F) is the complete

graph on n vertices. More precisely, for every pair of points in S there is a region

in F that contains exactly these two points, every pair of regions intersects at most

four times and for every m the union complexity of any subfamily of size m is at most

4m − 4.

Proof The construction is the following: distribute evenly n points S = {p0, . . . , pn−1}

on a circle of radius 2 around the origin o. Choose an ǫ small enough. Let F{i, j} be
the region we get by taking the union of the following three regions: a disk of radius
1 + (in + j)ǫ, the Minkowski sum of the segment opi and a disk of radius (in + j)ǫ

and the Minkowski sum of the segment op j and a disk of radius (in + j)ǫ. See Fig. 4.
Notice that F{i, j} contains pi and p j but no other points of S if ǫ is small enough,

thus I(S,F) is the complete graph, as required.
It is easy to see that two regions can intersect at most four times. For an arbitrary

subfamily F ′ of m regions take the region F0 = F{i, j} ∈ F ′ for which in + j is
largest possible. By the construction every intersection point of boundaries that are on
the boundary of ∪F ′ is on the boundary of F0. As F0 intersects all other regions in
at most four points, we get the upper bound 4m − 4 on the union complexity of F ′.

We remark that it is not much harder to show that min(2n − 4, 4m − 4) is also an
upper bound on the complexity of F ′. ⊓⊔

6 Discussion

As mentioned, the primary motivation behind considering such problems lies in appli-
cations to conflict-free colorings and to cover-decomposability problems.

When the main interest is in conflict-free colorings, the log n factor makes it less
interesting to optimize the bound on the proper coloring result. However, when con-
sidering the relation to cover-decomposability problems, finding the exact value is of
great interest. This makes it important that in Theorem 1.15 we could prove an exact
upper bound for such a wide class of intersection hypergraphs. On the other hand, in
Theorem 1.25 we aimed for keeping the proof as simple as possible, and so we did
not optimize the number of colors.

In cover-decomposability problems the typical question asks if for some m we can
properly 2-color Im(B,F), the subhypergraph of I(B,F) containing only hyperedges
of size at least m. If we properly color Im(B,F), then we say that we color B wrt. F

for m.
Usually either B or F is the family of points of the plane. Originally researchers

concentrated on the problem when the other family, F or B, is the family of translates
of a convex region (see, e.g., [25] for a history of this research direction).
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In the past years researchers started to concentrate more on problems where B or
F is the family of homothets of a convex region. One of the the most intriguing open
problems is whether we can 2-color points wrt. homothets of a given convex polygon
for some constant m. The existence of a 2-coloring for some m was proved for triangles
[17] and the square [1] and recently for convex polygons the existence of a 3-coloring
for some m was proved [20]. On the other hand, for coloring points wrt. disks two
colors are not enough (for any m) [24]. As we have seen already in the introduction, a
4-coloring of points wrt. disks always exists (for m = 2), however the existence of a
3-coloring (for some m) is an open problem (see also the remark after Problem 6.1).

For the dual problem, about coloring the homothets of a convex polygon wrt. points,
while proper 2-coloring exists for the homothets of triangles [17] for some m, for the
homothets of any other convex polygon there is not always a 2-coloring [21] (for any
m). Also, for coloring disks wrt. points two colors are not enough (for any m) [22].

In [20] it was conjectured that points wrt. pseudo-disks and pseudo-disks wrt.
points can be proper 3-colored (for some m). Encouraged by Theorem 1.15 we pose
the common generalization of these conjectures:

Problem 6.1 Does there exist a constant m such that given a family F of pseudo-disks

and a finite family B of pseudo-disks, Im(B,F) always admits a proper coloring with

three colors?

We note that Tóth (Personal Communication) showed an example that choosing
m = 3 is not enough already when B is a set of points and F is a family of pseudo-
disks.

The case when B is a family of points and F is the family of disks was asked by the
author of this paper more than 10 years ago [15,16] and is still open (in this special
case even m = 3 might be true).

As we mentioned in the introduction, one can easily change in the definition of the
incidence hypergraph the incidence relation to the containment or reverse-containment
relation. Thus we can define the following hypergraphs: H⊂(B,F) contains a hyper-
edge H = {vB : B ⊂ F} for every F ∈ F ; similarly, H⊃(B,F) contains a hyperedge
H = {vB : B ⊃ F} for every F ∈ F (if these sets are of size at least two).

Thus we can ask if the respective variants of Theorem 1.15 and Problem 6.1 hold
for these hypergraphs:

Problem 6.2 Given a family F of pseudo-disks and a finite family B of pseudo-disks,

does H⊂
m(B,F) (resp. H⊃

m(B,F)) always admit a proper coloring with four colors?

Does there exist a constant m such that H⊂
m(B,F) (resp. H⊃

m(B,F)) always admits

a proper coloring with three colors?

The variant of this problem where F and B are families of intervals on the line was
regarded in [18] where among others it was shown that for intervals these two classes
(the class of containment and reverse-containment hypergraphs of intervals) are the
same.

Finally we mention that similarly to pseudo-disks, pseudo-halfplanes are natural
generalizations of halfplanes. For pseudo-halfplanes it was also possible to reprove the
same coloring results that are known for halfplanes [19]. Also, due to the lack of direct
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relation to pseudo-disks, we did not mention axis-parallel rectangles, whose intersec-
tion hypergraph coloring problems are some of the most interesting open problems of
the area.
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