
 1

Coloring Night-vision Imagery with Statistical Properties of Natural 
Colors by Using Image Segmentation and Histogram Matching 

 
Yufeng Zheng, Bruce C. Hansen, Andrew M. Haun and Edward A. Essock 

Dept. of Psychological & Brain Sciences, University of Louisville, Louisville, KY, USA 
 

ABSTRACT 
 
A natural color mapping method has been previously proposed that matches the statistical properties (mean and standard 
deviation) of night-vision (NV) imagery to those of a daylight color image (manually selected as the “target” color 
distribution). Thus the rendered NV image appears to resemble the target image in terms of colors. However, in this 
prior method the colored NV image may appear unnatural if the target image’s “global” color statistics are too different 
from that of the night vision scene (e.g., it would appear to have too much green if much more foliage was contained in 
the target image). Consequently, a new “local coloring” method is presented in the current paper, and functions to render 
the NV image segment-by-segment by using a histogram matching technique. Specifically, a false-color image (source 
image) is formed by assigning multi-band NV images to three RGB (red, green and blue) channels. A nonlinear 
diffusion filter is then applied to the false-colored image to reduce the number of colors. The final grayscale image 
segments are obtained by using clustering and merging techniques. The statistical matching procedure is merged with the 
histogram matching procedure to assure that the source image more closely resembles the target image with respect to 
color. Instead of using a single target color image, the mean, standard deviation and histogram distribution of a set of 
natural scene images are used as the target color properties for each color scheme. Corresponding to the source region 
segments, the target color schemes are grouped by their scene contents (or colors) such as green plants, roads, 
ground/earth.  In our experiments, five pairs of night-vision images were initially analyzed, and the images that were 
colored (segment-by-segment) by the proposed “local coloring” method are shown to be much more natural, realistic, 
and colorful when compared with those produced by the “global-coloring” method. 
  
Keywords: color night vision, color visualization, histogram matching, image fusion, image segmentation, non-linear 
diffusion. 
 

1. INTRODUCTION 
 
Experiments have shown that appropriately designed false-color rendering of night-time imagery can significantly 
improve observer performance and reaction times in tasks that involve scene segmentation and classification.1-6,25 
Unfortunately, inappropriate color mappings have also been shown to be detrimental to human performance.3,5,7,26 One 
of the reasons often cited for inappropriate or inconsistent color mapping is lack of physical color constancy.5 Ideally, a 
color rendering method should render night vision imagery with a ‘naturalistic’, as well as stable, color appearance.  
 
To address this problem, Reinhard et al.8 recently introduced a method to transfer one image’s color characteristics to 
another. The method was designed to give synthetic images a natural appearance. The method employs a transformation 
to a principal component space that has recently been derived from a large ensemble of hyperspectral images of natural 
scenes.9 In this decorrelated color space, the first order statistics of natural color images (target scenes) are transferred to 
the multiband night-vision images (source scenes). The only requirement of that method is that the source and target 
scenes possess similar chromatic properties (i.e., scenes were selected manually). 
 
More recently, Toet10 reported that Reinhard’s method could be adapted to implement the natural color characteristics of 
daylight color imagery into multiband fused night-vision images. Essentially, Toet’s natural color mapping method 
matches the statistical properties (i.e., mean and standard deviation) of night-vision (NV) imagery to that of a natural 
daylight color image (manually selected as the “target” color distribution).  However, that particular color mapping 
method colors the image regardless of scene content, and thus the accuracy of the coloring is very much dependent on 
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how well the target and source images are matched.  Specifically, the target image weights the local regions of the 
source image by the global color statistics of the target image, and thus will yield less naturalistic results if the target and 
source image are not matched with respect to structural content.  
 
Based on Toet’s framework (referred to here as “global coloring”), we presented a new “local coloring” method that 
addresses the above mentioned global color bias problem in order to produce colored NV images that appear more like 
realistic daylight imagery. The subsequent sections of this paper are organized as follows. First, a brief review of the 
global-coloring method is given. Next is a full description of the local-coloring method. Lastly, the experimental results 
and discussion are provided, followed by conclusions. 
 

2. REVIEW OF GLOBAL-COLORING METHOD 
 
The global-coloring method is summarized as follows. The aim of the global-coloring is to give night-vision images the 
appearance of normal daylight color images. A false-color image (source image) is first formed by assigning multi-band 
(two or three) NV images to three RGB channels. The false-color images usually have an unnatural color appearance 
(Figs. 1-3 (d)). Then, a true-color daylight image (target image) is manually selected with similar scenery (i.e., structural 
content) to the NV images. Both source and target images are transformed into a Luminance-Alpha-Beta (lαβ) color 
space, followed by calculating the global mean and standard deviation for each lαβ plane. Next, a statistical-matching 
procedure is carried out between the source and target image. The matched source image is then transformed back to 
RGB space. Finally, the matched source image is transformed into HSV (Hue-Saturation-Value) space and the 
luminance component (i.e., the “value component” of the HSV decomposition) of the rendered source image is replaced 
with the fused NV image. 
 
2.1 Color space transform 
In this section the RGB to LMS (long-wave, medium-wave and short-wave) transform will be discussed first. Then an 
lαβ space is introduced from which the resulting data representation is compact and symmetrical, and provides higher 
decorrelation than second order. 
 
2.1.1 RGB to LMS transform  
First, the RGB tristimulus values are converted to device independent XYZ tristimulus values11, and then converted to 
LMS. The combination of conversions from RGB to LMS space is formulated by 
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The data in this color space shows a great deal of skew, which is largely eliminated by taking a logarithmic transform: 
      L = log L, 
      M = log M,          (2) 
      S = log S. 
 
The inverse transform from LMS cone space back to RGB space is as follows. First, the LMS pixel values are raised to 
the tenth order in order to revert back into to linear LMS space. Then, the data can be converted from LMS to RGB using 
the inverse transform of Eq. (1): 
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2.1.2 LMS to lαβ transform  
Ruderman et al.9 recently utilized a color space, called lαβ (Luminance-Alpha-Beta), which effectively minimizes the 
correlation between the LMS axes. This result was derived from a principal component transform to the logarithmic LMS 
cone space representation of a large ensemble of hyperspectral images that represented a good cross-section of natural 
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scenes. The principal axes encode fluctuations along an achromatic direction (l), a yellow-blue opponent direction (α), 
and a red-green opponent direction (β). The resulting data representation is compact and symmetrical, and provides 
automatic decorrelation to higher than second order. Ruderman et al.9 presented the following simple transform to 
decorrelate the axes in the LMS space: 
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If we think of the L channel as red, the M as green, and S as blue, we see that this is a variant of a color opponent model: 

  Achromatic ∝  r + g + b,  
  Yellow-Blue ∝  r + g – b,         (5) 
  Red-Green ∝  r – g. 

 
After processing the color signals in the lαβ space, the inverse transform of Eq. (4) can be used to return to the LMS 
space:  
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2.2 Statistics matching 
A simple technique to transfer the color characteristics from natural daylight imagery to false color night-vision imagery 
is introduced in this subsection. First, the mean is subtracted from the source data points. Then, the source data points are 
scaled with the ratio of the standard deviations of the source and target images respectively: 
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where IC is the colored image, IS is the source (false-color) image in lαβ space; µ denotes the mean and σ denotes the 
standard deviation; the subscripts ‘S’ and ‘T’ refer to the source and target images, respectively; and the superscript ‘k’ 
is one of the color components { l, α, β} .  
 
After this transformation the pixels comprising the multiband source image have standard deviations that conform to the 
target daylight color image. Finally, in reconstructing the lαβ transform of the multiband source image, instead of adding 
the previously subtracted means, the means computed from the target daylight color image are added. The result is 
transformed back to RGB space via Eqs. (6) and (3). 
 

3. THE LOCAL-COLORING METHOD 
 

Based on the framework of the global-coloring method as described in Section 2, we present a new local-coloring 
method that makes the colored NV images appear more like daylight imagery. The major points for this new method to 
achieve these improvements are as following. (a) The source image is rendered segment-by-segment (i.e., local-coloring) 
– specifically, the false color image is region-segmented by its color properties (corresponding to its contents). A 
nonlinear diffusion filtering process20 is applied to the false-colored image to reduce the number of colors. A set of 
preliminary clusters are then formed by anisotropically dividing the three components of the diffused image in lαβ space 
based on their histogram analysis. These clusters are then merged to produce final segments if their centroid distances 
(corresponding to the diffused image) in 3D lαβ color space are less than a given threshold. The final segments can be 
further smoothed with some appropriate morphological processing such as opening and/or closing. (b) The statistical-
matching procedure is merged and/or replaced with the histogram-matching in order to assure that the source image 
more closely resembles the target image with respect to chromaticity. (c) Instead of a single color image, the averaged 
mean, standard deviation and histogram of a large sample of natural scene images are used as the target color properties 
for each color scheme. Corresponding to the source region segments, the target color schemes are grouped by their 
contents (or colors) such as green plants, mountain, roads, sky, ground/earth, water, buildings, people, etc. (as listed in 
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Table 1). (d) The mapping between the source region segments and target color schemes can be done automatically by a 
training and classifying process (i.e., pattern recognition). Currently this pattern recognition portion of this algorithm is 
under development and thereby was carried out manually in the following experiments reported in Section 4. 
 
3.1 Image segmentation 
3.1.1 Non-linear diffusion 
Nonlinear diffusion methods have been proven as powerful methods in the de-noising and smoothing of image 
intensities while retaining and enhancing edges. Such an image smoothing process can be summarized as a successive 
coarsening of any given image while certain structures in that image are retained on a fine scale. Nonlinear diffusion is 
closely connected to a specific kind of multiscale analysis referred to as scale-space,13,14 and was first used for image 
smoothing with simultaneous edge enhancement.15 Close connections to regularization methods have been discovered,16 
and other related nonlinear methods such as interactive segmentation have also entered computer vision fields.17,18 
 
Nonlinear diffusion filtering was first introduced by Perona and Malik.15 Although their method in its original 
formulation is now regarded as ill-posed, it has triggered extensive research; see references19,20 for overviews. In the 
following sections, the focus will be on one of the earliest regularizations of nonlinear diffusion introduced by Catté et 
al.21 
  
Let Ω := (0, a1) × ··· × (0, am) be our image domain in Rm and consider a (scalar) image f(x) ∈  L∞(Ω). Then a filtered 
image u(x,t) of f(x) is calculated by solving a nonlinear diffusion equation with the original image as the initial state, and 
homogeneous Neumann boundary conditions: 

∂tu = div[g(|∇ uσ|2) ∇ u]  on  Ω × (0,∞),      (8) 
u(x, 0) = f(x)  on  Ω,       (9) 
∂nu = 0  on  ∂Ω × (0,∞),                                                                                         (10) 

where n denotes the normal to the image boundary ∂Ω; ‘div’ means the divergence that is the dot product of a vector and 
its gradient, i.e., div(α) = ∇  · α; and ‘∇ ’ is a gradient operator, e.g., for a 2-D image ∇ = (∂/∂x)i + (∂/∂y)j, where i and j 
are unit directional vectors along x and y axes. 
 
The “time” t is a scale parameter: larger values lead to simpler image representations. In order to reduce smoothing at 
edges, the diffusivity g is chosen as a decreasing function of the edge detector |∇ uσ|2, where ∇ uσ is the gradient of a 
Gaussian-smoothed version of u: 

∇ uσ := ∇ (Kσ * u),        (11) 
where ‘*’ denotes the convolution, and  
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For such rapidly decreasing diffusivities, smoothing on both sides of an edge is much stronger than smoothing across it. 
This selective smoothing process prefers intraregional smoothing to interregional blurring. One can ensure that the flux 
Φ(s) := sg(s2) is increasing for |s| ≤ λ and decreasing for |s| > λ by choosing c ≈ 3.315. Thus, λ is a contrast parameter 
that separates low-contrast regions with (smoothing) forward diffusion from high-contrast locations where backward 
diffusion may enhance edges.15 Other choices of diffusivities are possible as well, but experiments indicate that Eq. (13) 
may lead to more segmentation-like results than the functions used in Ref.15. The parameter σ > 0 makes the filter 
insensitive to noise at scales smaller than σ. It is also a regularization parameter which guarantees the process is well-
posed: Catté et al.21 have shown that their filter has a unique solution which is infinitely times differentiable for t > 0. 
During the whole evolution, the average grey value remains unaltered. 
 
Nonlinear diffusion filtering is usually performed with explicit schemes. They are only stable for very small time steps (t 
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≤ 0.25), which leads to poor efficiency and limits their practical use.22 Based on a recent discrete nonlinear diffusion 
scale-space framework, Weickert et al. present semi-implicit schemes which are stable for all time steps.22 These novel 
schemes use an additive operator splitting (AOS), which guarantees equal treatment of all coordinate axes. They can be 
implemented easily in arbitrary dimensions, have good rotational invariance and reveal a computational complexity and 
memory requirement which is linear in the number of pixels. Examples demonstrate that, under typical accuracy 
requirements, AOS schemes are at least ten times more efficient than the widely used explicit schemes. It has been 
shown that these AOS schemes are simple and efficient, do not require additional parameters, inherit important 
properties from the continuous equations, and are widely applicable. 
 
One solution of color diffusions is to separately apply the nonlinear diffusion filtering (AOS) to RGB components of the 
false-colored NV image. The number of colors in the diffused image will be significantly reduced that will benefit the 
subsequent image segmentation procedures – clustering and merging. 
 
3.1.2 Clustering and region merging 
The diffused false-colored image is transformed into the lαβ color space. Each component of the diffused image is 
clustered in the lαβ space by individually analyzing their histogram. Specifically, for each component l, α or β, their 
mean (µ), standard deviation (σ), minimum (mn) and maximum (mx) are first calculated with their intensity values. Then 
clusters can be ‘anisotropically’ divided by using three different intervals based on which segment the current processing 
pixel belongs to. For each component k = {l, α or β}, the clustering interval can be formulated as following 
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where two parameters are introduced, nc and nm, which denote the number of clusters in the central segment and two 
marginal segments (considering a histogram distribution), respectively. An ideal clustering will be resulted with Eq. (14) 
if the analyzed component image has a normal distribution. Otherwise, some boundary conditions need to be considered 
or the Eq. (14) should be revised, for instance, if 0])3[( ≤−− k

n
kk mσµ . Anyway, the clustered image is still a false-

colored image in the lαβ space. 
 
Because the clustering is done by separately analyzing three components of the false-colored image, the clusters may not 
represent the color consistency. Thus, a relatively large number are assigned to nm and nc. Region merging is necessary 
to incorporate the fragmental clusters into meaningful regions in colors. Hereby a squared Euclidean distance between 
two clusters m and n is defined in the lαβ space, 

222 )()()( ββαα µµµµµµ nmnm
l
n

l
mmnd −+−+−= ,                                                   (15) 

where µ is the mean of a cluster in a particular component. Two clusters will be merged if dmn < Td, a specified threshold. 
 
3.2 Histogram matching 
Histogram matching (specification) is usually used to enhance an image when histogram equalization fails12. Given the 
shape of the histogram that we want the enhanced image to have, histogram matching can generate a processed image 
that has the specified histogram. In particular, by specifying the histogram of a target image (with true-color), a source 
image (with pseudo-color) resembles the target image in terms of histogram distribution after histogram matching. 
Histogram matching can be implemented with the following calculations as shown in Eqs. (16-18).12 For the source 
image, we can calculate the transform 

1...,2,1,0,,)1()(
0

−=⋅−== ∑
=

Lk
n
n

LrTs
k

j

j
kk ,       (16) 

where n is the total number of pixels in the image, nj is the number of pixels that have gray level rj, and L is the total 
number of possible gray levels in the image. Thus, an enhanced image is obtained by mapping each pixel with level rk in 
the input image into a corresponding pixel with level sk in the output image via Eq. (16). Actually, this is the process of 
histogram equalization. Obviously, T(rk)is an increasing monotonic function. Similarly, for the target image or the given 
group of categorized images, we have 
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the same notations in Eq. (16) are applied here. Considering vk = sk for histogram matching, the processed image is 
accordingly, 

1...,2,1,0,)],([)()( 111 −==== −−− LkrTGsGvGz kkkk ,                                  (18) 
It is not difficult to find a discrete solution of inverse transform, G-1(vk), because both G-1(vk) and T(rk), can be simply 
implemented by look up tables (LUT). 
 

4. EXPERIMENTAL RESULTS AND DISCUSSION  
 

In our local-coloring method, the averaged mean, standard deviation and 
histogram of a large sample of natural scene images (in the lαβ space) are 
used as the target color properties for each color scheme other than a single 
color image. Corresponding to the source region segments, the target color 
schemes are grouped by their contents (or colors) such as green plants, 
mountains, roads, sky, ground/earth, water, buildings, etc. (as shown in 
Table 1). Our primary goal is to distinguish between the background objects 
in a NV image (e.g., for a pilot navigation). Of course, the foreground 
objects will be isolated or stand out even if they cannot be recognized. The 
mapping between the source region segments and target color schemes can 
be done automatically by a training/classifying process (i.e., pattern 
recognition). The priority values, the first digit of code, (the less the more 
important) give an order for the recognition task. Currently this pattern 
recognition portion of this algorithm is still under development. Thus, the 
mapping between segments and color schemes has to be done manually in 
the current set of experiments. 
 
In the following experiments, an iterative advanced-DWT method 
(aDWTi),23,24 which is optimized with the established metric – image quality index (IQI), is used for multi-band NV 
image fusion (refer to Figs. 1-3 (c)). The advanced-DWT (aDWT) method incorporates principal component analysis 
(PCA) and morphological processing into a regular DWT fusion algorithm. Specifically, at each scale of the wavelet 
transformed images, a principle vector is derived from two input images and then applied to two of the images’ 
approximation coefficients. For the detail coefficients, the larger absolute values are chosen and subjected to a 
neighborhood morphological processing procedure which serves to verify the selected pixels by using a “filling” and 
“cleaning” operation. Furthermore, the aDWT has two adjustable parameters – the number of DWT decomposition 
levels and the length of the selected wavelet that determinately affect the fusion result. An iterative aDWT fusion 
process (aDWTi) has been implemented and optimized with IQI. Previous experimental results showed that the iterative 
aDWT (aDWTi) achieved the best fusion compared to the pyramid or the regular DWT methods judged on both the IQI 
metric and visual inspection.24 
 
The false colored images (Figs. 1-3 (d)) are obtained by assigning image intensified (II) or near infrared (NIR) images to 
blue channels, infrared (IR) images red channels, and providing averaged II/NIR and IR images to green channels. The 
diffused images (Figs. 1-3 (e)) are resulted with the non-linear diffusion algorithm (with AOS implementation) by 
setting the following parameter values: σ = 1.0, λ = 2.0, t = 40 and iterations = 8 (i.e., the number of repeated runs). The 
parameter values used in segmentation (refer to Figs. 1-3 (f)) are nc = 5,  nm = 2 and Td = 0.9.   
 
To have a comprehensive view and a clear comparison, all experimental images are displayed on two adjacent pages: 
one grayscale page and a color page. Note that the same figure numbers on two pages represent different parts (subplots) 
of the same figure. 
 
4.1 Imagery and results 
Three pairs of image intensified (II) and infrared (IR) night-vision images taken outdoors (provided by TNO Human 

Table 1: The list of categorized objects – 
the mean and standard deviation of each 
group (in the lαβ space) is used for local-
coloring NV images.  

Objects Code # Images 
Trees/Plants 101 31 

Mountain 102 13 
Roads 103 29 
Sky 104 19 

Sea/Water 105 19 
Ground/Earth 106 13 

Buildings 201 27 
Clouds/Smoke 202 19 

People 301 6 
Others 500 39 
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Factors) were completely analyzed and are shown in Figs. 1-3 (a-b) (named NV1812, NV4911 and NV0140). The fused 
images (Figs. 1-3 (c)) were computed by the iterative advanced DWT method (aDWTi). The false colored images are 
shown in Figs. 1-3 (d). The false colors were reduced with the nonlinear diffusion algorithm (Figs. 1-3 (e)) that 
facilitated the subsequent segmentation. The segmentation was done in lαβ space through clustering and merging 
operations (see Figs. 1-3 (f)). With this segment map, the histogram and/or statistical matching could be performed 
segment by segment (i.e., locally) in lαβ space. The target color schemes corresponding to source region segments were 
recognized and mapped manually. The final locally colored images (segment-by-segment) are shown in Figs. 1-3 (g-h). 
From the visual examination of the resultant images, the merged matching (statistical- followed by histogram-matching) 
yielded a better colored image (e.g., more saturated colors) than the statistical-matching alone. To run the “global-
coloring” algorithm, a natural scene image (see Fig. 4 (a)) was manually selected as the target image. From Figs. 4 (b-d) 
that were globally colored, it should be obvious that the mapped images are not as natural and colorful as those images 
produced by our “local-coloring” method, and they are also biased by the colors contained in the target image.  
 
Two additional NV image pairs (named Lab05 and NVESD11, see Fig. 5 (a-b) and (e-f)) were analyzed here. “Lab05 
consists of near infrared (NIR) and infrared (IR) images while “NVESD11” consists of intensified (II) and infrared (IR) 
night-vision images. The same procedures as described before were applied here but only the diffused images and final 
colored images (with the combination of statistical- and histogram-matching) are shown in Fig. 5 (c-d) and (g-h) because 
of limited space. Looking at Fig. 5 (d) or (h), a very realistic and impressive color image is observed, especially in the 
green plants, gray road, blue sky and blue river. 
 
4.2 Discussion 
Image segmentation is quite challenging because image contents vary dramatically from image to image. However, the 
combination of diffusion, clustering and region merging techniques make the segmentation very flexible. For example, a 
reasonable segmentation can be obtained by giving a set of proper parameter values (in Eqs. (8-15)), or even by 
redefining the distance between clusters (Eq. (15)). 
 
Another challenging task is to recognize difference segments contained in NV images although, currently, this task is 
performed manually. However, it is feasible to automatically distinguish some limited or listed background objects as 
shown in Table 1. We will report our further research result on this recognition component in a subsequent paper. 
 
The histogram-matching method usually gives a more saturated color image than statistical-matching does. However, the 
histogram-matching procedure can cause various ‘over-shoot’ problems (such as over saturated colors) especially for a 
small image segment. Therefore, while matching small segments (e.g., identified by its area) in a false-colored NV 
image, we can either increase the matching region by merging similar segments together (i.e., by enlarging Td), or use 
the statistical-matching only. 
 
4.3 Future work 
We plan to develop a classifier that can recognize the segments in NV images so that the mapping between NV segments 
and natural color schemes can be done automatically and also for a greater variety of types of scene. We also plan to 
analyze and colorize more NV images, followed by a series of performance-based psychophysical tasks in order to 
assess the functional utility of the proposed color mapping procedure. 
 

5. CONCLUSION 
 
A novel “local-coloring” method is presented in this paper, which enables the rendering of NV imagery segment-by-
segment by using statistical and/or histogram matching techniques. Furthermore, histogram matching enhances the color 
mapping process that makes the colored images more similar to the target color schemes. In addition, using the averaged 
color properties as target color schemes also reduces, on average, the possible bias as in the case when just one target 
color image were used. With this local-coloring method, experimental results indicated that the colored NV images are 
much more colorful and realistic compared with those produced by the global-coloring method. 
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(a) Image A (II)                       (b) Image B (IR)                             (c) Fused by aDWTi                     (f) Segmented 
Fig 1: Local-coloring (segment-by-segment) night-vision image pair NV1812 (360×270 pixels): (a) and (b) are two-band NV images, 
(c) is the fused image with (a) and (b), (d) is the false-colored image by using (a) and (b), (e) is the diffused one from image (d), five 
segments in (f) were derived from (e), and four color schemes (plants, roads, ground and people) were matched in final colored image 
(g) and (h). (Refer to color images (d), (e), (g) and (h) on next page.) 
 

                
(a) Image A (II)                       (b) Image B (IR)                             (c) Fused by aDWTi                     (f) Segmented 
Fig 2: Local-coloring (segment-by-segment) night-vision image pair NV4911 (360×270 pixels): (a) and (b) are two-band NV images, 
(c) is the fused image with (a) and (b), (d) is the false-colored image by using (a) and (b), (e) is the diffused one from image (d), nine 
segments in (f) were derived from (e), and three color schemes (plants, ground and people) were matched in final colored image (g) 
and (h). (Refer to color images (d), (e), (g) and (h) on next page.) 
 

                
(a) Image A (II)                       (b) Image B (IR)                             (c) Fused by aDWTi                     (f) Segmented 
Fig 3: Local-coloring (segment-by-segment) night-vision image pair NV0140 (360×270 pixels): (a) and (b) are two-band NV images, 
(c) is the fused image with (a) and (b), (d) is the false-colored image by using (a) and (b), (e) is the diffused one from image (d), six 
segments in (f) were derived from (e), and three color schemes (plants, smoke and ‘others’) were matched in final colored image (g) 
and (h). (Refer to color images (d), (e), (g) and (h) on next page.) 
 

                   
(a) Lab05 – Image A (NIR)          (b) Lab05 – Image B (IR)             (e) NVESD11 – Image A (II)             (f) NVESD11 Image B (IR) 
Fig 5: Local-coloring (segment-by-segment) night-vision images: (a) and (b) are two-band NV images – Lab05 (312×245 pixels), and 
ten segments were formed from (c); (e) and (f) are two-band NV images – NVESD11 (531×401 pixels), and six segments were 
formed from (g). (Refer to color images (c), (d), (g) and (h) on next page.) 
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(d) False colored         (e) Diffused                (g) Colored by stat-match                    (h) Colored by hist- & stat-match 
Fig 1: Local-coloring (segment-by-segment) night-vision image pair NV1812 (360×270 pixels): (d) is the false-colored image by using (a) and (b), (e) 
is the diffused one from image (d), and four color schemes (plants, roads, ground and people) were mapped/matched in final colored image (g) and (h). 
(Refer to grayscale images (a), (b), (c) and (f) on prior page.) 

                
(d) False colored         (e) Diffused                (g) Colored by stat-match                    (h) Colored by hist- & stat-match 
Fig 2: Local-coloring (segment-by-segment) night-vision image pair NV4911 (360×270 pixels): (d) is the false-colored image by using (a) and (b), (e) 
is the diffused one from image (d), and three color schemes (plants, ground and people) were mapped/matched in final colored image (g) and (h). 
(Refer to grayscale images (a), (b), (c) and (f) on prior page.) 

                
(d) False colored         (e) Diffused                (g) Colored by stat-match                    (h) Colored by hist- & stat-match 
Fig 3: Local-coloring (segment-by-segment) night-vision image pair NV0140 (360×270 pixels): (d) is the false-colored image by using (a) and (b), (e) 
is the diffused one from image (d), and three color schemes (plants, smoke and ‘others’) were mapped/matched in final colored image (g) and (h). 
(Refer to grayscale images (a), (b), (c) and (f) on prior page.) 

                
(a) Natural color image                  (b) Colored NV1812                            (c) Colored NV4911                       (d) Colored NV0140 
Fig 4: Global-coloring night-vision images (stat-match only) by designating Fig. 4a as the target color image. Corresponding to the colored images in 
(b), (c) and (d), the source images were as shown in Fig. 1d, Fig. 2d and Fig. 3d. 

                      
(c) Lab05 — diffused                          (d) Lab05 — colored               (g) NVESD11 — diffused                         (h) NVESD11 — colored 
Fig 5: Local-coloring (segment-by-segment) night-vision images: (c) and (g) are the diffused false-colored images, (d) and (h) are colored images (by 
hist- & stat-match) by mapping to three (plants, road and ‘others’) and four (sky, plants, water and ‘others’) color schemes respectively. (Refer to 
grayscale images (a), (b), (e) and (f) on prior page.) 
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