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Abstract

For which values of n is it possible to color the positive integers using precisely
n colors in such a way that for any a, the numbers a, 2a, . . . , na all receive different
colors? The third-named author posed the question around 2008-2009. Particular
cases appeared in the Hungarian high school journal KöMaL in April 2010, and the
general version appeared in May 2010 on MathOverflow, posted by D. Pálvölgyi. The
question remains open. We discuss the known partial results and investigate a series
of related matters attempting to understand the structure of these n-satisfactory
colorings.

Specifically, we show that there is an n-satisfactory coloring whenever there is
an abelian group operation ⊕ on the set {1, 2, . . . , n} that is compatible with mul-
tiplication in the sense that whenever i, j and ij are in {1, . . . , n}, then ij = i⊕ j.
This includes in particular the cases where n + 1 is prime, or 2n + 1 is prime, or
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n = p2 − p for some prime p, or there is a k such that q = nk + 1 is prime and
1k, . . . , nk are all distinct modulo q (in which case we call q a strong representative
of order n). The colorings obtained by this process we call multiplicative. We also
show that nonmultiplicative colorings exist for some values of n.

There is an n-satisfactory coloring of Z+ if and only if there is such a coloring
of the set Kn of n-smooth numbers. We identify all n-satisfactory colorings for
n 6 5 and all multiplicative colorings for n 6 8, and show that there are as many
nonmultiplicative colorings of Kn as there are real numbers for n = 6 and 8. We
show that if n admits a strong representative q then it admits infinitely many and
in fact the set of such q has positive natural density in the set of all primes.

We also show that the question of whether there is an n-satisfactory coloring is
equivalent to a problem about tilings, and use this to give a geometric characteriza-
tion of multiplicative colorings.
Mathematics Subject Classifications: 11B75, 05B45, 20D60.
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1 Introduction

1.1 A problem from KöMaL

The following was posed by the third-named author as problem A.506 in the April 2010
issue of the Hungarian journal KöMaL (Középiskolai Matematikai és Fizikai Lapok), a
mathematics and physics journal primarily aimed at high school students1:

Prove that for every prime p, there exists a colouring of the positive integers
with p−1 colours such that the colours of the numbers {a, 2a, 3a, . . . , (p−1)a}
are pairwise different for every positive integer a.

We say that a coloring as required is (p−1)-satisfactory. To get a feel for the problem,
consider for instance the case p = 5. Suppose c is a 4-satisfactory coloring. In particular,
1, 2, 3, 4 have different colors. Note that 6 must have the same color as 1, since c(6) 6=
c(2), c(4) because 2, 4, 6, 8 all have different colors and c(6) 6= c(3) since 3, 6, 9, 12 all have
different colors. It follows that c(8) = c(3). Also, since c(12) 6= c(3), c(4), c(6), we must
have c(12) = c(2). It follows that c(9) = c(4). Similar reasoning allows us to determine
the color of many more numbers; the following table shows some of these findings. Here,
the coloring is represented by means of 4 rows of integers, with each row representing one
of the colors.

1 6 16 36 81 · · ·
2 12 27 32 72 · · ·
3 8 18 48 108 · · ·
4 9 24 54 64 · · ·

Nothing so far uses that 5 is a prime number, but the relevance of this fact comes into
play once we note that the numbers in the ith row are all congruent to i modulo 5, for
i = 1, . . . , 4. This suggests how to define a 4-satisfactory coloring compatible with our
observations. Indeed, as long as a is not a multiple of 5, we can assign to a the color
(a mod 5) and readily observe that if 1 6 i < j 6 4, then (ai mod 5) 6= (aj mod 5). We
are not quite done yet, as we still need to deal with the multiples of 5. For this, we can
begin by noting that 5, 10, 15, 20 have different colors and impose some restrictions as
above. For instance, c(30) = c(5), c(40) = c(15), c(60) = c(10), c(45) = c(20), etc., as
illustrated in the table below.

1See https://www.komal.hu/feladat?a=honap&h=201004&t=mat&l=en.
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5 30 80 . . .
10 60 135 . . .
15 40 90 . . .
20 45 120 . . .

The reader should promptly realize that this is the same table as before, with each
entry multiplied by 5. This suggests that we can define the color of a positive integer n
by considering its prime factorization and ignoring powers of 5: letting n = 5ab where
a > 0 and 5 - b, we can assign to n the color c(n) = (b mod 5). It is straightforward to
verify that this is indeed a 4-satisfactory coloring, and we are done in this case.

The argument suggests an obvious generalization from which the KöMaL problem
follows:

Theorem 1. If p is prime, then there is a (p− 1)-satisfactory coloring.

Proof. Define a coloring c by writing n = pab where a > 0 and p - b, and letting c(n) =
(b mod p), so that c uses p − 1 colors and if 1 6 i < j < p and n is as indicated, then
c(in) = (ib mod p) 6= (jb mod p) = c(jn).

Although the solution just described makes essential use of the fact that p is prime,
it is natural to wonder whether such colorings are possible without this restriction. It is
this version of the problem that we discuss in this paper.

1.2 The general question

In May 29, 2010, Dömötör Pálvölgyi posted on MathOverflow precisely the version just
indicated.

Question 2. Given any positive integer n, is there a coloring of the positive integers using
n colors such that for any positive integer a, the numbers a, 2a, . . . , na all have different
colors?2

It was through Pálvölgyi’s post that the first-named author became acquainted with
the problem. He suggested it to the second-named author, and their partial results became
the main content of the latter’s master’s thesis3.

Question 2 was originally formulated by the third-named author around 2008–2009,
motivated by a question of Günter Pilz, see § 1.4. After working on it for a while, he posed
several related questions in KöMaL. For instance, besides problem A.506, he also posed
problem B.4265 in the April 2010 issue,4 asking about the case n = 7. Pálvölgyi first
saw problem A.506 and became interested in the general version. He contacted the editor
of KöMaL in charge of the “A problems” and asked whether they knew the answer for
general n. It was not until years later that Pálvölgyi found out that the KöMaL questions
and the general version of the problem were originally posed by the third-named author.

2See https://mathoverflow.net/q/26358/
3See http://scholarworks.boisestate.edu/td/231/
4See https://www.komal.hu/feladat?a=honap&h=201004&t=mat&l=en.
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Although the general problem remains open, there are enough partial results that
we feel it is appropriate to publish this paper now, to further expose the mathematical
community at large to question 2, and to indicate the current state of affairs and the
many additional questions that come out of this exploration. Question 2 has connections
with number theory and group theory as well as a clearly combinatorial core. Some of
the ideas we describe benefit from this interaction.

Several results we present are due to others, either from previous research on related
topics or through suggestions posted on MathOverflow. We make every attempt to give
credit as appropriate.

As suggested above, we call n-satisfactory a coloring as in the statement of question 2.
The analysis of the case n = 4 in § 1.1 reveals that we can in general restrict our attention
to seeking n-satisfactory colorings of the set of n-smooth numbers, that is, the set Kn of
positive integers whose prime factorization only includes primes less than or equal to n.
We call this set the n-core, see definition 15, and elaborate on this issue in section 2;
briefly, if there is an n-satisfactory coloring of Kn, we can color all positive integers by
assigning to the number km, where k ∈ Kn and gcd(m,n!) = 1 the color of k, and one
can quickly check that this is an n-satisfactory coloring of Z+.

We note that, given n, even if question 2 has a negative answer for n, strictly fewer
than 2n colors suffice to ensure that for any a ∈ Kn all numbers ia, 1 6 i 6 n, receive
different colors: indeed, letting p be the smallest prime larger than n, we can color Kn

with p colors as in theorem 1, by assigning to m ∈ Kn the color (m mod p). If question 2
turns out to have a negative answer, it seems worth studying the following natural variant:

Question 3. Assuming that question 2 has a negative answer for n, can we find a better
bound than the smallest prime larger than n on the number of colors required to ensure
a positive answer?

We close this introduction by discussing an application and the original motivation
for question 2.

1.3 The Balasubramanian–Soundararajan theorem

In 1970, Ronald Graham [Gra70] conjectured the following:

If n > 1, and 0 < a1 < a2 < · · · < an are integers, then

max
i,j

ai
gcd(ai, aj)

> n.

Graham’s conjecture was finally verified in 1996 by Balasubramanian and Soundara-
rajan via careful analytic estimates of average values of number-theoretic functions asso-
ciated with the distribution of primes, see [BS96]. Assuming the existence of satisfactory
colorings, we obtain a significantly simpler proof.

Theorem 4. If there is an (m− 1)-satisfactory coloring, then Graham’s conjecture holds
for n = m.
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Proof. Argue by contradiction. Accordingly, suppose that there are (m− 1)-satisfactory
colorings and that 0 < b1 < · · · < bm are integers such that

max
i,j

bi/ gcd(bi, bj) < m.

Suppose i 6= j and let M = gcd(bi, bj). Let ai = bi/M and aj = bj/M , so ai, aj are both
less than m, and ai 6= aj. Since bi = aiM and bj = ajM , in any (m − 1)-satisfactory
coloring of Z+ we must have that bi is colored differently from bj. This is impossible, since
it would mean the coloring uses at least m colors.

The relationship highlighted in theorem 4 between our question 2 and the Balasubra-
manian–Soundararajan theorem admits a nice graph-theoretic interpretation, that we now
proceed to discuss. This connection was first mentioned by Péter Csikvári to the third-
named author, and was also noticed independently by Fedor Petrov in MathOverflow5

and by Bosek, Dębski, Grytczuk, Sokół, Śleszyńska-Nowak and Żelazny, who also arrived
independently of us at some of the observations below in their recent paper [BDG+18]
(particularly, see their § 4).

Given a graph G, write χ(G) for its chromatic number, that is, the least cardinal κ
such that the set of vertices of G can be colored with κ colors in such a way that adjacent
vertices receive different colors. Note that if G admits a clique (complete subgraph) on r
vertices, then χ(G) > r, and therefore χ(G) > ω(G), where ω(G) is the clique number of
G, that is, the supremum of the cardinalities of the cliques of G.

Given n, consider now the graph Gn with the positive integers as vertices and where
any two i 6= j in Z+ are connected if and only if max(i, j)/ gcd(i, j) 6 n (that is, if and
only if i, j ∈ {a, 2a, . . . , na} for some a); in [BDG+18], this graph is denoted Bn. Note
that Gn has many cliques of size n, namely each set {a, 2a, . . . , na} (and possibly others),
so that ω(Gn) > n; see figure 1.1.

11

22

33

44

61

83

94

122

Figure 1.1: A portion of G4. Subindices indicate a coloring witnessing that χ(G4) = 4.
Note the clique {2, 3, 4, 6}.

By definition, an n-satisfactory coloring c of Z+ is a coloring of Gn with n colors,
that is, the existence of such a map c is precisely the claim that χ(Gn) is (at most, and
therefore equal to) n. By the remark above, this implies that ω(Gn) is (at most, and

5See https://mathoverflow.net/q/26358/
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therefore equal to) n, but this is precisely Graham’s conjecture for n + 1, and we have
reproved Theorem 4.

1.4 Pilz’s conjecture

Recall that the symmetric difference C4D of two sets C,D, is the set of elements that
belong to exactly one of C,D, that is,

C4D = (C ∪D) r (C ∩D) = (C rD) ∪ (D r C).

Note that 4 is associative, and so, given sets C1, . . . , Cm, their symmetric difference
4m
l=1Cl is simply the set of elements that belong to precisely an odd number of sets Cl.
If X ⊆ Z+ and k ∈ R, we denote by k ·X the dilation of X by a factor of k:

k ·X = {kx : x ∈ X}.

Pilz’s conjecture, the original motivation for question 2, first appeared in 1992 [Pil92].
For our purposes, it is convenient to phrase it as follows:

If n > 1 and A is a finite set of positive integers, then the size of the symmetric
difference of the sets A, 2 · A, . . . , n · A is at least n.

For m a positive integer, it will be convenient in what follows to write [m] for the set
{1, 2, . . . ,m}. The particular case of Pilz’s conjecture where A = [k] for some k ∈ Z+

was eventually established independently during the academic year 2008–2009 by P.-Y.
Huang, W.-F. Ke and G. F. Pilz [HKP10] and by Pach and C. Szabó [PS11]. The general
case remains open.

Theorem 5. If there is an n-satisfactory coloring, then Pilz’s conjecture holds for n under
the further assumption that |A| is odd.

Proof. Say that |A| = k, let A = {aj : j ∈ [k]} and, for j ∈ [k], set

Bj = {i · aj : i ∈ [n]}.

Note first that the symmetric difference of the sets i · A, i ∈ [n], equals the symmetric
difference of the sets Bj, j ∈ [k]. The point is that, denoting by χC(·) the characteristic
function of a set C, we have for any element x that

χ4ni=1i·A(x) =

( n∑
i=1

χi·A(x)

)
mod 2 = |{i ∈ [n] : ∃j ∈ [k] (x = i · aj)}| mod 2

and

χ4kj=1Bj
(x) =

( k∑
j=1

χBj(x)

)
mod 2 = |{j ∈ [k] : ∃i ∈ [n] (x = i · aj)}| mod 2,
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and both expressions coincide since both equal

|{(i, j) ∈ [n]× [k] : x = i · aj}| mod 2.

For any n-satisfactory coloring, in every Bj each color appears exactly once. That is,
the sets B1, B2, . . . , Bk contain k numbers from each color class (counted with multiplic-
ity). If k is odd, then this means that their symmetric difference must contain an odd
number of elements from each color class (and therefore at least one). But there are n
colors.

It was precisely this observation that motivated the third-named author to formulate
question 2. Sadly, when |A| is even, the trick above does not apply and we do not see a
way of establishing the conjecture in full generality.

Pilz formulated in [Pil92] both the general case and the special case of his conjecture
where A = [k] for some k (the latter is sometimes called the 1-2-3 conjecture). The paper
[PS11] is based on the third-named author’s master’s thesis6.

For A = [k], if there is a k-satisfactory coloring and n is odd, then the same argument
gives us that the size of the symmetric difference 4n

i=1i · A is at least n.

1.5 Organization of this paper

We begin section 2 with some preliminaries, emphasizing the role of what we call the
n-core Kn. We also include some easy observations on the structure of the set CKn of n-
satisfactory colorings of the n-core. We reformulate question 2 as a problem about tilings,
and close the section by giving an explicit description of all n-satisfactory colorings for n 6
5. In section 3 we explore an idea that directly generalizes the approach used to solve the
original KöMaL problem (the case where n+1 is a prime number). This suggestion leads to
several interesting number-theoretic questions that we also discuss. In section 4 we discuss
a group-theoretic approach to question 2 that encompasses the suggestion from section 3.
The colorings to which this suggestion applies we call multiplicative; we also characterize
these colorings geometrically through the notion of translation invariance, and close the
section by listing all multiplicative n-satisfactory colorings for n 6 8. We conclude in
section 5 by indicating cases where the approach from section 4 fails. This includes a
brief review of prior work by Forcade and Pollington [FP90], and also a discussion of
nonmultiplicative 6- and 8-satisfactory colorings. The final section 6 lists several of the
remaining open problems. We proceed to list some additional details.

The theorem below summarizes the values of n for which a positive answer to question
2 is known, see also § 2.5.

Theorem 6. Question 2 has a positive answer for n, that is, there is an n-satisfactory
coloring, in any of the following cases:

1. n+ 1 is prime.
6See http://web.cs.elte.hu/blobs/diplomamunkak/mat/2009/pach peter pal.pdf
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2. 2n+ 1 is prime.

3. More generally, there is a strong representative of order n, i.e., a prime p of the
form nk + 1 for some k such that 1k, . . . , nk are pairwise distinct modulo p.

4. Yet more generally, n admits a partial G-isomorphism for some abelian group (G,⊕)
of order n, i.e., there is a bijection h : [n] → G such that whenever a, b ∈ [n], if
ab ∈ [n], then h(ab) = h(a)⊕ h(b). In particular:

5. For all n < 195, and

6. For all n of the form p2 − p for some prime p.

Proof. (1) This is theorem 1.
(2) See corollary 33.
(3) See theorem 32.
(4) See theorem 61.
(5) See theorem 78 or [FP90].
(6) See theorem 77.
That (3) generalizes (1) and (2) is explained in § 3.1. That (4) generalizes (3) is

explained in § 4.1. That (5) follows from (4) is explained in § 5.1. That (6) follows from
(4) is shown in the proof of theorem 77.

We feel that although question 2 was the guiding influence for much of the research
reported in this paper, the topic will not be concluded even when the question is settled
completely. Indeed, much of the paper is devoted to exploring how many n-satisfactory
colorings there are for a given n and, more generally, to studying the structure of these
colorings.

Theorem 7. If there is an n-satisfactory coloring, then there are as many such colorings
as there are real numbers. Any n-satisfactory coloring of Z+ is determined by a sequence
of n-satisfactory colorings of the core Kn and a sequence of permutations of [n].

On the other hand, there are values of n for which there are only finitely many n-
satisfactory colorings of the core, and others for which there are again as many such
colorings as there are real numbers.

Proof. See item (4) of proposition 19, where the precise way in which n-satisfactory col-
orings correspond to a sequence of colorings of the core and a sequence of permutations
is described. From this, the number of n-satisfactory colorings is easily obtained, see
corollary 21.

In § 2.4 we show that for n 6 5 there are only finitely many n-satisfactory colorings
of the core. In § 5.2 and § 5.3 we show that there are as many n-satisfactory colorings of
the core as there are real numbers for n = 6, 8.
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This result shows that the study of the structure of n-satisfactory colorings should
really focus on the core, and we orient our efforts accordingly. Particular attention is paid
to colorings with special structure.

Definition 52. An n-satisfactory coloring c of Z+ or Kn is multiplicative if and only if
there is an abelian group structure ([n],⊕) such that c(ab) = c(a)⊕ c(b) for all a, b.

Note that for any given n there are only finitely many such group structures. Never-
theless, a version of theorem 7 holds for this case as well.

Theorem 8. There is a multiplicative coloring of Kn if and only if there are as many
such colorings of Z+ as there are real numbers.

For any n, there are only finitely many multiplicative colorings of Kn.

Proof. See theorem 65 and corollary 55.

We explore n-satisfactory multiplicative colorings throughout the paper, and in par-
ticular in section 4. We list all of them for n 6 5 in § 2.4 and for 6 6 n 6 8 in § 4.5.
In theorem 77 we show that there are such colorings if n = p2 − p for some prime p.
The class of multiplicative colorings to which we devote most attention is the following,
already encountered in theorem 6.

Definition 34. A strong representative of order n is a prime p of the form kn+ 1 for some
k such that 1k, . . . , nk are pairwise distinct modulo p. If there is such a prime p, we say
that n admits a strong representative.

Theorem 9. If p = kn+ 1 is a strong representative of order n, then, up to renaming of
the colors, the map c(a) = (ak mod p) is a multiplicative n-satisfactory coloring.

Proof. See the beginning of § 4.1.

As indicated above, this gives us infinitely many examples of values of n admitting
n-satisfactory colorings. since it applies in particular when n+ 1 is prime (so k = 1) and
when 2n + 1 is prime (so k = 2). On the other hand, if k > 2, examples are harder to
come by.

Theorem 10. If k > 2, then there are only finitely many n such that p = kn + 1 is a
strong representative of order n.

Proof. There are no such primes p when k = 3, by theorem 37.
If k is a multiple of 4, then any such prime p must satisfy p < k2, so there are only

finitely many such n, by theorem 38.
For the general case, see theorem 39. The argument uses the theory of Bernoulli

polynomials and is due to Grinberg and Harcos.

The proof of theorem 10 provides us with an algorithm to find, for each k > 2, all
primes p = kn + 1 that are strong representatives of order n. This is illustrated in § 3.3
with some examples.
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For fixed k > 2, in the brief § 3.5 we include two results by Elkies on the asymptotic
number of coincidences ak ≡ bk (mod p) with 1 6 a < b 6 n as the prime p = nk + 1
increases. That such coincidences occur is a consequence of theorem 10, and we feel that
the inclusion of these observations rounds up the picture, as it provides a quantitative
measure of how badly large values of p of the form kn+ 1 fail to be strong representatives
of order n. In particular, we have the following.

Theorem 11 (Elkies). For k > 2, the number of coincidences ak ≡ bk (mod p) for p of
the form kn+ 1 and sufficiently large, and distinct a, b ∈ [n] is

Ckp+Ok(p
1−ε(k)),

where

Ck =


k − 1

2k2
if k is odd, and

k − 2

2k2
if k is even,

and ε(k) = 1/φ(k), where φ is Euler’s totient function.

Proof. See Theorem 50.

The study of strong representatives is interesting in its own right. We devote section
3 to it. In particular, using Chebotarëv’s theorem and tools of algebraic number theory,
we prove the following.

Theorem 12. If n admits a strong representative p, then it admits infinitely many, and
in fact the set of such primes is of positive natural density among all primes.

Proof. See Theorem 48.

Besides this result, we also collect some related numerical data in § 3.4. Part of the
interest in this result is that early numerical explorations (while the second-named author
was working on his master’s thesis) suggested that the collection of strong representatives
of order n is very sparse, see for instance table 3.1, and this result indicates that the
opposite is indeed true.

So far, our description of the results listed above emphasizes the number- and group-
theoretic aspects of our work. We also bring to bear some geometric and combinatorial
ideas, by showing that the existence of n-satisfactory colorings is equivalent to the exis-
tence of certain tilings. To state the equivalence, recall that π(n) is the number of prime
numbers less than or equal to n.

Say that a set A ⊆ Zπ(n) tiles another such set C if and only if there is a B such
that C is the direct sum of A and B. Let 2 = p1 < · · · < pπ(n) list the primes in [n] in
increasing order. Define Tn be the image of [n] under the map that sends pα1

1 · · · p
απ(n)
π(n) in

Kn to (α1, . . . , απ(n)) in the nonnegative orthant On of Zπ(n).

Theorem 13. There is an n-satisfactory coloring of Kn if and only if Tn tiles a superset
of On.
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Proof. See proposition 25.

A compactness argument shows that we can replace On with Zπ(n) itself, and Kn with
the quotient field K̂n = {a/b : a, b ∈ Kn}, see proposition 26 and the remarks immediately
preceding it.

Theorem 13 transforms the problem of finding satisfactory colorings into a geometric
question. The approach is fruitful, as it was essential to the results in § 5.2 and § 5.3.

Using tilings we also obtain an elegant characterization of multiplicative colorings. If
c is a coloring of Kn and k ∈ Kn, let ck be the coloring where two numbers m,m′ ∈ Kn

receive the same color if and only if c(km) = c(km′).

Definition 66. A coloring c of Kn is translation invariant if and only if ck = c for all
k ∈ Kn.

This admits a natural geometric description, see § 4.3.

Theorem 14. An n-satisfactory coloring is translation invariant if and only if it is mul-
tiplicative.

Proof. See Theorem 76.

We admit we understand very little those colorings that are not multiplicative. We
show examples in § 5.2 and § 5.3, but more is needed. In particular, whether question
2 admits a positive answer depends essentially on whether there are nonmultiplicative
n-satisfactory colorings for various n, such as n = 195. The point is that there are various
n which do not admit multiplicative colorings. This is briefly discussed in § 5.1, which
reviews the work of Forcade and Pollington [FP90]. These numbers n we call groupless.
Several questions we ask suggest ways of trying to understand some of the structure of
nonmultiplicative colorings, see in particular question 22, which refers to the topology of
the collection of n-satisfactory colorings, described in item (1) of § 2.2.

2 The core

An n-coloring of a set X is a coloring of X using exactly n colors. An n-satisfactory
coloring is an n-coloring witnessing a positive answer to the nth instance of question 2.
The nature of these colors is of course irrelevant, but we need some convention since
we want to address questions about the number of n-colorings satisfying some property
(such as, primarily, being n-satisfactory). There are two natural ways of thinking about
n-colorings, and we adopt both in what follows. We will typically consider only colorings
of the n-core Kn rather than of all of Z+, but what follows applies in either case.

In the first approach, we think of an n-coloring as a map c with range [n], and we
further adopt the convention that c(i) = i for i ∈ [n]. The point of this convention is
to avoid overcounting when looking at the number of n-satisfactory colorings for fixed n.
For instance, as we will see in § 2.4, there is precisely one 3-satisfactory coloring of K3,
but without the convention it would seem as if there are six.

the electronic journal of combinatorics 28(1) (2021), #P1.34 12



The second approach is perhaps more natural: rather than thinking of a coloring as
a map, we think of it as an equivalence relation, whose classes are precisely the colors.
We still adopt functional notation, so we write, for example, c(a) = c(b) to indicate that
c assigns the same color to the numbers a and b.

Still, on occasion we may stray from these conventions for ease of exposition.

2.1 The core Kn and n-appropriate sets

Definition 15. The n-core, or simply the core if n is understood, is the set Kn of all
positive integers whose prime decomposition only involves primes less than or equal to n.
This is the set of numbers usually called n-smooth.

In the literature the notion of n-smooth numbers is typically reserved for the case
where n itself is a prime number. We do not impose this requirement so, for instance,
K7 = K8 = K9 = K10. In the notation of [BDG+18], Kn is denoted Nn.

The key reason for considering cores is that there is an n-satisfactory coloring (of Z+)
if and only if there is an n-satisfactory coloring of the n-core. In fact we prove a bit more,
indicating that in order to understand the structure of the set of n-satisfactory colorings,
attention can be restricted to those of the n-core. Once we establish this fact, we proceed
accordingly, which explains the title of this paper.

In particular, restricting attention to colorings of the n-core allows us to address the
following question.

Question 16. Given n > 1, how many n-satisfactory colorings are there, if any at all?

As we will see, the answer to question 16 is c = |R| for colorings of Z+ even in cases
where there are only finitely many n-satisfactory colorings of Kn, see corollary 21 and
Theorem 65.

Definition 17. Say that X ⊆ Z+ is n-appropriate if and only if X is nonempty and
contains ix and x/j whenever x ∈ X, i, j 6 n, and j divides x.

If X is n-appropriate, say that an n-coloring c of X is n-satisfactory if and only if
c(ix) 6= c(jx) whenever x ∈ X and i < j 6 n. Note that this coincides with the previous
notion of n-satisfactory when X = Z+ (or X = Kn). Considering colorings as maps, if
1 ∈ X we add the restriction mentioned earlier that n-satisfactory colorings must be the
identity on [n].

Note that we are insisting that if X is n-appropriate, 1 ∈ X, and c is n-satisfactory on
X, then c is the identity on [n], while we impose no such restrictions on the satisfactory
colorings of other appropriate sets; for instance, one could wonder why we do not ask that
if a is the minimum of X, then c(ai) = i for all i ∈ [n]. The reason for this convention is
that we want that if X, Y are disjoint and n-appropriate, then the union of n-satisfactory
colorings of X and Y is an n-satisfactory coloring of X∪Y , and any n-satisfactory coloring
of X ∪ Y is obtained this way.
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We denote by Pn the set of numbers relatively prime to n!, i.e., those positive integers
whose prime decomposition only involves prime numbers strictly larger than n. In the
literature, these numbers are referred to as n-rough. Note that 1 is n-rough for any n.

The notation X =
⋃̇
a∈AXa means both that X is the union of the sets Xa for a ∈ A,

and that the sets Xa are pairwise disjoint.

Lemma 18. A set X ⊆ Z+ is n-appropriate if and only if there is a nonempty set A ⊆ Pn
such that

X =
⋃̇
a∈A

a ·Kn.

Moreover, if this is the case, then we have A = Pn ∩X.

Proof. Note that Kn is n-appropriate and therefore so is a ·Kn for any a ∈ Pn. It follows
that any X of the form

⋃̇
a∈Aa ·Kn for A ⊆ Pn and nonempty is n-appropriate as well.

Towards the converse, suppose now that X is n-appropriate. Each m ∈ Z+ can be
uniquely written in the form m = amkm where am ∈ Pn and km ∈ Kn. Let

A = {ax : x ∈ X}.

We claim that X =
⋃̇
a∈Aa ·Kn.

First, note that if a 6= b are in Pn, then a ·Kn and b ·Kn are pairwise disjoint. Now,
if a ∈ A, then there is some x ∈ X such that a = ax. Since X is n-appropriate, h/j ∈ X
whenever h ∈ X and j ∈ Kn divides h. In particular, a = ax = x/kx ∈ X. Similarly,
hi ∈ X whenever h ∈ X and i ∈ Kn. Therefore, a ·Kn ⊆ X. This means that⋃̇

a∈A

a ·Kn ⊆ X.

But, if x ∈ X, then x ∈ ax ·Kn, and we have that⋃̇
a∈A

a ·Kn ⊇ X.

This proves the equality and establishes the equivalence.
Second, if a ∈ Pn, then the only member of Pn in a ·Kn is a itself. It follows that if

X =
⋃̇
a∈Aa ·Kn for some A ⊆ Pn, then in fact A = Pn ∩X, and we are done.

For X n-appropriate, let CX,n be the set of n-satisfactory colorings of X, and denote
by Cn the set CZ+,n. We also write CX , C if n is clear from context.

The following proposition shows that C 6= ∅ if and only if CX 6= ∅ for some n-
appropriate set X if and only if CX 6= ∅ for all n-appropriate sets X.

In particular, as emphasized earlier, it follows that the question of whether there are
any n-satisfactory colorings is really a question about whether there are n-satisfactory
colorings of Kn. In fact, the proposition shows how the satisfactory colorings of the core
completely determine all satisfactory colorings.
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Proposition 19. Let n ∈ Z+.

1. Suppose X ⊆ Y are n-appropriate. If CY 6= ∅, then CX 6= ∅. In fact, thinking of
colorings as maps, the restriction c � X is in CX for any c ∈ CY .

2. Given a ∈ Pn and c ∈ Ca·Kn, if div(c, a) denotes the n-coloring of Kn such that

div(c, a)(k) = div(c, a)(l) if and only if c(ak) = c(al)

for all k, l ∈ Kn, then div(c, a) ∈ CKn. Considering colorings as maps with range
[n],

div(c, a)(k) = π ◦ c(ak)

for all k ∈ Kn, where π is the permutation of n such that π(c(ai)) = i for all i ∈ [n].

3. Given a ∈ Pn and c ∈ CKn, if mult(c, a) denotes the n-coloring of a ·Kn such that

mult(c, a)(ak) = mult(c, a)(al) if and only if c(k) = c(l)

for all k, l ∈ Kn, then mult(c, a) ∈ Ca·Kn. Considering colorings as maps,

mult(c, a)(a · k) = c(k)

for all k ∈ Kn. However, note that if a 6= 1, then for any permutation π of [n],
π ◦mult(c, a) is also in Ca·Kn.

4. If X is n-appropriate, then a map c is in CX if and only if for each number a ∈ Pn∩X
there is a map ca ∈ CKn and a permutation πa of [n] such that π1 is the identity and

c =
⋃̇

a∈Pn∩X

πa ◦mult(ca, a).

5. C 6= ∅ if and only if CX 6= ∅ for any n-appropriate X if and only if CX 6= ∅ for
some n-appropriate set X. Moreover if X ⊆ Y and both are n-appropriate, then
d ∈ CX if and only if d = c � X for some c ∈ CY .

Proof. (1) This is clear.
(2) Given a ∈ Pn and c ∈ Ca·Kn , if div(c, a) is defined as in item (2), then

div(c, a)(ib) 6= div(c, a)(jb)

for any b ∈ Kn and any i < j 6 n because c is n-satisfactory and therefore c(aib) 6= c(ajb).
But this means that div(c, a) is n-satisfactory as well.

Considering colorings as functions, c is a map with range [n] and the only obstacle
for k 7→ c(ak) to be an n-satisfactory coloring is the additional restriction we have im-
posed that such a map must be the identity on [n], which explains why we may need to
precompose it with a permutation to achieve this.
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(3) Conversely, if c ∈ CKn , a ∈ Pn, and mult(c, a) is defined as in item (3), then

mult(c, a)(im) 6= mult(c, a)(jm)

for any m ∈ a ·Kn and any i < j 6 n since c is satisfactory and therefore c(i(m/a)) 6=
c(j(m/a)). But this means that mult(c, a) is satisfactory as well. Considering colorings
as maps, the inequalities just indicated are maintained under any permutation π of [n],
so if a 6= 1, then π ◦mult(c, a) is also satisfactory.

(4) Suppose that X is n-appropriate. First, X =
⋃
a∈Pn∩X a · Kn, by lemma 18. If

c ∈ CX , then, by item (1), d = c � a · Kn ∈ Ca·Kn for any a ∈ Pn ∩ X, and ca :=
div(d, a) ∈ CKn by item (2). Writing π−1a for the permutation as in item (2), we have that
d = πa ◦mult(ca, a), and therefore

c =
⋃

a∈Pn∩X

πa ◦mult(ca, a).

Conversely, suppose that CKn 6= ∅. For each a ∈ Pn ∩ X let ca ∈ CKn and πa be a
permutation of [n], with π1 being the identity if 1 ∈ X. Define

c =
⋃

a∈Pn∩X

πa ◦mult(ca, a).

As mentioned in lemma 18, a · Kn ∩ b · Kn = ∅ whenever a 6= b are in Pn. From this,
and item (3), c is well defined and has domain

⋃
a∈Pn∩X a ·Kn, which equals X, again by

lemma 18. If m ∈ X and i < j 6 n, then there is a unique a ∈ Pn ∩X such that mi and
mj belong to a ·Kn, and by item (3) it follows that c(mi) 6= c(mj). This proves that c is
satisfactory, and completes the proof of item (4).

(5) Now, ifX is n-appropriate, and CX 6= ∅, then Ca·Kn 6= ∅ for any a in the nonempty
set Pn∩X, by item (1). But this implies that CKn 6= ∅, by item (2). It follows from item
(4) that C = CZ+ 6= ∅. Thus, CY 6= ∅ for any n-appropriate Y , again by item (1).

Finally, if X ⊆ Y are n-appropriate and c ∈ CY , then d = c � X ∈ CX , by item
(1). Conversely, if d ∈ CX , let e ∈ CKn , which exists as shown above. Let ca = e and
π = id for a ∈ Pn ∩ (Y r X). For a ∈ Pn ∩ X, let ca = div(d � a · Kn, a) and πa be
the permutation such that d � a · Kn = πa ◦ mult(ca, a). As in item (4), we have that
c =

⋃
a∈Pn∩Y πa ◦mult(ca, a) ∈ CY . And, by construction, d = c � X. This completes the

proof of item (5).

Remark 20. The notion of n-appropriate can be extended in a natural way, allowing us
to verify that, for instance, there is an n-satisfactory coloring of Kn if and only if there
is one of Z r {0}. More interesting is whether this is also equivalent to the existence of
an n-satisfactory coloring of Q r {0} or, what is the same, of K̂n := {a/b : a, b ∈ Kn}.
We show below that this is indeed the case, see proposition 26. We also suggest a subtler
problem in question 24. In [BDG+18], K̂n is denoted Qn.

When discussing n-satisfactory colorings, proposition 19 provides us with the ability to
restrict our attention from all of Z+ to Kn. The relation the proposition details between
arbitrary satisfactory colorings and colorings of the core has the following corollary.
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Corollary 21. For n > 1, if CKn 6= ∅, then |C| = c.

Proof. If there is a coloring of the core (thought of as a function with range [n]), then
there are at least n! > 2 such colorings of any a ·Kn for a ∈ Pn different from 1, obtained
by invoking item (3) of proposition 19 and varying the permutation π. By item (4) of
proposition 19, there is a bijective correspondence between the elements of C, and the
set of functions with domain Pn that pick for each a ∈ Pn a member of CKn and a
permutation of [n] (with the permutation being the identity if a = 1), from which we get
that |C| > n!|Pnr{1}| = c.

On the other hand, any element of C is a function from Z+ to [n] (satisfying certain
restrictions), so |C| 6 |[n]Z

+| = nℵ0 = c, and it follows that |C| = c by the Cantor–
Schröder–Bernstein theorem.

Proposition 19 and corollary 21 give us that if there is an n-satisfactory coloring of
Kn, then there are as many n-satisfactory colorings of Z+ as there are real numbers.
However, this abundance of colorings is a distraction since the underlying structure of
any satisfactory coloring can be described in terms of what is happening on the core.

2.2 The structure of CKn

We mention here some easy observations regarding the closure of CKn under some natural
operations.

(1) First, CKn is a closed subset of the Polish space [n]Kn of functions from Kn to [n]
under the product topology (with [n] discrete): c ∈ CKn if and only if

c ∈ {f ∈ [n]Kn : ∀i ∈ [n] (f(i) = i)} ∩
⋂
a∈Kn

⋂
16i<j6n

{g ∈ [n]Kn : g(ia) 6= g(ja)},

and note that for any distinct b, c ∈ Kn,

{g ∈ [n]Kn : g(b) 6= g(c)} =
⋃

(α,β)∈[n]×[n]
α 6=β

{g ∈ [n]Kn : g(b) = α and g(c) = β}

is a finite union of closed sets.
This topological fact is trivial in some cases, since (as shown in § 2.4) CKn is sometimes

finite, but see § 5.2. The Polish topology of the space [n]Kn is generated by a natural
metric: enumerate Kn in increasing order as {ki : i ∈ Z+}. The distance between two
distinct colorings c, c′ is 1/N , where N is the least index of a disagreement, that is,
c(ki) = c′(ki) for all i < N , but c(kN) 6= c′(kN). This metric is complete both in the whole
space [n]Kn and in CKn .

The truth is, we understand very little of the topological structure of CKn . It is
unclear, for instance, whether the following question should have a positive answer.

Question 22. Given n ∈ Z+, suppose that CKn is nonempty. Should it have isolated
points?
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(2) The following is an immediate but useful observation.

Lemma 23. Let ρ be an automorphism of the structure ([n], |), that is, of the Hasse
diagram for divisibility on [n]. Extend ρ to a bijection of Kn in the natural way: if
m = 2α1 . . . pk

αk is the prime factorization of m ∈ Kn, then

ρ(m) = ρ(2)α1 . . . ρ(pk)
αk . (2.1)

If c is an n-satisfactory coloring of Kn, then so is c̃, where c̃(a) = c̃(b) if and only if
c(ρ(a)) = c(ρ(b)).

For an application, see the discussion of the case n = 5 in § 2.4, where it is also shown
that the more inclusive condition that ρ be a permutation of the set of primes in [n] is
not enough in general.

Proof. Note first that ρ permutes the primes less than or equal to n, and equation (2.1)
holds for all m ∈ [n], so that the suggested extension is well defined and maps Kn to
itself. Since ρ is a permutation on the primes in [n], it follows as well that ρ is surjective
on Kn. Note also that for any m1,m2 ∈ Kn, ρ(m1m2) = ρ(m1)ρ(m2).

Now, if c is satisfactory and c̃ is as indicated, then for i 6= j in [n] and a ∈ Kn, we
have that c̃(ia) = c(ρ(i)ρ(a)) 6= c(ρ(j)ρ(a)) = c̃(ja) since ρ(i), ρ(j) ∈ [n].

(3) Another natural operation on CKn can be defined by letting ck ∈ CKn , for c ∈ CKn
and k ∈ Kn, be given by ck(l) = ck(m) if and only if c(kl) = c(km). (Abusing slightly7

the notation used in proposition 19, ck = div(c � k · Kn, k).) We remark that although
we concentrate on n-satisfactory colorings throughout the whole paper, on occasion we
may consider translations ck of arbitrary n-colorings c, with the understanding that the
definition just given applies in general.

Most of the colorings we consider in this paper are multiplicative (see § 4.1). For
them, this operation is uninteresting: c = ck for any k ∈ Kn whenever c is multiplicative.
However, the operation may generate new colorings otherwise, see § 5.2. It also suggests
the following natural problem.

Question 24. Given an n-satisfactory coloring c and k ∈ Kn, is there is an n-satisfactory
coloring d such that dk = c? In that case, how many such colorings d are there?

(4) Because CKn is closed in [n]Kn , it is also closed under a construction coming
from applications of Kőnig’s infinity lemma. We discuss this construction in the next
subsection, once the appropriate notation and terminology have been introduced, see
remark 29.

7In proposition 19 we require k ∈ Pn, but Pn ∩Kn = {1}.

the electronic journal of combinatorics 28(1) (2021), #P1.34 18



2.3 Tilings

The switch from Z+ to the set Kn allows us to restate question 2 as a problem about
tilings (this restatement is also mentioned by Pálvölgyi on his post in MathOverflow, and
is the subject of [BDG+18, § 4]).

To simplify the description, consider for now the case n = 3. In this case, the problem
lives in the integer grid. Identify m = 2a3b ∈ K3 with the point (a, b) in the first quadrant
of the integer lattice or, equivalently, the unit square with sides parallel to the axes and
bottom left corner at (a, b). Now, a coloring is 3-satisfactory if and only if for any such
pair (a, b), the pairs (a, b), (a+1, b) (corresponding to 2m) and (a, b+1) (corresponding to
3m) all receive different colors. The question of whether there is a 3-satisfactory coloring
of K3 becomes the question of whether we can assign to each unit square in the first
quadrant one of three colors in such a way that all translates of the triomino consisting of
the three unit squares in the bottom left corner of the quadrant contain tiles of all colors.

The case n = 3 is simple enough that one can easily see that there is a unique way of
accomplishing this, illustrated in figures 2.1 and 2.2. (The names of the colors in figure
2.1 are chosen so that the color of each i = 1, 2, 3 is i itself.)

2 3 1 2 3 1
3 1 2 3 1 2
1 2 3 1 2 3
2 3 1 2 3 1
3 1 2 3 1 2
1 2 3 1 2 3

Figure 2.1: Tiling of the first quadrant of Z2 corresponding to a 3-satisfactory coloring.
The relevant triomino is shown at the bottom left corner. Any copy of the triomino
contains all three colors.

×2

×3

2432 4863 9721 194423888377761

813 1621 3242 6483 1296125922

271 542 1083 2161 4322 8643

92 183 361 722 1443 2881

33 61 122 243 481 962

11 22 43 81 162 323

Figure 2.2: The unique 3-satisfactory coloring of K3. (Subindices indicate colors.) Notice
the periodicity of the coloring, resulting in a tiling of the first quadrant with identically
colored 3× 3 squares.
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Before proceeding, the reader may enjoy verifying that, similarly, there is a unique
4-satisfactory tiling of the first quadrant, as illustrated in figures 2.3 and 2.4.

2 4 3 1 2 4 3 1
4 3 1 2 4 3 1 2
3 1 2 4 3 1 2 4
1 2 4 3 1 2 4 3
2 4 3 1 2 4 3 1
4 3 1 2 4 3 1 2
3 1 2 4 3 1 2 4
1 2 4 3 1 2 4 3

Figure 2.3: Tiling of the first quadrant of Z2 corresponding to a 4-satisfactory coloring.
The relevant polyomino is shown at the bottom left corner. Any copy of the polyomino
contains all 4 colors.

×2

×3

2433 4861 9722 194443888377761

811 1622 3244 6483 1296125922

272 544 1083 2161 4322 8644

94 183 361 722 1444 2883

33 61 122 244 483 961

11 22 44 83 161 322

Figure 2.4: The unique 4-satisfactory coloring of K4. The coloring is periodic, resulting
in a tiling of the first quadrant with identically colored 4× 4 squares.

Further cases are harder to illustrate, as they correspond in general to tilings of the
first orthant of Zπ(n) where, as usual, π(·) denotes the prime counting function (and in
general lack the periodicity displayed in these two examples, but see remark 56). These
tilings use unit “cubes” of n possible colors as tiles. More interestingly, we can instead
restate question 2 as a problem about tilings with translates of the π(n)-dimensional
polyomino corresponding to the set {1, 2, . . . , n} as tiles. We proceed now to explain this
connection.

Given n, work in Zπ(n). As suggested above, we identify each member of Kn with
the tuple of its prime exponents: any m ∈ Kn can be written in a unique way as m =∏π(n)

i=1 p
αi
i , where 2 = p1 < · · · < pπ(n) are the primes less than or equal to n, listed

in increasing order, and the αi are nonnegative integers. We identify m with the tuple
t(m) = (α1, . . . , απ(n)) in the first orthant On of Zπ(n), noting that t : Kn → On is a
bijection, and let Tn = {t(i) : i ∈ [n]}. Note that t turns multiplication into vector
addition in the sense that t(kk′) = t(k) + t(k′) for any k, k′ ∈ Kn. We will find several
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maps with similar properties in what follows, see for instance definition 52, where we call
them multiplicative.

Given A,C ⊆ Zπ(n), say that A tiles C (or, equivalently, that C can be tiled by A) if
and only if there is a set B ⊆ Zπ(n) such that C is the direct sum of A and B, that is,

1. C = A+B := {a+ b : a ∈ A, b ∈ B}, and in fact

2. any c ∈ C admits a unique decomposition as a sum of a member of A and a member
of B, that is, there is a unique pair (a, b) ∈ A×B with c = a+ b.

Also, say that A essentially tiles C if and only if C can be covered by a set that can be
tiled by A (in which case, we call such a tiling of a superset of C an essential tiling of
C by A). We remark that, as we did above, we may identify without further comment
points (αi : i ∈ [π(n)]) in Zπ(n) with the corresponding π(n)-dimensional cubes

{(xi : i ∈ [π(n)]) : αi 6 xi 6 αi + 1}.

For a fixed value of n, consider now the following two statements:

(i) There is an n-satisfactory coloring of Kn.

(ii) Tn essentially tiles the orthant On.

We have the following result.

Proposition 25. With notation as above, (i) and (ii) are equivalent.

Proof. To see that (ii) implies (i), consider a tiling by Tn of a superset C of On, say
C = Tn +B, the sum being direct. Note that via this direct sum, each element of C, and
therefore each x ∈ On, belongs to exactly one tile, that is, a unique copy of Tn. There is
a unique m ∈ Kn such that x = t(m), where t is the map described above. Color m with
the position of x within this tile. In other words, let the color classes be the preimages
under t of the sets a + B for a ∈ Tn. We must argue that this coloring is n-satisfactory.
Indeed, given k ∈ Kn and i, j ∈ [n], suppose that ki and kj receive the same color, that
is, there are α ∈ Tn and b1, b2 ∈ B such that t(ki) = α + b1 and t(kj) = α + b2. By the
multiplicative property of t, it follows that

t(j) + b1 = t(i) + b2.

Since the sum Tn +B is direct, this means that (b1 = b2 and) t(i) = t(j), thus i = j, and
the coloring is indeed n-satisfactory; see figure 2.5.

To see that, conversely, (i) implies (ii), consider an n-satisfactory coloring c. Letting
B′ be the image under the map t of one of the color classes, note that the sum Tn + B′

is direct. Indeed, suppose that i, j ∈ [n], and k, k′ ∈ Kn are such that t(k), t(k′) ∈ B′

and t(i) + t(k) = t(j) + t(k′), that is, ik = jk′. By removing common factors if necessary,
we may further assume that i, j are relatively prime. This means that there is a positive
integer k′′ such that k = jk′′ and k′ = ik′′. Observe that k′′ ∈ Kn. The assumption that
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2 3 1 2 3 1
3 1 2 3 1 2
1 2 3 1 2 3
2 3 1 2 3 1
3 1 2 3 1 2
1 2 3 1 2 3

Figure 2.5: Tiling of a superset of O3 by T3, and the 3-satisfactory coloring it induces.

B′ is the image of a color class gives us that c(jk′′) = c(ik′′) and, since c is n-satisfactory,
then i = j and so also k = k′. This proves that the sum Tn +B′ is indeed direct.

Let now x ∈ On be sufficiently far from the boundary of On, in the sense that all
of x − t(1), . . . , x − t(n) are themselves in On (equivalently, if x = t(m), then all of
m,m/2, . . . ,m/n are positive integers), and fix the image B′ of a color class. We claim
that for some i ∈ [n], we have that x− t(i) ∈ B′. Otherwise, by the pigeonhole principle,
for some i 6= j, both in [n], it must be that x − t(i) and x − t(j) are in the same image
B′′ of a color class. This is impossible, since the decompositions

x = t(i) + (x− t(i)) = t(j) + (x− t(j))

contradict that the sum Tn +B′′ is direct, as shown in the previous paragraph.
We have shown that for any image B′ of a color class, the sum Tn + B′ is direct

and contains a translate of On, for instance x0 + On, where x0 = t(lcm([n])). Setting
B = B′ − x0, then Tn +B is a direct sum and covers On, as desired; see figure 2.6.

3 1 2 4 3 1
1 2 4 3 1 2
2 4 3 1 2 4
4 3 1 2 4 3
3 1 2 4 3 1
1 2 4 3 1 2

Figure 2.6: Tiling by T4 of a superset of a translate of O4 induced by a 4-satisfactory
coloring.

Now consider the following additional statement:

(iii) Zπ(n) can be tiled by Tn.

Obviously, (iii) implies (ii) (and therefore (i)), and it is natural to ask whether the
converse holds. We argue below that this is indeed the case. Note that the proof of
proposition 25 shows that (iii) is equivalent to the following statement (cf. remark 20):
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(iv) There is an n-satisfactory coloring of K̂n = {a/b : a, b ∈ Kn}.

Proposition 26. With notation as above, (i) implies (iii), and therefore (i)–(iv) are all
equivalent.

Proof. Let Ĝn be the graph with set of vertices K̂n where two points x, y are connected
if and only if there is an m ∈ K̂n such that x, y ∈ {im : i ∈ [n]} (cf. § 1.3). It is
enough to argue that χ(Ĝn) = n, since this is equivalent to (iv). But this is a consequence
of compactness (in the form of the de Bruijn–Erdős theorem [dBE51]): given any finite
subgraph G of Ĝn, by multiplying all vertices by an appropriate k ∈ Kn we see that G is
isomorphic to a finite subgraph of Gn and is therefore n-colorable, since (i) is equivalent
to the assertion that χ(Gn) = n.

Essentially the same argument was also noted in [BDG+18], where Ĝn is denoted
Wn. Incorporating into the argument the proof of the de Bruijn–Erdős theorem in the
countable case reveals a subtlety worth pointing out, as it leads to the interesting question
27 below. To help see the connection, we rephrase the proof just given using directly the
integer grid rather than the accompanying graph.

For each positive integer m, let Dm be the hypercube

Dm = {(a1, . . . , aπ(n)) : |ai| 6 m for all i}.

Each Dm admits a coloring dm that is “partially n-satisfactory” in the sense that any copy
of the polyomino Tn completely contained in Dm receives n colors. Namely, consider an
n-satisfactory coloring of Kn, seen as a coloring of the orthant On, and a cube D′m of the
same size as Dm but completely contained in On. Now define dm simply by translating D′m
onto Dm and copying the given coloring. Naturally, the colorings dm are not compatible
in general. To obtain an actual n-satisfactory coloring of K̂n, that is, a coloring of the
whole integer grid where any copy of Tn receives n colors, we need an additional step,
which amounts to a standard application of Kőnig’s infinity lemma.

Explicitly: enumerate the points in the grid as v1, v2, . . . . Note that if m < m′, then
Dm ( Dm′ , and that the union over all m of the hypercubes Dm is the whole space
Zπ(n) so that, for any k, vk is in Dm for all sufficiently large m. Consider the sequence
of colorings ~d = (dm)m>0. Since only n colors are possible, there is a subsequence of ~d
that always assigns to v1 the same color. Passing to a subsubsequence, we can also fix
the color assigned to v2. Going to yet a further subsequence, we can fix the color of v3.
Recursively carrying this procedure out produces a “limit” n-coloring d of the whole grid
that is in addition satisfactory, since for any two points x, y with x = t(ik), y = t(jk)
for i 6= j in [n] and some k ∈ K̂n, for m large enough (say, m > m0) the tile Tn + t(k)
is completely contained in Dm and so all associated colorings dm assign to x, y different
colors. Say x = vr and y = vs with r < s. Since the color that d assigns to x is dm(x)
for infinitely many m, and the color that it assigns to y is dm(y) for a subsequence of
these m (using that r < s), in particular there is such an m with m > m0 and therefore
d(x) 6= d(y), as needed.
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The subtlety we referred to above is that, naturally, the resulting coloring d needs not
be compatible with the initial coloring c of the orthant; in fact, for any k ∈ Kn, d may
not be compatible with any of the translates ck (that is, with the original coloring of any
of the translates On + t(k)) and the question remains whether we can further impose this
compatibility requirement. Say that a tiling Tn + B′ of Zπ(n) essentially extends a tiling
Tn + B of a superset of On if and only if any tile of Tn + B completely contained in On

is a tile of Tn +B′ (so that, if at all, only partial tiles covering a part of the boundary of
the orthant could in principle change).

Question 27. Let n ∈ Z+.

1. Does any n-satisfactory coloring of Kn extend to one of K̂n?

2. If Tn essentially tiles On via a tiling Tn + B, is there a tiling by Tn of all of Zπ(n)
that essentially extends it?

Question 27 has a positive answer for n = 3, 4 but seems delicate in general. It is clear
that a multiplicative n-satisfactory coloring can be extended as in (1) (see remark 56); in
particular, (1) has a positive answer if all n-satisfactory colorings are multiplicative. In
that case, (2) has a positive answer as well. More generally, (2) has a positive answer if the
coloring induced by Tn +B (as in the proof of proposition 25) is multiplicative. Question
24 (whether for any n-satisfactory c and any k ∈ Kn we can find an n-satisfactory d such
that dk = c) is a close relative; we briefly explore the latter in a particular case in § 5.2.
In terms of tilings, question 24 is asking whether we can extend any tiling by Tn of (a
superset of) On to one of On− t(k). If this is always possible for a given n, it provides us
with a positive answer to question 27.

Lemma 28. For any n, a positive answer to question 24 implies a positive answer to
question 27.

Proof. Let p1 < · · · < pπ(n) be the primes in [n]. Starting with an n-satisfactory coloring
c = d0 of Kn, iteratively extend the corresponding coloring of the orthant “one layer” in
each dimension, i.e., find n-satisfactory colorings d1, d2, . . . such that d0 = d1p1 and, in
general,

dπ(n)·m+a−1 = dπ(n)·m+a
pa

for any nonnegativem and any a ∈ [π(n)]. If dj = dj+1
p, we can think of dj+1 as extending

the domain of dj to the set dom(dj+1) = {a/p : a ∈ dom(dj)}. The colorings dj agree on
their common domains as j increases, and any m ∈ K̂n is eventually included in these
domains. This means that there is a unique “limit” n-satisfactory coloring d of all of K̂n

obtained by this process.

Remark 29. The second proof we gave of proposition 26 illustrates an application of
Kőnig’s lemma that can be interpreted as a construction that the space CKn is closed
under. We promised in (4) of § 2.2 to explain this construction here.
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Consider a finite coloring c of Kn, seen as a coloring of On. For each l ∈ N, let

Dl = {(a1, . . . , aπ(n)) ∈ On : 0 6 ai 6 l for all i ∈ [π(n)]}

be the π(n)-dimensional cube with sides of length l. There are only finitely many colorings
d of Dl that are realized by c in the sense that for some x ∈ On, the coloring c � (x+Dl),
seen as a coloring of Dl in the natural way, coincides with d, that is, d(y) = c(x + y) for
any y ∈ Dl.

Define an infinite finitely branching tree T as follows: start with the empty coloring
of the empty set (seen as the only node of T at level −1) and, for each l ∈ N, use as
nodes of the lth level of T the colorings d realized by c on infinitely many distinct copies
of Dl (that is, those d for which there are infinitely many x as above). Use as immediate
successors of such a coloring d the colorings d′ at the (l + 1)st level that extend d in the
sense that d′ � Dl = d.

By Kőnig’s lemma, the tree admits an infinite branch, that is, a sequence of colorings
(dl : l ∈ N) such that dom(dl) = Dl for each l, and the colorings are compatible in the
sense that dl = dl+1 � Dl for each l. The union of these colorings is a coloring d of On

and, just as in the second proof of proposition 26, if c is n-satisfactory, then so is d.
Note that we could define another finitely branching tree T ′ by being more generous

and considering all colorings that are realized rather than only those that are realized
infinitely often, but this version realizes as branches many colorings we already had access
to by other procedures (for instance, starting with c, all colorings ck, k ∈ Kn, appear
as branches of T ′), while restricting attention to T may potentially result in different
colorings. Moreover, even if, say, c itself appears as a branch through T , this now reveals
something about the structure of c.

The combinatorial fact behind both the argument just given and the second proof of
proposition 26 is that in order to show that there are n-satisfactory colorings of Kn it is
enough to argue that there are partially n-satisfactory colorings of the cubes Dl for all l
(in the sense mentioned earlier, that any copy of the polyomino Tn completely contained
in Dl receives all colors). However, we do not see at the moment a scenario allowing us
to verify the latter without directly exhibiting the former.

A related matter is whether the operations described in the proof of proposition 25 are
inverses of each other. We formulate this as a question about the proof of the equivalence
between (iii) and (iv) above.

Question 30. Given an n-satisfactory coloring c of K̂n, let B be the image under t of
a color class of c. The proof of proposition 25 shows that the sum Tn + B is a tiling of
Zπ(n). From this tiling we can define an n-satisfactory coloring c′ with color classes the
preimages under t of the translates t(i) +B, i ∈ [n]. Is c′ = c?

The answer is positive for multiplicative colorings, see remark 75. Also, note the order
in which we consider the operations: if instead we start with a tiling, define a coloring
from it, and use the coloring to derive a tiling, we simply return to the original tiling.

Instead of (iii) and (iv) we could consider (i) and (ii). The situation here (where we
only consider the orthant On rather than the whole Zπ(n)) is somewhat more delicate: now
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from an essential tiling of On we get an n-satisfactory coloring of Kn just as before, but
from such a coloring c we only get a tiling of a subset of the orthant, and it was only by
translation that we got a tiling of a superset in the proof of proposition 25. However, the
process of translation may effectively change even well-behaved colorings (see for instance
Theorem 81). On the other hand, c gives us not just one, but n partial tilings of On, and
any point in the orthant belongs to at least one of the resulting direct sums Tn +B. Any
of these sums defines a partial n-satisfactory coloring of Kn.

Question 31. In the setting just described, are the resulting partial colorings compatible?
If they are, their union gives us a coloring c′ of Kn. Is c′ = c?

We can also ask whether the partial tilings can be extended to essential tilings in
compatible ways. We address question 31 in remark 82 where we show that, perhaps
surprisingly, there are instances where the answer is negative.

2.4 Satisfactory colorings with n 6 5

For n 6 5 it is easy to give an explicit description of all n-satisfactory colorings. For each
n < 5 there is exactly one such coloring, and there are precisely two for n = 5. As we will
see in § 5.2, such an explicit list is no longer possible even for n = 6. We use N for the set
of natural numbers, including 0.

• n = 1.

Trivially, there is only one 1-satisfactory coloring of K1 = {1}.

• n = 2.

Similarly, there is only one 2-satisfactory coloring c of K2 = {2a : a ∈ N}: presented
as an equivalence relation with 2 classes c(1) 6= c(2), we have

c(2α) = c(2α mod 2) (2.2)

for all α ∈ N.
This introduces a recurring theme: we could describe the coloring simply as c(2α) =

(α mod 2), that is, the coloring described this way has precisely the same classes as the
one in equation (2.2).

Note that 2 + 1 = 3 is prime, so c(m) = (m mod 3) is a 2-satisfactory coloring of K2,
as shown in § 1.1. One can easily verify that (as expected) this coloring also coincides
with the one in equation (2.2).

• n = 3.

Suppose now that c is a 3-satisfactory coloring of K3 = {2α3β : α, β ∈ N}. For a a
positive integer we have that c(a), c(2a) and c(3a) are all different.
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It follows that c(2a), c(4a), c(6a) are different, and so are c(3a), c(6a), c(9a). In par-
ticular, c(6a) 6= c(2a), c(3a), so c(6a) = c(a) and therefore c(4a) = c(3a), from which we
conclude that, in fact, c(2α3β) = c(2α+2β). Also, since c(a), c(2a), c(4a) are different, we
have that c(2a), c(4a), c(8a) are different as well, and it follows that c(8a) = c(a). This
means that

c(2α3β) = c(2α+2β mod 3) (2.3)

for all α, β ∈ N. Conversely, it is easy to check that equation (2.3) together with the
requirement that c(1), c(2), c(3) are distinct describes a 3-satisfactory coloring of K3.

Naturally, this is the coloring indicated in figures 2.1 and 2.2, which in turn can be
described (up to the name of the colors used) by saying that for nonnegative integers
α, β, the unit square with bottom left corner at (α, β) has color (α + 2β mod 3), so that
as before, the coloring of a number m = 2α3β ∈ K3 is given as a linear equation in the
exponents of the prime factorization of m.

Note that the permutation (23) is an automorphism of ([3], |), see figure 2.7. By lemma
23, the coloring c̃ is also 3-satisfactory, where

c̃(2α3β) = c̃(3β+2α mod 3)

and, again, we require c̃(1), c̃(2), c̃(3) to be different. Uniqueness, of course, simply means
that c is invariant under this permutation, i.e., c = c̃.

1

2 3

Figure 2.7: Hasse diagram for divisibility on [3]. Note (23) is an automorphism of this
structure.

• n = 4.

The argument is similar to the previous case: if c is a 4-satisfactory coloring of K4 =
K3, then for any positive integer a, the colors c(a), c(2a), c(3a), c(4a) are different, and
c(6a) 6= c(2a), c(4a), c(8a) and c(6a) 6= c(3a), c(9a), c(12a), so c(6a) = c(a) and c(8a) =
c(3a).

Also, since c(a), c(2a), c(4a), c(8a) are different, we see that c(16a) = c(a), see figure
2.8. Thus,

c(2α3β) = c(2α+3β mod 4) (2.4)

for all α, β ∈ N. Conversely, equation (2.4) and the requirement that c(1), c(2), c(3), c(4)
are distinct describes a 4-satisfactory coloring of K4. This is the coloring indicated in
figure 2.3. Again the coloring can be succinctly described by a linear equation as c(2α3β) =
(α + 3β mod 4).

Again by uniqueness and the result of § 1.1 (since 4 + 1 = 5 is prime), the coloring can
also be described by c(m) = (m mod 5).
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c(a) c(2a)c(4a)

c(3a) c(a)

c(3a) c(a)

Figure 2.8: A 4-satisfactory coloring c satisfies c(6a) = c(a), c(8a) = c(3a), and c(16a) =
c(a) for all a ∈ K4.

• n = 5.

Note first that if c is a 5-satisfactory coloring of K5, then c(8a) 6= c(a) for any a ∈ K5.
Indeed, otherwise c(10a) = c(3a) and c(6a) = c(5a), which further forces c(12a) = c(2a)
and no color can be assigned to 20a. This means that either c(6a) = c(a) or c(10a) = c(a).
In particular, either c(6) = c(1) or c(10) = c(1).

Consider first the case where c(6) = c(1), and let

K1 = {n ∈ K5 : c(6n) = c(n)},

so that 1 ∈ K1. Suppose that a ∈ K1, that is, c(6a) = c(a). We have that c(10a) = c(3a)
and c(8a) = c(5a), thus c(12a) = c(2a) or 2a ∈ K1. It follows that c(15a) = c(4a) and
c(9a) = c(5a).

Now: we just proved that a ∈ K1 implies c(9a) = c(5a); since it also implies that
2a ∈ K1, it follows that c(6 · 3a) = c(18a) = c(9 · 2a) = c(5 · 2a) = c(10a) = c(3a) and,
similarly, c(6 · 5a) = c(30a) = c(15 · 2a) = c(4 · 2a) = c(8a) = c(5a). That is, 3a, 5a ∈ K1

as well.
This means that K1 = K5 and

c(25a) = c(8 · 4a) = c(5 · 4a) = c(10 · 2a) = c(6a) = c(a)

for all a ∈ K5. Now we can proceed as in the previous cases: note that c(5a) = c(8a) and
c(3a) = c(10a) = c(5 · 2a) = c(8 · 2a) = c(16a), so

c(2α3β5γ) = c(2α+4β+3γ mod 5) (2.5)

for all α, β, γ ∈ N. Conversely, equation (2.5) and the requirement that c(1), . . . , c(5) are
distinct describes a 5-satisfactory coloring of K5; moreover, this is the only such coloring
with c(6) = c(1).

A similar analysis shows that

c(2α3β5γ) = c(2α+3β+4γ mod 5) (2.6)

for all α, β, γ ∈ N, and the requirement that c(1), . . . , c(5) are distinct describes the unique
5-satisfactory coloring of K5 with c(10) = c(1).
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Actually, the latter analysis can be avoided by noting that 3 and 5 are indiscernible
in K5 in the sense that the transposition (35) is an automorphism of the Hasse diagram
for divisibility in [5], see figure 2.9. By lemma 23, there is a one-to-one correspondence
between 5-satisfactory colorings with c(2 · 5) = c(1) and those with c(2 · 3) = c(1), so
in particular there is a unique 5-satisfactory coloring with c(10) = c(1), and the lemma
allows us to recover the precise form of equation (2.6).

1

2
3

4

5

Figure 2.9: Hasse diagram for divisibility on [5]. Note (35) is an automorphism of this
structure.

In terms of linear equations, the two colorings we obtained are

c1(2α3β5γ) = (α + 4β + 3γ mod 5) and c5(2α3β5γ) = (α + 3β + 4γ mod 5),

where the superindices in c1, c5 refer to whether c(6) = c(1) or c(6) = c(5), respectively.
(Note that typically the same coloring can be described by several linear equations.

For example, the 5-coloring that to 2α3β5γ assigns (2α + β + 3γ mod 5) coincides with
c1.)

Finally, we can now illustrate why lemma 23 cannot be strengthened by allowing ρ to
be any permutation of the set of primes in [n]. Indeed, consider the transposition ρ = (23),
extend it to a permutation of K5 as in equation (2.1), and note that the coloring c̃1, given
by c̃1(a) = c̃1(b) if and only if c1(ρ(a)) = c1(ρ(b)) is not a 5-satisfactory coloring, since
c̃1(4) = c1(9) = c1(5) = c̃1(5).

2.5 A table of linear equations

We close the section by providing in table 2.1 a nonexhaustive list of linear equations
verifying a positive solution to question 2 for n 6 31: given such an n, let k = π(n) and
let p1 < · · · < pk be the prime numbers less than or equal to n. We exhibit coefficients
a1, . . . , ak such that the n-coloring c of Kn given by

c

(
k∏
i=1

pαii

)
=

(
k∑
i=1

aiαi mod n

)

is n-satisfactory. In particular, note that the entry for n = 7 provides a positive solution
to KöMaL problem B.4265.

We identify these coefficients by a naive greedy algorithm, where for each i we choose
ai as small as possible so that no repeated colors occur among the numbers in [n] of the
form

∏
j6i p

βi
i . The point is, of course, that such a linear coloring c is n-satisfactory if and
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only if it is injective on [n]. For instance, for n = 7, the coloring indicated in table 2.1 is
given by

c(2α3β5γ7δ) = (α + 3β + 5γ + 6δ mod 7),

so that if c(m) = (k mod 7), say, then

(c(im) : i ∈ [7]) = (k, k + 1, k + 3, k + 2, k + 5, k + 4, k + 6) mod 7,

and c is indeed 7-satisfactory.
We revisit this approach and provide additional context through the notion of partial

isomorphism in § 4.2.

3 Generalizing the approach for p prime

3.1 Strong representatives

In this section, we present a condition on n that, if satisfied, ensures the existence of
n-satisfactory colorings. The construction below was first noticed by the third-named
author in 2009. It was suggested independently in MathOverflow by Victor Protsak8. It
has also been considered before in connection with Graham’s conjecture discussed in § 1.3,
see for instance [FP90, § 2] and references therein.

Theorem 32. If n, k are positive integers such that p = kn+1 is prime and 1k, 2k, . . . , nk

are distinct modulo p, then c(m) = (mk mod p), m ∈ Kn, is an n-satisfactory coloring of
Kn.

Proof. We begin noting that there are exactly n pairwise incongruent nonzero kth power
residues modulo kn+ 1.

For i 6= j ∈ [n] and a ∈ Kn, we note that c(ia) 6= c(ja) since the hypothesis implies
that akik 6≡ akjk (mod p).

In particular, we recover the proof of problem A.506 from KöMaL given in the intro-
duction since the assumption that 1, 2, . . . , n are distinct modulo n + 1 is trivially valid.
We also have the following consequence (and note that there are infinitely many n such
that 2n+ 1 is prime).

Corollary 33. If p = 2n + 1 is prime, then c(m) = (m2 mod p) is an n-satisfactory
coloring of Kn.

Proof. It is enough to verify that 12, . . . , n2 are pairwise incongruent modulo p. This is
immediate since i2 ≡ j2 (mod p) if and only if either i ≡ j (mod p) or i ≡ −j (mod p),
but the latter is impossible if i, j ∈ [n].

This leads us to the following definition.
8See https://mathoverflow.net/q/26358/
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Definition 34 (Strong representatives). A satisfactory n-coloring c admits a strong rep-
resentation if and only if there exists a prime p of the form kn + 1 for some positive
integer k such that 1k, . . . , nk are pairwise distinct modulo p, and c(m) = (mk mod p) for
all m ∈ Kn. In this case, we call p a strong representative of order n (for c). If some
satisfactory n-coloring admits a strong representation, we also say that n admits a strong
representative.

Whenever it applies, Theorem 32 allows us to exhibit satisfactory colorings with a
simple structure. However, given n, even if there are primes p = kn + 1 as required
by the theorem, identifying them is not necessarily feasible. For instance, the smallest
strong representative of order 32 is p = 5, 209, 690, 063, 553. Table 3.1 lists for n 6 33 the
smallest strong representative of order n.

As table 3.1 suggests, unlike the cases k = 1, 2, the primality of kn+ 1 for k > 2 does
not automatically ensure that the hypothesis of Theorem 32 is satisfied. For example, if
n = 3, then p = 4n+ 1 = 13 is prime. However, 24 = 16, 34 = 81, and 16 ≡ 81 (mod 13).
This is further discussed in § 3.2.

Remark 35. In terms of notions introduced below, all colorings obtained through strong
representatives are multiplicative, and in fact are Z/nZ-colorings. However, there are
satisfactory colorings that are nonmultiplicative (see Theorem 83), multiplicative colorings
that are not Z/nZ-colorings (see table 4.20 for a = 1), and Z/nZ-colorings that do not
admit a strong representative (see table 4.12).

3.2 k-representatives

Definition 36. Let k ∈ Z+. A prime p of the form kn + 1 is a k-representative if and
only if p is a strong representative of order n, that is, the numbers 1k, . . . , nk are distinct
modulo p.

Note that, in general, the roles of k and n cannot be interchanged. If p = k + 1 is
prime, it is trivially a k-representative. Our goal in this subsection is to show that for
every k > 2 there are only finitely many n such that p = kn+ 1 is a k-representative. In
fact, we will show that for some values of k there are no such n.

We begin by discussing the case k = 3; this case was also the subject of KöMaL
problem B.4401 in November 2011,9 proposed by the third-named author.

Theorem 37. If p = 3n+ 1 is prime, then p is not a 3-representative.
In particular, if n > 2, then there is an i ∈ [n], i > 2, such that i3 ≡ 1 (mod p) or

i3 ≡ 8 (mod p).

Proof. For n = 2 we have that 13 ≡ 23 (mod 7). Suppose now that n > 2 and p = 3n+ 1
is prime. Work in Z/pZ. Note that x3 = 1 and x 6= 1 if and only if x2 + x + 1 = 0 if
and only if 4x2 + 4x + 4 = 0, or (2x + 1)2 = −3. Also, x3 = 8 and x 6= 2 if and only if
x2 + 2x+ 4 = 0, or (x+ 1)2 = −3.

9See https://www.komal.hu/feladat?a=honap&h=201111&t=mat&l=en.
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We claim that at least one of these two situations must happen for some x ∈ [n]. Note
first that −3 is a quadratic residue modulo p:(

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2 (−1)

p−1
2

3−1
2

(p
3

)
=

(
3n+ 1

3

)
=

(
1

3

)
= 1,

where
(
q
p

)
denotes the Legendre symbol.

It follows that the equation y2 = −3 has two solutions, one in the first half of the
interval [1, p − 1]. If y is actually in the first third, we are done, we get x = y − 1 ∈ [n].
Suppose otherwise. Note that either y or p− y is odd. Call it z, and note that z 6 2p/3,
and therefore x = (z − 1)/2 is at most (p− 1)/3, so it is in [n].

The case when k is a multiple of 4 can also be treated by elementary means. The
key is Fermat’s result that an odd prime p is a sum of two squares if and only if p ≡ 1
(mod 4).

Theorem 38. If k is a multiple of 4 and p = kn + 1 is a k-representative, then p < k2,
so in particular, there are only finitely many k-representatives.

Proof. Suppose p = kn+ 1 is a k-representative. By Fermat’s result, there are integers x
and y with 1 6 x < y such that p = x2+y2. Note that if p > k2, then p2/k2 = p · p

k2
> p >

y2, so x < y 6 p/k = n + 1/k and therefore in fact x < y ∈ [n], but x2 ≡ −y2 (mod p),
so xk ≡ yk (mod p).

The bound on p found in the theorem allows us to identify by a quick exhaustive
search all the possible values of p that are k-representatives, for any given value of k that
is a multiple of 4. Table 3.2 lists these values p = 4mn+ 1 for all k = 4m 6 100.

We now proceed to the general case. The key observation is that if p is prime and
G 6 (Z/pZ)∗ is nontrivial, then

∑
g∈G g = 0. Indeed, let S =

∑
g∈G g and let h ∈ G

be different from the identity. The map g 7→ hg is a permutation of G, and we have
S =

∑
g∈G hg = hS.

Suppose now that (n, k) 6= (1, 1) and p = kn + 1 is prime. The observation, applied
to the case where G is the group of kth powers of nonzero elements of (Z/pZ)∗, gives us
that if p is a k-representative, then

∑n
i=1 i

k ≡ 0 (mod p). But this sum is a polynomial
Pk(x) (of degree k + 1) with rational coefficients evaluated at x = n. If kx + 1 is not a
factor of Pk(x), then, by applying the division algorithm and clearing out denominators,
there are integers a, b, c with c 6= 0, such that aPk(x) has integer coefficients and

aPk(x) + b(kx+ 1) = c.

For x = n we have that p = kn + 1 divides Pk(n) (by the observation) and therefore
p | c, and there are only finitely many possibilities for p, all of which lie among the prime
factors of c. The only remaining issue is how to prove that indeed kx + 1 is not a factor
of Pk(x).

We circumvent this obstacle by arguing instead that also
∑n

i=1 i
2k ≡ 0 (mod p), and

the polynomial P2k(n) is now B2k+1(n+1) for B2k+1(x) the (2k+1)st Bernoulli polynomial,
for which all its rational roots are known, and we can proceed as above.
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Theorem 39. If k > 2, then only finitely many primes are k-representatives.

The argument we have been outlining was suggested by Darij Grinberg and Gergely
Harcos10.

Note also that for k = 1, 2 we have that

n∑
i=1

i =
n(n+ 1)

2
and

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

so the argument above fails (as it should) since kn + 1 is in both cases a factor of the
corresponding polynomial.

Proof. Let B(t, x) = tetx

et−1 . The Bernoulli polynomials Bm(x) are defined as follows using
the power series expansion in terms of t of B(t, x):

B(t, x) =
∞∑
m=0

Bm(x)
tm

m!
.

It is well known that each Bm(x) is a polynomial in x of degreem with rational coefficients,
and

n∑
i=1

im =
Bm+1(n+ 1)−Bm+1(0)

m+ 1

for all positive integers n, see for instance [Was97, chapter 4].
Writing

Bm(x) =
m∑
k=0

(
m

m− k

)
bkx

m−k,

the numbers bk = Bk(0) are usually called the Bernoulli numbers ; they satisfy b2k+1 = 0
for all k > 1. As indicated above, it will be important for us to know all the rational linear
factors of the polynomial Bm(x)−Bm(0); when m is odd this reduces to determining the
rational linear factors of Bm(x). The following result of K. Inkeri [Ink59, theorem 3] solves
this problem.

Theorem 40 (Inkeri). The rational roots of a Bernoulli polynomial Bm(x) can be only
0, 1/2, and 1. Moreover, all these are roots when m > 1 is odd.

Suppose p = kn+ 1 is a k-representative. We claim that

12k + 22k + · · ·+ n2k ≡ 0 (mod p).

To see this, notice that there are precisely p−1
d

= n/ gcd(2, n) incongruent (2k)th power
residues modulo p, where d = gcd(2k, p − 1) = k gcd(2, n). If n is odd, this is precisely
n, which means that the numbers 12k, . . . , n2k are all distinct and are precisely all the
nonzero (2k)th powers. If n is even, this means that each nonzero (2k)th power appears

10See https://mathoverflow.net/q/78270/
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exactly twice among these numbers. In either case, it follows that the sum is zero by the
same argument as above.

Since
n∑
i=0

i2k =
B2k+1(n+ 1)

2k + 1
,

it must be the case that (kn+ 1) | B2k+1(n+ 1). By Inkeri’s theorem 40, since k > 2, the
polynomial kx + 1 is relatively prime to the polynomial B2k+1(x + 1). Thus, there must
be polynomials u, v ∈ Q[x] such that

(kx+ 1) · u(x) +B2k+1(x+ 1) · v(x) = 1.

(In fact, v is a constant.)
Multiplying this identity by an appropriate integer constant L = L1L2, it follows that

there are polynomials ǔ = Lu, B̌2k+1 = L1B2k+1, and v̌ = L2v, all in Z[x] such that

(kx+ 1) · ǔ(x) + B̌2k+1(x+ 1) · v̌(x) = L.

Since B2k+1(n + 1) ≡ 0 (mod kn + 1), evaluating the last displayed equation at x = n
gives us that p = kn+ 1 | L. But there are only finitely many such p.

Note that this argument does not supersede Theorems 37 or 38. For Theorem 38 in
particular, note that the bound obtained there is in general much smaller than the bound
L found in the proof of Theorem 39, which depends on the size of the denominator of
B2k+1(x+ 1).

3.3 Examples

Let us illustrate Theorem 39 with some examples, for which it suffices to consider
∑n

i=1 i
k

rather than the sum of (2k)th powers.

• k = 3.

Recall that
n∑
i=1

i3 =
n2(n+ 1)2

4
.

Clearly, if 3n+ 1 is prime, it does not divide n2(n+ 1)2, and it follows that no prime is a
3-representative. This provides another solution to KöMaL problem B.4401.

• k = 4.

We have that
n∑
i=1

i4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
.

If 4n+ 1 is a 4-representative, then it must divide 3n2 + 3n− 1. But

16(3n2 + 3n− 1) = (9 + 12n)(4n+ 1)− 25,

so 4n+ 1 must divide 25. Hence n = 1 and p = 5 is the only 4-representative.
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• k = 5.

We have that
n∑
i=1

i5 =
n2(n+ 1)2(2n2 + 2n− 1)

12
.

If 5n+ 1 is a 5-representative, then it must divide 2n2 + 2n− 1. But

25(2n2 + 2n− 1) = (10n+ 8)(5n+ 1)− 33,

so 5n + 1 must divide 33. Hence n = 2. Since 25 = 32 ≡ −1 6≡ 1 (mod 11), it follows
that p = 11 is indeed the only 5-representative.

• k = 6.

We have that
n∑
i=1

i6 =
n(n+ 1)(2n+ 1)(3n4 + 6n3 − 3n+ 1)

42
.

If 6n+ 1 is a 6-representative, then it must divide 3n4 + 6n3 − 3n+ 1. But

432(3n4 + 6n3 − 3n+ 1) = (216n3 + 396n2 − 66n− 205)(6n+ 1) + 637,

so 6n+ 1 must divide 637 = 72 · 13, and n = 1 or n = 2.
Since 26 = 64 ≡ −1 6≡ 1 (mod 13), it follows that p = 7 and p = 13 are the only

6-representatives.

• k = 7.

We have
n∑
i=1

i7 =
n2(n+ 1)2(3n4 + 6n3 − n2 − 4n+ 2)

24
.

If 7n+ 1 is a 7-representative, then it must divide 3n4 + 6n3 − n2 − 4n+ 2. But

2401(3n4 + 6n3 − n2 − 4n+ 2) = (1029n3 + 1911n2 − 616n− 1284)(7n+ 1) + 6086,

so 7n + 1 must divide 6086 = 2 · 17 · 179. However, since none of these prime factors is
congruent to 1 modulo 7, it follows that there are no 7-representatives.

• k = 8.
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We have that
n∑
i=1

i8 =
n(n+ 1)(2n+ 1)(5n6 + 15n5 + 5n4 − 15n3 − n2 + 9n− 3)

90
.

If 8n+ 1 is an 8-representative, it must divide 5n6 + 15n5 + 5n4− 15n3−n2 + 9n− 3. But

262144(5n6 + 15n5 + 5n4 − 15n3 − n2 + 9n− 3) =

(163840n5 + 471040n4 + 104960n3 − 504640n2 + 30312n+ 291123)(8n+ 1)− 1077555,

so 8n+ 1 must divide 1077555 = 3 · 5 · 71837. However, since none of these prime factors
is congruent to 1 modulo 8, it follows that there are no 8-representatives.

Although it ends up not making a significant difference here, using Theorem 5.21, we
only had to consider primes not exceeding 64.

• k = 9.

We have that
n∑
i=1

i9 =
n2(n+ 1)2(n2 + n− 1)(2n4 + 4n3 − n2 − 3n+ 3)

20
.

If 9n+ 1 is a 9-representative, then it must divide n2 + n− 1 or 2n4 + 4n3 − n2 − 3n+ 3.
The first case is impossible since

81(n2 + n− 1) = (9n+ 8)(9n+ 1)− 89,

so 9n+ 1 would have to divide 89 6≡ 1 (mod 9). Now, since

6561(2n4 + 4n3 − n2 − 3n+ 3) = (1458n3 + 2754n2 − 1035n− 2072)(9n+ 1) + 21755,

then in the second case 9n + 1 must divide 21755 = 5 · 19 · 229, so the only possibility
is n = 2. Since 29 = 512 ≡ −1 6≡ 1 (mod 19), it follows that p = 19 is indeed the only
9-representative.

• k = 10.

We have that
n∑
i=1

i10 =
n(n+ 1)(2n+ 1)(n2 + n− 1)(3n6 + 9n5 + 2n4 − 11n3 + 3n2 + 10n− 5)

66
.

If 10n + 1 is a 10-representative, it must divide one of the two factors n2 + n − 1 or
3n6 + 9n5 + 2n4 − 11n3 + 3n2 + 10n− 5. But

100(n2 + n− 1) = (10n+ 9)(10n+ 1)− 109

and

106(3n6 + 9n5 + 2n4 − 11n3 + 3n2 + 10n− 5) =

(3 · 104n4 + 6 · 104n3 − 42700n2 − 72700n+ 106543)(10n+ 9)(10n+ 1)− 5958887,

so 10n + 1 must divide 109 or 5958887 = 115 · 37, so n = 1. It follows that p = 11 is the
only 10-representative.
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3.4 Density of strong representatives

All satisfactory n-colorings with n 6 5 admit strong representations: first, for each n 6 4
there is exactly one satisfactory n-coloring, as shown in § 2.4; moreover, n+ 1 is prime for
n = 1, 2, 4, and 2n+ 1 is prime for n = 3.

For n = 5, there are precisely two satisfactory n-colorings, which we labeled c1 and c5
so that ci(6) = ci(i), see § 2.4. Note that 2n+ 1 = 11 is prime; the corresponding coloring
is c5 since 62 = 36 ≡ 25 = 52 (mod 11).

Similarly, 421 = 84 · 5 + 1 is prime, and is a strong representative of order 5 for c1
since

(184, 284, 384, 484, 584, 684) ≡ (1, 279, 252, 377, 354, 1) (mod 421).

Strong representatives are hardly unique. For instance, any prime is a strong repre-
sentative of order 1. The case n = 2 is more interesting.

Fact 41. A prime p is a strong representative of order 2 if and only if

p ≡ ±3 (mod 8).

In particular, there are infinitely many such primes.

Proof. The first sentence is a restatement of the supplementary law for quadratic reci-
procity: a prime p = 2k+1 is a strong representative of order 2 if and only if 2k = 2

p−1
2 6≡ 1

(mod p), which is equivalent to asserting that 2 is not a square modulo p. The supple-
mentary law tells us that (

2

p

)
= (−1)

p2−1
8 ,

which equals −1 if and only if p ≡ ±3 (mod 8). By the prime number theorem for
arithmetic progressions, half of all primes are of this form in the sense of natural density:
simply note that φ(8) = 4, where φ(·) is Euler’s totient function, and that, asymptotically,
1/4 of all primes have the form 8k + a for any given a ∈ [8] relatively prime with 8, see
[Dav00, chapter 22].

Some natural questions occur at this point.

Question 42. Let n ∈ Z+.

1. If n admits a strong representative p, does it admit infinitely many?

2. If the answer to item (1) is positive, is the set of such primes of positive natural
density among all primes?

3. Further, suppose n admits a strong representative. For a satisfactory n-coloring c,
is the set of strong representatives of order n for c of positive natural density, and
is this density independent of c?
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We present some numerical data for n 6 10. Consider, for instance, n = 5. First,
none of the 17 primes of the form 5n+ 1 in the interval [12, 420] is a strong representative
of order 5, and neither are any of the 11 such primes in the interval [422, 700]. However,
additional strong representatives eventually appear.

Example 43. The prime p = 701 = 140 · 5 + 1 is a strong representative of order 5 for
c1. In effect,

(1140, 2140, 3140, 4140, 5140, 6140) ≡ (1, 210, 464, 638, 89, 1) (mod 701).

Similarly, one can check that p = 2311 = 462 · 5 + 1 is a strong representative of order 5
for c5.

Given a real x, denote by C1(x) and C5(x) the sets of primes p 6 x that are strong
representatives of order 5 for c1 and c5, respectively, and let C(x) = C1(x) ∪ C5(x). Also,
write CT (x) for the set of all primes p 6 x of the form 5n + 1. Table 3.3 provides some
numerical evidence suggesting a positive answer to item (3) of question 42 for n = 5.

For x > 0, denote by πn(x) the number of strong representatives of order n less than
or equal to x. In table 3.4 we provide data suggesting the density of strong representatives
of order n in the set of primes, for n 6 10.

We now mention some remarks explaining that items (1) and (2) of question 42 admit
a positive answer. First, we recall a well-known observation.

Lemma 44. Suppose that n and p are prime. If not all numbers are nth powers modulo
p, then p ≡ 1 (mod n).

Proof. Indeed, all numbers are nth powers modulo n. For p of the form nk + a with
1 < a < n, let α ∈ [n] be the multiplicative inverse of 1 − a modulo n, and note that
xα(p−1)+1 ≡ x (mod p) for any x and that α(p− 1) + 1 ≡ 0 (mod n).

Many of the intricacies of the general case seem to be present already for n = 3, so we
consider this case first in some detail.

Theorem 45. The set of primes that are strong representatives of order 3 has natural
(asymptotic) density 1/9 in the set of all primes.

Proof. A prime p = 3k + 1 is a strong representative of order 3 if and only if

2k 6≡ 1 (mod p), 3k 6≡ 1 (mod p), and 2k 6≡ 3k (mod p),

and this is equivalent to asserting that 2, 3, and 12 = 23 · 3/2 are not cubes modulo p
(note that the fact that p ≡ 1 (mod 3) follows from the assertion that 2 is not a cube
modulo p, by lemma 44). This indicates that the key technical result needed to determine
whether question 42 holds is Chebotarëv’s theorem, see [Lan94, Theorem VIII.10]11. We

11Lang states the result in terms of Dirichlet density, but the same conclusion holds for natural density,
see [Lan94, §XV.5].
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recall the theorem and some basic facts from algebraic number theory that should allow
us to apply it in the case at hand.

Denote by P the set of integral primes. Recall that a set A ⊆ P has natural density δ
in P if and only if limn→∞ |A ∩ [n]|/π(n) exists and equals δ.

Theorem 46 (Chebotarëv). Let L/k be a Galois extension with Galois group G =
Gal(L/k), and let C be a conjugacy class of G. The set of primes p of k that are unram-
ified in L and for which the Frobenius symbol σp of p in G is in C has natural density
|C|/|G|.

For instance, in the example under consideration, that 2, 3, 12 are not cubes modulo
p means that

f(x) := (x3 − 2)(x3 − 3)(x3 − 12)

has no roots modulo p. This suggests to consider L = Q( 3
√

2, 3
√

3, ζ3), the splitting field
of f over k = Q, where ζ3 denotes a primitive cubic root of unity. Note that [L : Q] = 18.
In fact, we can quickly check that G is the generalized dihedral group for the elementary
abelian group of order 9, that is,

Gal(L/Q) ∼= {−1,−1}n (Z/3Z)2 :

any automorphism in G is determined by its action on 3
√

2, 3
√

3, and ζ3; the former two
correspond to independent copies of Z/3Z, while the latter corresponds to the abelian
group of order 2, which acts on (Z/3Z)2 via the inverse map. We can list G as

G = {πa,b,c : a, b = −1, 0, 1; c = −1, 1},

where πa,b,c is the field automorphism of L that maps 3
√

2 to ζa3
3
√

2, 3
√

3 to ζb3
3
√

3, and ζ3
to ζc3.

We concentrate on those primes p that do not ramify over L. For this, note that L
is the compositum of Q( 3

√
2),Q( 3

√
3),Q(ζ3), and therefore an integral prime ramifies over

L if and only if it ramifies in one of these fields, so the only such primes are 2, 3. In
particular, all strong representatives p of order 3 are unramified in L.

Although we do not need it explicitly, we briefly explain what remains undescribed
from the statement of Theorem 46, namely the Frobenius, or Artin symbol. Suppose an
integral prime p is unramified in L and q is a prime of L lying over p. The Frobenius is
the unique σ ∈ G such that

σ(α) ≡ αNL/Q(p) (mod q)

for all α ∈ L, where NL/Q(·) is the norm. The choice of σ = σp depends on q, but any
two such choices are conjugate, which explains why we consider conjugacy classes rather
than individual members of the Galois group.

What we really need of Chebotarëv’s result is the following application, actually due
to Frobenius, see [SL96]: suppose g ∈ Q[x] is monic and K is its splitting field. Given an
integral prime p, denote by Fp the field of p elements. In Fp[x], g factors into irreducible
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polynomials, say g = g1 · · · gm. Letting ni denote the degree of gi for i ∈ [m], we can
associate to g the partition

Πp = Πp(g) = (n1, . . . , nm)

of deg(g). Letting G = Gal(K/Q), we can identify G with a group of permutations of the
roots of g in K. Fixing an ordering of the roots, we can write each σ ∈ G as a product of
disjoint cycles, say σ = τ1 · · · τl. Letting ti denote the length of τi, we can associate to σ
its cycle pattern

Λσ = (t1, . . . , tl).

Frobenius’s theorem states that the set of p unramified in K with associated partition Πp

has natural density in the set of primes equal to the fraction of σ ∈ G whose associated
cycle pattern Λσ coincides with Πp.

In the case under consideration, the condition on 2, 3, 12 means that we are looking
at those integral primes p with Πp(f) = (3, 3, 3). Since each πa,b,c fixes (setwise) the sets
{ζs3 3
√
r : s ∈ [3]} for r = 2, 3, 12, what we need to count is those automorphisms that do

not fix any of the ζs3 3
√
r.

Very explicitly: fix a, b ∈ {−1, 0, 1} and c ∈ {−1, 1}. We see that πa,b,c maps each
ζj3

3
√

2 to ζjc+a3
3
√

2, each ζk3
3
√

3 to ζkc+b3
3
√

3, and each ζ l3
3
√

12 to ζ lc+2a+b
3

3
√

12, and we need
that jc + a 6= j, kc + b 6= k and lc + 2a + b 6= l for any j, k, l, where the inequalities are
all modulo 3.

There are two cases, depending on c. First, if c = −1, the first condition says that
a− j 6= j, or a 6= 2j, but this is impossible to satisfy simultaneously for all j. Second, if
c = 1, what we need is that a + j 6= j, k + b 6= k and l + 2a + b 6= l, that is, a, b and
2a+ b should all be different from 0, and the last requirement is equivalent to asking that
a 6= b. There are precisely two members of G that satisfy all these conditions, namely
π1,−1,1 and π−1,1,1.

This means that the set of strong representatives of order 3 has natural density 2/18 =
1/9.

Remark 47. Note that the value 1/9 was to be expected: with notation as in the proof
above, since |G| = 18, if the set of strong representatives of order 3 was to have a natural
density r at all, r would have to be a rational number of the form a/18 for some a ∈ [18],
and table 3.4 strongly suggests that, indeed, r = 1/9 = 0.1.

Note also that our argument in particular established the existence of strong represen-
tatives of order 3 (although, of course, there are much simpler proofs of this assertion);
the point is that this is a benefit that does not automatically generalize, as there are
primes n for which there are no strong representatives of order n, such as n = 211, see
table 5.1 (that is, we cannot remove in item (1) of question 42 the hypothesis that strong
representatives of order n exist).

The same approach works in general: given n, that a prime p = nk + 1 is a strong
representative of order n means that ik 6≡ jk (mod p) whenever i < j are in [n], that is,
(j/i)k 6≡ 1 (mod p), which means that j · in−1 is not an nth power modulo p, or, what is
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the same, that the polynomial xn− j · in−1 has no roots modulo p. This translates, just as
in the example above, into a condition on a conjugacy class in the Galois group of certain
Galois extension of Q, namely L = Q(ζn,

n
√
j : j ∈ [n] ∩ P), the splitting field over Q of

the polynomial
f(x) =

∏
16i<j6n

(xn − j · in−1),

where ζn denotes a primitive nth root of unity. The condition is in general messier than
in the case n = 3, since many different factorization patterns may occur for f in Fp[x]
that are compatible with f not having roots in Fp.

As before, L is the compositum of the fields Q( n
√
j), Q(ζn), for j ∈ [n] ∩ P, so any

integral prime that ramifies in L divides n!, and in particular any strong representative of
order n is unramified in L. If n is prime, it follows from lemma 44 that any p for which
f has no roots modulo p is automatically congruent to 1 modulo n. We also expect that,
if n itself is prime, the Galois group of the extension should be given by

G = Gal(L/Q) ∼= (Z/nZ)∗ n (Z/nZ)π(n),

where (Z/nZ)∗ denotes the group of units modulo n, a group of order φ(n) = n− 1. We
have verified this by direct computation for small values of n. If n is not prime, however,
there may be unexpected relations between the various n

√
j and ζn. For instance, for

n = 8 and ζ8 = e2π
√
−1/8, we have ζ8 + ζ−18 =

√
2 or, if n = 2p where p is prime and

p ≡ 1 (mod 4), then √p ∈ Q(ζn). Thus in general the Galois group may be a proper
subgroup of the semidirect product indicated above (determining whether this is indeed
the case involves Kummer theory). Still, we can ensure that the primes we consider are
congruent to 1 modulo n: note that there is a natural projection from the Galois group of
the extension to Gal(Q(ζn)/Q), and the congruence condition means that this projection
maps the automorphisms we are interested in counting to the identity of this smaller
Galois group.

Via Chebotarëv’s theorem (or, rather, Frobenius’s theorem), if the requirements im-
posed on the automorphisms in G are at all satisfiable, then a positive proportion of all
primes are strong representatives modulo n. But that the requirements are satisfiable is
precisely the claim that there is at least one such prime. We have proved:

Theorem 48. If there is a strong representative of order n, then the set of such primes
has positive natural density in the set of all primes.

Given an n-satisfactory coloring c, this analysis can be further extended to capture in
addition that p is a strong representative for c. This is slightly more delicate, but the point
is that if c admits a strong representative, then it is multiplicative, in the sense of section
4, and such a c is completely determined by the tuple of values (c(ij) : i 6 j ∈ [n]), see for
instance corollary 55. This translates into yet a further condition on a conjugacy class,
and the problem of computing the natural densities becomes a purely group-theoretic
question.

Note that as long as no hidden relations are present (in particular, we expect this to
be the case for n prime), the extension has degree [L : Q] = nπ(n) · φ(n). For instance,
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for n = 2, the extension is of degree 2, and thus table 3.4 suggests the density is 1/2, as
we indeed verified in fact 41. Table 3.5 shows the degree of the corresponding extension
for each prime n with 2 6 n 6 10 and the density that table 3.4 suggests accordingly.
For n = 4 no additional relations occur either. In that case, the extension has degree
42 · 2 = 32, and the expected density is 1/16 = 0.0625.12

Remark 49. Chebotarëv’s theorem admits an effective version. It follows that the expected
densities can be verified not just by a combinatorial analysis of the relevant Galois groups,
but simply by determining the sizes of these groups, and extending the entries in table
3.4 to a sufficiently large number, allowing us to compare the results with rationals of the
form a/m where m is the size of the corresponding group.

3.5 Asymptotics of coincidences

Fix k > 2. For primes p = kn + 1 sufficiently large, Theorem 39 shows the existence of
coincidences

ak ≡ bk (mod p)

with 1 6 a < b 6 n. We close this section by showing that, in fact, the number of such
coincidences is asymptotically proportional to p.

The result is due to Noam D. Elkies13, and what follows is closely based on his argu-
ment.

Theorem 50 (Elkies). For k > 2, the number of coincidences ak ≡ bk (mod p) for p of
the form kn+ 1 and sufficiently large, and distinct a, b ∈ [n] is

Ckp+Ok(p
1−ε(k)),

where

Ck =


k − 1

2k2
if k is odd, and

k − 2

2k2
if k is even,

and ε(k) = 1/φ(k).

Proof. First, for a, b nonzero and distinct modulo p, that

ak ≡ bk (mod p)

is equivalent to saying that b ≡ ma (mod p) where m 6= 1 is a kth root of unity: mk ≡ 1
(mod p). Since we are only interested in the case where a, b ∈ [n], for k even we further
exclude m = −1. Fix m, and consider the nonzero vectors (a, b) in Z2 defined by the
relation b ≡ ma (mod p), a, b ∈ [n]. Note that for any such vector, p | ak − bk, and the

12The discussion here incorporates suggestions of Felipe Voloch to the first-named author at
https://mathoverflow.net/q/141993 and through private communication. Thanks are also due to David
E Speyer.

13See https://mathoverflow.net/q/78270/
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latter factors into homogeneous polynomials in a, b of degree at most φ(k), none of which
is zero, and therefore the length of the vector is Ω(pε(k)).

This means that the solutions to the equation b ≡ ma (mod p) with a, b ∈ [n] are the
lattice points in the square with sides parallel to the axis of side length n ≈ p/k and bottom
left corner at the origin. This number can be readily estimated as p−1(p/k)2 = p/k2, with
an error bound proportional to the fraction

side length
length of smallest such vector

= O(p1−ε(k)).

The total of such coincidences is now obtained by summing these estimates over all
k − 1 or k − 2 possible values of m, and then dividing by 2 (since each coincidence has
been counted twice in the above, as both (a, b) and (b, a)).

The argument can be strengthened to estimate for k, n, p as before the proportion of
distinct kth powers of members of n. A quick computation verifies that the fractions

|{(ik mod p) : i ∈ [n]}|
n

stay rather close to 2/3 for k = 3, and to 84/125 for k = 5. For instance, for k = 3,
n = 387, 642, and p = 1, 162, 927, the fraction is

258429/387642 = 0.6666692464 . . . ,

while for k = 5, n = 35, 804 and p = 179, 021, the fraction is

24065/35804 = 0.6721316054 . . . .

The result, also due to Elkies, shows that these values are to be expected.

Theorem 51 (Elkies). For k > 2 and p of the form kn + 1 and sufficiently large, the
fraction |{(ik mod p) : i ∈ [n]}|/n of distinct kth powers of members of [n] is asymptotic
to 1− ((k − 1)k + 1)/kk.

In particular, for k = 3 the fraction approaches 1 − 23+1
33

= 2/3 and for k = 5 it
approaches 1− 45+1

55
= 84/125, as expected, and, as k →∞, the proportion of kth powers

with small kth roots approaches 1− (1/e).
As Elkies remarks (at the post linked to in footnote 13), the same approach as for the

previous theorem allows one to estimate the number of coincidental triples, or quadru-
ples, etc. Care must be taken “with subsets of the kth roots of unity that have integer
dependencies, but at least when k is prime there are no dependencies except that all k
of them sum to zero”. Elkies further indicates that for j < k the number of j-element
subsets of n with the same kth power is asymptotic to(

k

j

)
p/kj+1,

while there are no such subsets with j = k because the sum of all k solutions of ak ≡ c
(mod p) vanishes (for any c). By an inclusion-exclusion argument one then obtains the
estimate indicated in Theorem 51.
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4 Multiplicative colorings

4.1 Multiplicativity

As shown in the previous section, any n-satisfactory coloring for n 6 5 admits strong
representatives. Colorings with strong representatives are very special: fix some n, and
suppose that c is a satisfactory coloring ofKn admitting a strong representative p = kn+1.
Let

G = {(ak mod p) : a ∈ [n]} 6 (Z/pZ)∗.

The group G is isomorphic to Z/nZ. The map h : Kn → G given by

h(a) = (ak mod p)

satisfies
h(ab) = h(a) · h(b)

for any a, b ∈ Kn, where ab is the usual product of a and b and h(a) · h(b) is the product
in G. We generalize this setting in the following definition.

Definition 52. A satisfactory coloring c of Kn is multiplicative if and only if there exists
a group (G, ·) of order n and a bijection ϕ : [n] → G such that, thinking of c as a map
c : Kn → [n] with c(i) = i for all i ∈ [n], and letting h = ϕ ◦ c, we have that

h(ab) = h(a) · h(b) (4.1)

for all a, b ∈ Kn. In this case, we say that c is a G-coloring.
Multiplicative colorings of Z+ are defined the same way, only requiring that the domain

of c be Z+ and that equation 4.1 holds for all positive integers.

The usefulness of the notion is stated explicitly in Theorem 61 below, the point is
that to describe a multiplicative coloring it is enough to describe what we call a partial
isomorphism, see § 4.2, which reduces the problem of searching for a multiplicative coloring
to a finite question.

The following observation should be immediate.

Fact 53. If a satisfactory coloring of Kn is both a G1-coloring and a G2-coloring, then
G1
∼= G2.

Note that if G is as in definition 52, then G is abelian, and consequently we adopt
additive notation in what follows, so h is a kind of discrete logarithm but, rather than
referring to it this way, we also say that h is multiplicative.

Definition 54. If (G,+) is an abelian group (of order n) and the map h : Kn → G
satisfies that h(ab) = h(a) + h(b) for any a, b ∈ Kn, we say that h is multiplicative.

Corollary 55. For any n, there are only finitely many multiplicative colorings of Kn.
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Proof. Suppose c is multiplicative as witnessed by (G,+), ϕ. Let h = ϕ◦c, where as before,
c is interpreted as a map c : Kn → [n] with c(i) = i for i ∈ [n], so h(ab) = h(a) + h(b) for
all a, b ∈ Kn. Note that this induces a group structure ⊕ on [n] isomorphic to G because
c is the identity on [n], so if a ∈ [n], then

h(a) = ϕ(c(a)) = ϕ(a),

and we are setting a ⊕ b = d for a, b, d ∈ [n] if and only if ϕ(d) = ϕ(a) + ϕ(b). By
identifying (G,+) with ([n],⊕), it follows that we may assume that ϕ is the identity so
h = c. But now we see that ([n],⊕) completely determines c. In effect, if p1 < · · · < pπ(n)
are the primes less than or equal to n and s = π(n), then the multiplicity requirement
gives us

c(pα1
1 · · · pαss ) = α1c(p1)⊕ · · · ⊕ αsc(ps), (4.2)

where αic(pi) is the result of adding c(pi) to itself αi times in ([n],⊕).
Since there are only finitely many group structures on [n], we are done. In fact, all

these group structures can be efficiently identified, from the classification theorem for
finite abelian groups.

Remark 56. Note that whenever an n-satisfactory coloring is multiplicative as witnessed
by a group (G, ·), the corresponding tiling of On by unit blocks of n colors is periodic,
which explains the patterns observed in figures 2.2 and 2.4. Indeed, this periodicity is
simply a consequence of the fact that xn is the identity of G for any x ∈ G. In turn, this
also gives periodicity of the tiling by Tn, see § 4.3.

In what follows, given an abelian group (G,⊕), we will denote α-fold sums of the form
g ⊕ · · · ⊕ g︸ ︷︷ ︸

α times

by g⊕α rather than αg as above. We extend the notation to include negative

values of α (including α = −1).

Remark 57. Note that not every abelian group structure on [n] gives rise to a multiplicative
coloring. For example, if n = 4, then ⊕ is given by

a⊕ b = ab (mod 5)

and, in particular, ([4],⊕) is isomorphic to Z/4Z and not to Z/2Z× Z/2Z.
The case when G ∼= Z/nZ, as in the case of a strong representation, deserves special

attention.

Question 58. Does every Z/nZ-coloring admit a strong representation?

This is a good point to reiterate what we mentioned in remark 35. Perhaps surprisingly,
the answer to question 58 is negative, as we show below, see the analysis of multiplicative
8-colorings in § 4.5 and in particular the coloring described in table 4.12. Nevertheless,
we can answer the question affirmatively at the cost of replacing strong representations
with a weak variant, see remark 64. Although so far our examples and results have only
exhibited multiplicative colorings, it should be pointed out that not every satisfactory
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coloring is multiplicative, see § 5.2 and § 5.3 for dramatic examples. Similarly, not every
multiplicative coloring is a Z/nZ-coloring. Examples are presented in § 4.5, in particular
see table 4.20 for a = 1. Nonmultiplicative colorings seem more difficult to analyze,
and we do not understand them well. In what follows, we restrict our attention to the
multiplicative case except for § 5.2 and § 5.3.

4.2 Partial G-isomorphisms

The following notion has appeared before in the literature, in particular in connection
with Graham’s conjecture, and goes back at least to Galovich and Stein [GS81], who talk
of KM logarithms, for Kummer and Mills. In MathOverflow, Ewan Delanoy14 considered
the case G = Z/nZ. Though not identical, it is closely related to the concept of Freiman
homomorphism in additive combinatorics, see [TV06, definition 5.21].

Definition 59. Let (G,+) be an abelian group of order n. A map h : [n]→ G is a partial
G-isomorphism if and only if h is a bijection and, whenever a, b ∈ [n], if ab ∈ [n], then
h(ab) = h(a) + h(b). If G = Z/nZ, we simply call h a partial isomorphism.

Remark 60. We require G to be abelian as our goal is to relate partial G-isomorphisms
to satisfactory colorings. This is done via an explicit construction in Theorem 61 below,
and although the coloring we describe is perhaps the “natural” one, our formula requires
that G is abelian, and we do not see a way to proceed otherwise. But the question of
whether there are partial G-isomorphisms where G is not abelian is interesting in its own
right. This seems to be open in general, but for n odd the answer is negative, as shown
by K. A. Chandler [Cha88].

Since h is a bijection, it induces a group operation ⊕ on [n] such that

([n],⊕) ∼= (G,+)

and ⊕ extends the partial graph of multiplication on [n]. Our use of the term isomorphism
here is perhaps further justified by noting that if h is a partial G-isomorphism, then
h(1) = h(1 · 1) = h(1⊕ 1) = h(1) + h(1), and it follows that h(1) = 0G.

Theorem 61. If h : [n]→ G is a partial G-isomorphism, then h can be uniquely extended
to a multiplicative map ĥ : Kn → G. Moreover, h−1 ◦ ĥ : Kn → [n] is a G-coloring of Kn.

Proof. Let h : [n]→ G be a partial G-isomorphism. Letting p1, . . . , ps be the primes less
than or equal to n, a map ĥ : Kn → G extends h and is multiplicative if and only if for
any a1, . . . , as ∈ N, we have

ĥ(pa11 · · · pass ) =
s⊕
i=1

h(pi)
⊕ai .

This proves the existence and uniqueness of the extension ĥ.
14See https://mathoverflow.net/q/26358/
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Moreover, if 1 6 i < j 6 n and a ∈ Kn, then

ĥ(ia) = ĥ(i) + ĥ(a) 6= ĥ(j) + ĥ(a) = ĥ(ja)

because ĥ � [n] = h is a bijection.
Letting c = h−1 ◦ ĥ, this gives us that c : Kn → [n] is a G-coloring.

Remark 62. Note the similarity between this argument and the proof of corollary 55.

Obviously, if ĥ : Kn → G is multiplicative and h = ĥ � [n] is a bijection, then h is
a partial G-isomorphism. Therefore, if c : Kn → [n] is a G-coloring as witnessed by the
bijection ϕ : [n] → G, then ϕ is a partial G-isomorphism as, by definition, h = ϕ ◦ c is
multiplicative, and ϕ = h � [n].

This shows that the problem of building G-colorings of Kn is equivalent to the problem
of building partial G-isomorphisms or, equivalently, G-satisfactory groups:

Definition 63. Given an abelian group (G,+) of order n, we say that an abelian group
structure on [n], ([n],⊕), is a G-satisfactory group if and only if

([n],⊕) ∼= (G,+)

and a⊕ b = ab whenever a, b, ab ∈ [n].
We say that the G-coloring resulting from extending ⊕ as in Theorem 61 is associated

to ([n],⊕).

There is a two-fold advantage on building G-satisfactory groups rather than partial
G-isomorphisms: first, the extension to a G-coloring is immediate. Second, and more
significantly, different partial G-isomorphisms may give rise to the same G-coloring, as
the notion is only uniquely determined up to automorphisms of G.

For example, if h1 : [6]→ Z/6Z and h2 : [6]→ Z/6Z are the maps

(1, 2, 3, 4, 5, 6)
h17−→ (0, 2, 1, 4, 5, 3)

and
(1, 2, 3, 4, 5, 6)

h27−→ (0, 4, 5, 2, 1, 3),

then both give rise to the Z/6Z-coloring strongly represented by 7 = 1 · 6 + 1, and this
coloring is associated to the G-satisfactory group shown in table 4.1.

In § 4.5, we use systematically the notation of G-satisfactory groups to identify all
multiplicative colorings with at most eight colors.

Remark 64. We are now in a position to explain how Z/nZ-colorings or, equivalently,
partial isomorphisms are closely related to strong representations. In fact, we can prove
that any Z/nZ-coloring admits a “weak” representation. Let h : [n]→ Z/nZ be a partial
isomorphism. As before, let p1, . . . , ps be the primes less than or equal to n. Extend h to
a map from Kn to Z/nZ as in the proof of Theorem 61. Denote the extension again by h.

By Dirichlet’s theorem, there are primes P of the form kn+ 1. For any such P , let g
be a primitive root modulo P , i.e., a generator of (Z/PZ)∗. In other words, the powers
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gki are precisely the kth power residues modulo P . Invoking again Dirichlet’s theorem, for
each pi we can find a prime qi such that

qi ≡ gh(pi) (mod P ).

Now for x ∈ Kn define d : Kn → (Z/PZ)∗ by d(x) = gkh(x).
If x =

∏s
i=1 p

ai
i , then h(x) =

∑
i aih(pi) and

d(x) =
∏
i

(gh(pi))kai =

(∏
i

qaii

)k

(4.3)

where of course the products are computed modulo P .
The point is that if i, j ∈ [n], then d(i) 6= d(j) because h(i) 6= h(j), h being a bijection.

If 0 6 h(i) < h(j) < n, then 0 6 kh(i) < kh(j) < kn, and gkh(i) 6= gkh(j), since g is a
primitive root. It follows that d(ix) = d(i)d(x) 6= d(j)d(x) = d(jx), and d defines a
Z/nZ-coloring.

Note how close the coloring given by equation (4.3) is to the colorings described in
definition 34. Strong representations are the particular case where we can choose P for
which we can take qi = pi for all i.

Partial isomorphisms are easy to construct “by hand” for small values of n. Examples
of partial isomorphisms for all n 6 31 are given in table 2.1. In appendix B of the second-
named author’s master’s thesis15, this is extended to all n 6 54. The authors of [FP90]
have verified their existence for all n < 195.

Given n, define M and MKn as the sets of multiplicative colorings of Z+ and of Kn,
respectively. In corollary 55 we showed that MKn is finite. We now show that restricting
attention to colorings in M does not affect the computation of the number of satisfactory
colorings (corollary 21).

Theorem 65. If n > 1 and MKn 6= ∅, then |M | = c.

Proof. As in corollary 21, it is enough to show that nℵ0 6 |M |. Let c : Kn → [n] be
a multiplicative coloring associated to the G-satisfactory group ([n],⊕). To each prime
p assign a number ap ∈ [n] with the only restriction that ap = p if p ∈ n. Now define
c′ : Z+ → [n] as follows: if m ∈ Z+, let

∏
i p

bi
i be its prime factorization, and set

c′(m) =
⊕
i

api
⊕bi .

It is immediate that any c′ defined this way is multiplicative and extends c, and that
different sequences (ap : p prime) give rise to different c′, and therefore we have associated
nℵ0 colorings in M to each c ∈MKn .

15See http://scholarworks.boisestate.edu/td/231/
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4.3 Translation invariance

In this subsection we show that multiplicativity of a coloring, an algebraic condition,
is equivalent to translation invariance, a geometric condition. This helps elucidate the
relation between multiplicativity of colorings and periodicity of the corresponding tilings.
We have organized the presentation to highlight how far the assumption of translation
invariance alone takes us, with the equivalence itself established at the end.

Recall that if c is a coloring of Kn and k ∈ Kn, then ck is the coloring where two
numbers m,m′ ∈ Kn receive the same color precisely when c(km) = c(km′).

Definition 66. A coloring c of Kn is translation invariant if and only if ck = c for all
k ∈ Kn.

For any k ∈ Kn, we can naturally identify On and On + t(k). This induces a coloring
of On from one of On+ t(k). If we start with c, the resulting coloring is precisely ck. That
c is translation invariant means that, for any k ∈ Kn, this coloring is again c. Clearly,
multiplicative colorings are translation invariant. Notice that translation invariance is a
strong requirement on a coloring: the color classes must all look the same, no matter
from where we start to look at them. We illustrate this with figure 4.1, showing the four
color classes of the 4-satisfactory coloring depicted in figure 2.3. In the figure, we have
also indicated the axes of an orthant O4 + t(k), and the reader can see that the four color
classes of the induced coloring of this orthant look precisely like the original ones.

Figure 4.1: The four color classes of the unique 4-satisfactory coloring.

Fact 67. Let c be a translation invariant finite coloring of Kn. For any k ∈ Kn there is
a least positive integer o(k) such that c(ko(k)m) = c(m) for all m ∈ Kn.

If N is the number of colors used by c, then o(k) | N .

Proof. We simply use the standard argument for Lagrange’s theorem: the list of colors
c(1), c(k), c(k2), . . . must eventually have repetitions. If i < j and

c(ki) = c(kj),

then, since cki = c, we see that c(1) = c(kj−i), and it follows that there is a least o(k) > 0
with c(ko(k)) = c(1). By translation invariance, in fact c(ko(k)m) = c(m) for all m ∈ Kn.

For any m ∈ Kn, the colors c(m), c(km), . . . , c(ko(k)−1m) are all distinct, since a co-
incidence c(kam) = c(kbm) with a < b implies c(1) = c(kb−a) by translation invariance.
Let Lm = {c(m), c(km), . . . , c(ko(k)−1m)}, and note that any two such sets Lm, Lm′ are
either disjoint or coincide, since if c(mka) = c(m′kb), then, letting l = b − a if b > a or

the electronic journal of combinatorics 28(1) (2021), #P1.34 49



b + o(k) − a otherwise, we see that c(m) = c(m′kl), from which Lm = Lm′ follows. This
shows that the sets Lm partition the set of colors into classes of the same size, which
completes the proof.

Arguably, a coloring c of Kn deserves to be called periodic if there is a k ∈ Kn larger
than 1 such that c(km) = c(m) for all m ∈ Kn. Our actual definition is somewhat more
stringent.

Definition 68. Let c be a coloring of Kn, k ∈ Kn be larger than 1, and l ∈ Z+. Say
that c is periodic in the direction of k with period l if and only if c(klm) = c(m) for all
m ∈ Kn.

Say that c is periodic if and only if it is periodic in every direction.

The following result is an immediate consequence of the existence of the orders o(k),
k ∈ Kn, for translation invariant colorings.

Corollary 69. If c is a translation invariant n-coloring of Kn, then c is periodic, with
period n in every direction.

Translation invariant n-satisfactory colorings are particularly well-behaved.

Lemma 70. For any N , any translation invariant N-coloring of Kn admits a unique
extension to such a coloring of K̂n; moreover, the extension c is translation invariant
in the strong sense that ck = c for all k ∈ K̂n. If the original coloring is in addition
n-satisfactory, then so is the extension.

Proof. Let c be translation invariant. We define an extension, that we also denote by c,
in the natural way: given m,m′ ∈ Kn, let

c(m′/m) := c(m′mo(m)−1).

This is well-defined, in the sense that if m′/m = s′/s for s, s′ ∈ Kn, then

c(m′mo(m)−1) = c(s′so(s)−1),

because
c(m′mo(m)−1ms) = c(m′s) = c(ms′) = c(s′so(s)−1ms),

and therefore c(m′mo(m)−1) = c(s′so(s)−1), by translation invariance.
Similarly, if a,m1,m2 ∈ Kn, then

c

(
a

m1m2

)
= c(am

o(m1)−1
1 m

o(m2)−1
2 ), (4.4)

because

c(am
o(m1)−1
1 m

o(m2)−1
2 m1m2) = c(a) = c(a(m1m2)

o(m1m2)−1m1m2).
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We argue that the extension is translation invariant in the strong sense indicated above:
let k ∈ K̂n. We must show that ck = c, that is, that if a, b ∈ K̂n, then ck(a) = ck(b) if and
only if c(a) = c(b). For this, let m1, . . . ,m6 ∈ Kn be such that a = m1/m2, b = m3/m4

and k = m5/m6, and note that ck(a) = ck(b) if and only if

c

(
m1m5

m2m6

)
= c

(
m3m5

m4m6

)
or, equivalently,

c(m1m5m
o(m2)−1
2 m

o(m6)−1
6 ) = c(m3m5m

o(m4)−1
4 m

o(m6)−1
6 ),

which, in turn, is equivalent to

c(m1m
o(m2)−1
2 ) = c(m3m

o(m4)−1
4 ),

that is, to c(a) = c(b), as wanted.
Suppose now that c is in addition n-satisfactoty. To see that the extension is again

n-satisfactory, note that if i, j ∈ [n] and c(im′/m) = c(jm′/m), then c(im′mo(s)−1) =
c(jm′mo(s)−1), and it follows that i = j.

To see that the extension we defined is the only possible translation invariant extension
using the same colors, suppose c′ is such an extension of c, and that a, b, i ∈ Kn are such
that c′(a/b) = c′(i) = c(i). By translation invariance of c′, this is equivalent to asserting
that c′(bi) = c′(a), that is c(bi) = c(a) = c(abo(b)) which, again by translation invariance,
is in turn equivalent to c′(i) = c(i) = c(abo(b)−1). This shows that the extension defined
above is indeed the only possible one.

For c a translation invariant coloring of Kn, call its extension to K̂n constructed in
the proof of lemma 70 the canonical extension of c. The resemblance between classes
in translation invariant colorings, mentioned above and illustrated in figure 4.1, is even
stronger once we pass from the coloring to its canonical extension. Doing so eliminates
the “boundary” of On given by the coordinate axes. In the absence of such a frame of
reference, the color classes are entirely indistinguishable from one another.

Fact 71. The canonical extension of a multiplicative coloring is again multiplicative.

Proof. Suppose c is the multiplicative n-satisfactory coloring determined by the abelian
group ([n],⊕). For a, b ∈ K̂n, let m1,m2,m3,m4 ∈ Kn be such that a = m1/m2 and
b = m3/m4. We have that

c(ab) = c

(
m1m2

m3m4

)
= c(m1m

o(m2)−1
2 m3m

o(m4)−1
4 ),

by equation (4.4). Since c is multiplicative on Kn, the last expression equals

c(m1m
o(m2)−1
2 )⊕ c(m3m

o(m4)−1
4 ) = c(a)⊕ c(b),

as wanted.

the electronic journal of combinatorics 28(1) (2021), #P1.34 51



Remark 72. With notation as in the proof of fact 71, let k ∈ K̂n, and write its prime
factorization as

k =
∏
pi∈P

pαii ·
∏
pi∈N

pαii ,

where the pi are the primes in [n], listed in increasing order, P is the set of primes pi that
appear in k with positive exponent αi, while N is the set of such primes present in k with
negative exponent. Since c is multiplicative, and using the convention that c(i) = i for
i ∈ [n], we have that

c(k) =
⊕
pi∈P

p⊕αii ⊕
⊕
pi∈N

p
⊕(−αi)(o(pi)−1)
i =

⊕
pi∈P

p⊕αii ⊕
⊕
pi∈N

p⊕αii =
⊕
i

p⊕αii ,

that is, equation (4.2) still holds, regardless of the sign of the exponents.

For l finite, a tiling of Zl by T , say T + B where the sum is direct, is periodic if and
only if there is a finite index subgroup Λ of Zl such that B + Λ = B.

In § 2.3 we defined the natural bijective map t : Kn → On associating to a point k in
Kn the point in On whose coordinates are the exponents of the prime factorization of k.
The same definition gives us an extension of this map to K̂n that we again denote by t
and is now a bijection with Zπ(n). The proof of proposition 25 gives us that if B is the
image under t of any of the color classes of the canonical extension of c, then the sum
Tn +B is direct and tiles Zπ(n).

Lemma 73. Let c be a translation invariant n-satisfactory coloring and let B be the image
under t of a color class of the canonical extension of c. The tiling Tn + B of Zπ(n) by Tn
is periodic. In particular, this holds for multiplicative colorings.

Proof. Let p1 < · · · < pπ(n) be the primes less than or equal to n. For i ∈ [π(n)] let
xi = t(p

o(pi)
i ), and let Λ = 〈xi : i ∈ [π(n)]〉, so that Λ has finite index in Zπ(n). We claim

that B + Λ = B. The point is that if k ∈ t−1(Λ), then c(k) = c(1) and if k′ ∈ t−1(B),
then c(kk′) = c(k′), so that t(k) + t(k′) ∈ B, that is, B+ Λ ⊆ B. But, since 0 ∈ Λ, clearly
B ⊆ B + Λ.

In fact, we can prove a bit more for multiplicative colorings.

Lemma 74. Let c be a multiplicative n-satisfactory coloring as witnessed by the group
(G,⊕), let B be the image under t of a color class of the canonical extension of c, and let
Λ be the image under t of the color class of 1. We have that Λ is a finite index subgroup
of Zπ(n) and that B + Λ = Λ. In fact, Zπ(n)/Λ ∼= G and the images of the color classes
are the cosets of Λ in Zπ(n).

Note that, in particular, Zπ(n) = Tn + Λ, and the sum is direct.

Proof. That Λ is a group is clear from the fact that c is multiplicative: first,

0 = t(1) ∈ Λ;
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if c(k) = c(1), then c(k−1) = c(k)⊕(−1) = c(1), so Λ is closed under inverses; and since
c(k1k2) = c(k1)⊕ c(k2), then Λ is closed under products. That it has finite index in Zπ(n)
follows from the fact that it contains the group we denoted by Λ in the proof of lemma
73. That B + Λ = B is exactly as in that proof.

In fact, let B be the image under t of the color class of i ∈ [n], and note that Tn∩B =
{t(i)}. We claim that B = t(i) + Λ, from which it follows that Zπ(n)/Λ ∼= G and that the
images of the color classes are the cosets of Λ. Clearly B ⊇ t(i) + Λ, and if t(k) ∈ B, then

c(k/i) = c(k)⊕ c(i)⊕(−1) = c(1),

so that
t(k) = t(i) + (t(k)− t(i)) ∈ t(i) + Λ.

This completes the proof.

Figure 4.2 illustrates the group Λ for the unique 4-satisfactory coloring.

Figure 4.2: Tiling corresponding to the unique 4-satisfactory coloring: Z2 = T4 + Λ, the
sum being direct. The dots indicate the members of the group Λ.

Remark 75. We can easily address question 30 for multiplicative colorings via lemma 74.
Suppose c is a multiplicative n-satisfactory coloring. Let Λ be the image under t of the
color class of 1, so any color class B is a coset t(i0) + Λ. The coloring c′ derived from the
tiling Tn + B has color classes t(i) + (t(i0) + Λ) for i ∈ [n], but these are precisely the
color classes of c, as (c(ii0) : i ∈ [n]) is just a permutation of [n].

We now establish the main result of this subsection.

Theorem 76. A translation invariant n-satisfactory coloring is multiplicative.

Proof. Let c be translation invariant and n-satisfactory. Using the convention that c(i) = i
for i ∈ [n], we need to verify that the map ⊕ : [n] × [n] → [n] given by i ⊕ j = c(ij)
defines a group operation on [n]. Clearly, ⊕ is commutative and, for any j, the sequence
(i ⊕ j : i ∈ [n]) is a permutation of [n]. The issue is whether ⊕ is associative, that is,
whether for i, j, k ∈ [n] we have

c(c(ij)k) = c(ic(jk)).

To see this, note that c(ij) = c(c(ij)) and therefore, by translation invariance, c(ijk) =
c(c(ij)k). Similarly, c(ijk) = c(ic(jk)), and we are done.
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Finally, we must check that for any a, b ∈ Kn, c(ab) = c(a)⊕ c(b). For this, note that
c(a) = c(c(a)) and c(b) = c(c(b)) so, by translation invariance,

c(ab) = c(c(a)b) = c(c(a)c(b)) = c(a)⊕ c(b),

where the last equality is by definition.

We close by reminding the reader of the periodic tiling conjecture of Jeffrey Lagarias
and Yang Wang, see [LW96], the relevant version of which in our setting asks whether,
given any finite set T ⊆ Zl, if T tiles Zl, then it also does so periodically. With l = π(n)
and T = Tn, this asks whether the existence of an n-satisfactory coloring implies the
existence of a periodic one. We remark that many of the examples of 6-satisfactory
colorings constructed in theorem 83 below are periodic, which shows that a periodic
coloring needs not be translation invariant. However, note that in general, no period in
the direction of 3 of the periodic examples exhibited in that result is a factor of 6.

4.4 A multiplicative coloring of p2 − p

In this short subsection we argue that question 2 has a positive answer for n = p2 − p
with p prime, by exhibiting a multiplicative coloring of n.

Theorem 77. For any prime p, there is a G-coloring of Kp2−p, where

G = (Z/p2Z)∗.

The group G in the theorem is isomorphic to Z/(p2−p)Z, but visualizing it as indicated
was essential to identifying this coloring.

Proof. For i ∈ [p2 − p] such that p - i, let gi ≡ i (mod p2), and for j ∈ [p − 1], let
gpj ≡ p2 − j (mod p2), so that g1, g2, . . . , gp2−p lists the elements of a reduced residue
system modulo p2.

We claim that gij = gigj, whenever ij 6 n. If p - i, j, then the statement is clear. If
p - i, but j = pj′, then

gigj ≡ i(p2 − j′) ≡ −ij′ ≡ gij (mod p2).

Finally, if p | i, j, then ij is too large. For G = (Z/p2Z)∗, this shows that the map
g : [p2 − p] → G given by i 7→ gi is a partial G-isomorphism, and therefore there is a
G-coloring of Kp2−p, by Theorem 61.

4.5 Multiplicative colorings for n 6 8

In this subsection we list all G-satisfactory groups for 6 6 |G| 6 8, thus determining all
multiplicative colorings with at most eight colors. The construction is relatively simple
in each case and proceeds by explicitly exhibiting the multiplication table of all possible
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G-satisfactory groups ([n],⊕) for 6 6 n 6 8. For instance, we use the fact that if ([n],⊕)
is G-satisfactory for some G, then

{2⊕ a : a ∈ [n], 2a > n}

coincides with the set of odd integers in [n], and repeatedly make use of the fact that ⊕
must be associative and commutative, that each row and column of the multiplication
table must be a permutation of [n], and that the order in ([n],⊕) of any element a must
divide n. In a sense, identifying these colorings is akin to solving a Sudoku puzzle. The
complete analysis is perhaps a bit too tedious to present in full. We provide essentially
all details for n = 8, the most involved case, and sketch the cases n = 6, 7; these sketches
can be fleshed out along the same lines as for n = 8 but more straightforwardly.

• To begin with, the only abelian G of size 6 is Z/6Z, and there are precisely five
Z/6Z-colorings of K6.

To see this, begin by building the partial multiplication table of a putative G-satisfac-
tory group ([6],⊕). The only entries we know originally are those of the form a⊕ b with
ab 6 6 (in which case a ⊕ b = ab). Note that {2 ⊕ a : a > 3} = {1, 3, 5}. We consider
three cases, according to the value of a with 2⊕ a = 1.

If 2⊕ 5 = 1, then 4⊕ 5 = 2 and all values of the table are completely determined from
the elementary observations two paragraphs above; the result is table 4.5 below.

If 2⊕ 6 = 1, similarly all values are completely determined; the result is table 4.2.
If 2 ⊕ 4 = 1, then 2 ⊕ 5 = 3 (it cannot be 5 since already 1 ⊕ 5 = 5) and 2 ⊕ 6 = 5.

Thus, 4⊕ 2 = 2⊕ 4 = 1, 4⊕ 3 = 2⊕ 6 = 5, 4⊕ 4 = 2⊕ (2⊕ 4) = 2⊕ 1 = 2, and 4⊕ 6 6= 6,
so 4 ⊕ 5 = 6 and 4 ⊕ 6 = 3. We cannot complete the table just yet, but we do as soon
as we choose the value of 3⊕ 3, which must be one of 1, 2, or 4; the results are shown in
tables 4.3, 4.1 and 4.4, respectively.

The resulting five colorings are all strongly representable, namely, by 7 = 1 · 6 + 1,
13 = 2 · 6 + 1, 103 = 17 · 6 + 1, 487 = 81 · 6 + 1, and 547 = 91 · 6 + 1, and the tables
are listed in the increasing order of these primes. Note that the construction given in the
proof of Theorem 77 for p = 3 results in table 4.5.

• The only abelian G of size 7 is Z/7Z, and there are precisely six Z/7Z-colorings of
K7.

We argue as before, by starting with the partial multiplication table of a putative
G-satisfactory group ([7],⊕) and analyzing cases. Note that 2 ⊕ 4 6= 1, since 1 is the
identity of ([7],⊕) and every member of Z/7Z other than the identity has order 7. Also,
2⊕6 = 4⊕3 6= 3. Similarly, 2⊕a 6= a for a = 5, 7. Hence, the sequence (2⊕a : 4 6 a 6 7)
is a permutation of the numbers 1, 3, 5, 7 that does not begin with 1, does not have 5 as
its second element, does not have 3 as its third element, and does not end with 7.

Although nine permutations satisfy these requirements, (2 ⊕ a : 4 6 a 6 7) cannot
be any of the sequences (3, 7, 1, 5), (5, 1, 7, 3), and (7, 3, 5, 1): the first would imply that
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2 has order 5, while the other two would imply that it has order 4. For instance, if
(2 ⊕ a : 4 6 a 6 7) = (3, 7, 1, 5), then 4 ⊕ 2 = 3 and 6 ⊕ 2 = 1, so 4 ⊕ 4 = 6 and
6⊕ 2 = 2⊕5.

The remaining six sequences lead indeed to the multiplication table of a Z/7Z-satis-
factory group.

They are all strongly representable, by 659 = 94 · 7 + 1, 1429 = 204 · 7 + 1, 2087 =
298 · 7 + 1, 3557 = 508 · 7 + 1, 17431 = 2490 · 7 + 1, and 21911 = 3130 · 7 + 1, and are
described by tables 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11, respectively.

• There are three abelian groups of order 8, namely Z/8Z, Z/2Z×Z/4Z, and Z/2Z×
Z/2Z×Z/2Z. There are no Z/2Z×Z/2Z×Z/2Z-satisfactory groups, for the simple
reason that 2⊕2 = 4 6= 1. There are precisely four Z/2Z×Z/4Z-colorings ofK8, and
four Z/8Z-colorings admitting strong representatives. There are also six additional
Z/8Z-colorings that do not admit strong representatives.

We provide some details. Consider first the sequence (2 ⊕ a : 5 6 a 6 8), noting
that it must be a permutation of the numbers 1, 3, 5, 7 that does not begin with 5 and
does not have 7 as a third element. Moreover, 3 cannot be the second element, since
2 ⊕ 6 = 3 would imply that 4 ⊕ 6 = 6. This means that the sequence must be one of
the following: (1, 5, 3, 7), (1, 7, 3, 5), (1, 7, 5, 3), (3, 1, 5, 7), (3, 5, 1, 7), (3, 7, 1, 5), (3, 7, 5, 1),
(7, 1, 3, 5), (7, 1, 5, 3), (7, 5, 1, 3), or (7, 5, 3, 1).

However, (1, 7, 3, 5), (3, 5, 1, 7), and (7, 1, 5, 3) are not possible.

a. Consider (1, 7, 3, 5): if 2⊕ 6 = 7 and 2⊕ 7 = 3, then 8⊕ 3 = 3.

b. Consider (3, 5, 1, 7): if 2⊕ 5 = 3 and 2⊕ 6 = 5, then again 8⊕ 3 = 3.

c. Consider (7, 1, 5, 3): if 2 ⊕ 6 = 1 and 2 ⊕ 8 = 3 = 4 ⊕ 4, then 4⊕3 = 3 ⊕ 4 = 1,
against Lagrange’s theorem.

Of the remaining eight sequences, six of them determine ⊕ uniquely as shown below.
In all cases, the resulting group is Z/8Z-satisfactory and 2 is a generator. As we will see
below, none of the associated colorings is strongly representable.

For (1, 5, 3, 7), see table 4.12; for (1, 7, 5, 3), see table 4.13; for (3, 1, 5, 7), see table
4.14; for (3, 7, 1, 5), see table 4.15; for (7, 1, 3, 5), see table 4.16; and for (7, 5, 1, 3), see
table 4.17.

The remaining two sequences do not contain sufficient information to determine ⊕.
What they determine of the multiplication table is shown in table 4.18 for (3, 7, 5, 1) and
in table 4.19 for (7, 5, 3, 1).

Note that in both cases we have 2⊕4 = 1. We conclude by observing that the value of
3⊕ 3 = a completely determines the tables, and any of the four options for a (namely, 1,
2, 4, or 8) is possible, see tables 4.20 and 4.21.

In both cases, we obtain Z/8Z-satisfactory groups if and only if a = 2 or 8. The
associated colorings admit strong representatives, as follows: for the sequence (3, 7, 5, 1),
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if a = 2, take 5417 = 677 · 8 + 1, and if a = 8, take 117017 = 14627 · 8 + 1. For the
sequence (7, 5, 3, 1), if a = 2, take 3617 = 452 · 8 + 1, and if a = 8, take 17 = 2 · 8 + 1.

If instead we let a = 1 or 4, we obtain Z/2Z× Z/4Z-satisfactory groups. If a = 1, in
both cases, the unique group homomorphism that maps 2 to (0, 1) and 3 to (1, 0) is an
isomorphism between ([8],⊕) and Z/2Z× Z/4Z. If a = 4 and the sequence is (3, 7, 5, 1),
the corresponding isomorphism is obtained by considering the homomorphism that maps
2 to (0, 1) and 5 to (1, 0). If a = 4 and the sequence is (7, 5, 3, 1), consider instead the
homomorphism that maps 2 to (0, 1) and 7 to (1, 0).

Finally, we argue that the colorings associated with the first six Z/8Z-satisfactory
groups we listed are not strongly representable. For this, simply note that if they were,
any strong representative must be of the form p = 8k + 1, so 24k ≡ 1 (mod p). But
24k = (24)k, so the corresponding coloring c must satisfy

c(2⊕ 8) = c(24) = 1 = c(1),

that is, we must have 2⊕ 8 = 1.

5 Groupless numbers and nonmultiplicative colorings

In this section we recall results proving that not all numbers admit multiplicative colorings,
and argue that not all satisfactory colorings are multiplicative.

5.1 Groupless numbers

Theorem 78 (Forcade-Pollington [FP90]). There are positive integers n for which no
multiplicative colorings exist. The smallest such n is n = 195.

In particular, this refutes the natural conjectures that a careful probabilistic argument
or even a more careful appeal to Chebatorëv’s theorem than the one in § 3.4 would prove
the existence of multiplicative colorings for all n.16

The motivation for this result was Graham’s conjecture, discussed in § 1.3. The proof
follows from the work initiated by R. W. Forcade, J. W. Lamoreaux, and A. D. Pollington
when they posed the following question in 1986 [FLLP86].

Question 79. Is it possible, changing only those products that exceed n, to make the set
[n] into a multiplicative group?

In our terminology, this is asking whether G-satisfactory groups exist for all values of
n. In their article, they conjecture that the answer to question 79 is affirmative. In their
discussion, they also ask (in different terms) whether strong representatives exist for all
values of n.

In 1990, perhaps surprisingly, Forcade and Pollington answered question 79 negatively
[FP90]. To do so they employed an exhaustive search algorithm that identified 195 as the
least value of n for which there are no G-satisfactory groups.

16See for instance https://mathoverflow.net/q/26358/
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Say that n is groupless if it admits no G-satisfactory group. Table 5.1 lists all groupless
n 6 500. The data for the table was supplied by Rodney Forcade. This is sequence OEIS
A204811 in the Online Encyclopedia of Integer Sequences17.

In [BM12], S. R. Blackburn and J. F. McKee study partial Z/nZ-isomorphisms, in the
context of constructing what they call k-radius sequences over a finite alphabet. In their
paper, our partial isomorphisms are dubbed bijective logarithms of length n or, simply,
logarithms of length n. Several references where they are studied are provided in their
section 5.1. Their theorem 5.1, for which they further refer to [Mil63, theorem 3], which
makes essential use of Chebotarëv’s theorem, seems particularly relevant to our question
42.

In [BM12, section 5.2], question 2 is considered (independently), in the language of
tilings of powers of Z. In [BM12, section 9.2], Blackburn and McKee discuss the number
of partial isomorphisms for a given n and present a table listing those n 6 300 that do not
admit partial Z/nZ-isomorphisms (their table coincides with the beginning of our table
5.1). They further ask, motivated by numerical evidence, whether it is the case that if n
is large enough, then there is a partial Z/nZ-isomorphism if and only if either n + 1 or
2n+ 1 is prime. Note, however, that this turns out to be false, by theorem 77.

Nevertheless, the suggestion from the computations of [BM12] is that the set of group-
less n is large. It is thus natural to ask the following, as suggested by the referee.

Question 80. Is the set of groupless n infinite, or even of natural density 1?

5.2 Nonmultiplicative 6-satisfactory colorings

We finish the paper by proving that nonmultiplicative colorings exist, and in fact there
may be many of them. Here we treat the case of n = 6 colors. In § 5.3 we consider n = 8.

Recall that question 24 asks, for a given n-satisfactory coloring c and k ∈ Kn, to find
all n-satisfactory colorings d with dk = c (meaning that two numbers m,m′ receive the
same color under c if and only if km and km′ receive the same color under d), that is, all
extensions of a given coloring (or, in the sense introduced just before proposition 25, a
given essential tiling) of On to one of On − t(k).

Theorem 81. Let c be the 6-satisfactory coloring with strong representative 7, that is,
c(m) = (m mod 7) for m ∈ K6. There are exactly six 6-satisfactory colorings d such that
d5 = c. In particular, there are nonmultiplicative 6-satisfactory colorings.

The coloring c is particularly nicely behaved, which simplifies the analysis that follows.
As a Z/6Z-coloring, it is determined by table 4.1. The reader may consider just as well the
6-satisfactory coloring c′ with strong representative 487, that is, c′(m) = (m81 mod 487),
for which the result also holds with a similar, but slightly more involved, geometric analysis
than the one we suggest below for c. As a Z/6Z-coloring, c′ is determined by table 4.4.

Proof. Note that c is multiplicative, c(9) = 2 and c(35) = 5, so that

c(2α3β5γ) = (32α+β+5γ mod 6 mod 7) (5.1)
17See http://oeis.org/A204811
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and, in particular, for fixed β, γ, {c(2α3β5γ) : α ∈ N} is either {1, 2, 4} or {3, 5, 6}, the
values alternating depending on the parity of β + γ. Indeed, β + γ and β + 5γ have the
same parity, and the powers of 3 are given modulo 7 by 1, 3, 2, 6, 4, 5, 1, 3, . . . . Moreover,
since c(23) = 1 while c(i) = i for i = 1, 2, 4, the value of c(2α3β5γ) is periodic in α with
period 3, see figure 5.1.

γ = 0 γ = 1 γ = 2

. . .

5 3 6 5 3 6
4 1 2 4 1 2
6 5 3 6 5 3
2 4 1 2 4 1
3 6 5 3 6 5
1 2 4 1 2 4

4 1 2 4 1 2
6 5 3 6 5 3
2 4 1 2 4 1
3 6 5 3 6 5
1 2 4 1 2 4
5 3 6 5 3 6

6 5 3 6 5 3
2 4 1 2 4 1
3 6 5 3 6 5
1 2 4 1 2 4
5 3 6 5 3 6
4 1 2 4 1 2

Figure 5.1: Tiling of O6 (in the sense of figures 2.1, 2.3) corresponding to the 6-satisfactory
coloring c.

We proceed to verify the claim that there are precisely six 6-satisfactory colorings d
with d5 = c. Note that if d is multiplicative, then dk = d for all k. In particular, five of
these colorings are nonmultiplicative.

We think of the problem of finding d as that of extending the coloring in figure 5.1 one
extra layer down in the axis corresponding to the prime 5, so that dom(d) = 1

5
·K6 and also

the points in the 2-dimensional grid corresponding to γ = −1 are colored. The condition
we should maintain is that if a copy of the 3-dimensional polyomino T6 (depicted in figure
5.2) is completely contained in the extended orthant, then it must contain all colors.

Figure 5.2: The 3-dimensional polyomino T6.

This leads to some restrictions, that we illustrate in figure 5.3, where for each i ∈ [6]
we show in the grid for γ = −1 the places where color i is forced (as a result of i not
being present in any of the other 5 places within a tile, including the tile’s top place in
the grid for γ = 0), as well as those where it is forbidden (because i is the color of the top
place in a tile; we indicate this by graying out the region occupied by the bottom layer of
the tile). Since c is periodic, it is easy to verify that the pattern suggested in figure 5.3
indeed continues.

The point is that these conditions do not determine d entirely. On the grid correspond-
ing to γ = −1, all colors are determined except for those in the bottom row, corresponding
to β = 0, see figure 5.4.

As for what colors d must assign to points in that row, what we see is that if d(5−1) =
u, d(2 · 5−1) = v, d(4 · 5−1) = w, then {u, v, w} = {3, 5, 6}, and d still satisfies that
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i = 1

1 1

1 1

1 1

i = 2

2 2

2 2

2 2

i = 3

3 3

3 3

i = 4

4 4

4 4

4 4

i = 5

5 5

5 5

i = 6

6 6

6 6

Figure 5.3: Extending c to a 6-satisfactory coloring d.

1 2 4 1 2 4
5 3 6 5 3 6
4 1 2 4 1 2
6 5 3 6 5 3
2 4 1 2 4 1

Figure 5.4: Values taken by d on points in {a5−1 : a ∈ K5, 5 - a}.

d(8 ·x) = d(x) for any x in its domain. But there are precisely six 6-colorings d satisfying
these requirements, and any of them is 6-satisfactory, as claimed.

Note that the effort in the proof of theorem 81 came in showing that the six colorings
we identified are all the satisfactory colorings d with d5 = c. A direct verification would
have sufficed if all we wanted was to show that there are at least six such colorings; again,
thinking of them as having domain 1

5
·K6, all of them are given by equation (5.1) except

for β = 0, γ = −1, where they are given as described in the last paragraph of the proof.
Remark 82. We can extend the argument of theorem 81 in a few ways. For instance,
their periodicity in the direction of 2 allows us to consider these colorings as defined on
{a/2n : a ∈ K6, n ∈ N}. And we can iterate the construction: assign to each permutation
of {3, 5, 6} a number in [6], and do the same to the permutations of {1, 2, 4}. Denote by
[6]<N the set of finite strings of members of [6], that is,

[6]<N =
⋃
n∈N

[6]n.

For σ ∈ [6]<N denote its length by |σ|. Starting with d∅ = c, we can associate to each
finite string σ ∈ [6]<N a coloring dσ with the following properties:

1. dom(dσ) =
{

a
2n5m

: a ∈ K6, n ∈ N, 0 6 m 6 |σ|
}

and dσ is 6-satisfactory on its
domain.
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2. The functions dσ_〈i〉 for i ∈ [6] are all the 6-satisfactory maps d on their domain such
that d5 = dσ (under the convention of theorem 81, where we think of the equation
d5 = d′ for a given d′ as seeking a map d with domain 1

5
· dom(d′)).

3. Given dσ, dσ_〈i〉 is completely determined by its values on numbers of the form
2α5−|σ|−1, α ∈ Z, and in turn these values are given by the permutation associated
to i corresponding to {3, 5, 6} if σ is even and to {1, 2, 4} if σ is odd, as follows: if
the permutation is (u0, u1, u2), then dσ

_〈i〉(2α5−|σ|−1) = uj, where α ≡ j (mod 3).

(The proof of this is a straightforward extension of that of theorem 81, we omit the
details.) In turn, this implies that if K̃6 = {2α3β5γ : α, γ ∈ Z, β ∈ N}, then |CK̃6

| = c,
since to each infinite sequence x ∈ [6]Z

+ we can associate the coloring

dx =
⋃
n∈N

dx�[n],

all these colorings are different, and all are 6-satisfactory.
Unfortunately, the argument does not seem to allow for a straightforward extension

that would permit us to further extend the domains of these colorings to all of K̂6.
The colorings so obtained have a further application, namely, they imply that question

31 has a negative answer. Indeed, for generic x, use dx to obtain a partial tiling by T6
of the image under t of K̃6, note that this can be extended to an essential tiling, and let
(dx)′ be the coloring coming from this tiling. We see that (dx)′ 6= dx. Moreover, this is
not an issue of the behavior of partial tiles at the boundary, as this tiling is actually quite
tame. In fact, it suffices to take x so that for γ = −1 we use the permutation (3, 5, 6)
and for any other γ we use either (3, 6, 5) or (1, 2, 4). The point is that tiles contained in
the orthant (so γ > 0) are colored in a certain pattern (copying the coloring of T6 itself)
while tiles involving points using the (3, 5, 6) permutation are colored differently.

That the analysis in the proof of theorem 81 ended up working so neatly is because,
in addition to the equation c(8m) = c(m), the coloring c also satisfies that for any fixed
β, γ in N, the set {c(2α3β5γ) : α ∈ N} is either {1, 2, 4} or {3, 5, 6}, and this only depends
on the parity of β + γ. This is most readily apparent geometrically: consider an essential
tiling of O6 by T6 induced by c. For each fixed γ, the trace on this tiling on the plane grid
corresponding to γ shows up in horizontal strips of height two, as can be seen in figure
5.5.

γ = 2

6 5 3 6 5 3
2 4 1 2 4 1
3 6 5 3 6 5
1 2 4 1 2 4
5 3 6 5 3 6
4 1 2 4 1 2

Figure 5.5: Trace of a tiling induced by c on {(α, β, γ) : α, β ∈ N} for fixed γ.
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This suggests a natural approach towards strengthening the conclusion that there are
nonmultiplicative colorings, that we now proceed to present.

Theorem 83. |CK6 | = c.

Proof. Write O6 = {(α, β, γ) : α, β, γ ∈ N}, identifying each point (α, β, γ) with the
number 2α3β5γ ∈ K6. We will define a family of 6-satisfactory colorings d by specifying
certain essential tilings of O6. For each of them, as in the example just discussed, see
also figure 5.5, the trace of the tiling on any plane γ = γ0 is naturally organized along
horizontal strips of height two (which, in particular ensures that any such coloring d
satisfies d(8m) = d(m) for all m), and that there are many such colorings comes from the
fact that different strips are independent of each other.

Fixing γ = γ0, each of the horizontal strips we consider has the form Hk(γ0) for some
k ∈ N, where

Hk(γ0) := {(α, β, γ0) : α ∈ N, β = k or k + 1}.

We follow our usual convention that d(i) = i for i ∈ [6], meaning that T6 itself is one of
the tiles we use (equivalently, if the tiling is T6 + B ⊃ O6, the sum being direct, then
0 ∈ B). For the examples we consider, the trace of the tiling on a strip has one of six
possible types, but it is enough for our purposes to only describe three of them. Each
description refers to figure 5.5 and the (essential) tiling induced by c depicted there; for
instance, to be of type 1 means to be exactly as the tiling of H2(2) shown in figure 5.5.
Accordingly, in the descriptions below we omit the sentence “shown in figure 5.5” each
time.

A tiling of a strip is of type

• 1 if and only if it is (precisely) the tiling of H2(2),

• 2 if and only if it is the tiling of H0(2), and

• 3 if and only if it is the tiling of H4(2).

(All tilings here are actually essential tilings, and we omit the word “essential” in what
follows.) Note that if in a 6-satisfactory coloring a strip Hk(γ) with k + γ even is of type
j ∈ [3], then Hk−1(γ + 1) is of type j + 1 (using cyclic notation, so that 4 is identified
with 1). This includes the case k = 0 in cases where γ is even.

We are ready to describe the colorings, they are of the form dx for x ∈ [3]Z
+ , where dx

is defined as follows: the tiling induced by the coloring dx has the following trace on the
plane γ = 0: H0(0) has type 1 (as required by our convention). For each k > 0, H2k(0)
has type x(k). For γ > 0, the traces are recursively defined according to the last sentence
of the previous paragraph.

It is immediate from the construction that if x 6= x′, then dx 6= dx
′ , so we have defined

3ℵ0 = c colorings ofK6, and that all of them are 6-satisfactory, since what we have actually
done is to give dx via an explicit essential tiling of O6.
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Note that, for x1 the constant function taking the value 1, the coloring dx1 just de-
scribed is the Z6-coloring with strong representative 103 and determined by table 4.3.
Also, note that the set {dx : x ∈ [3]Z

+} not only has the same size as the reals but is in
fact a perfect subset of CK6 .

There are infinitely many ways of choosing x so that the resulting dx is periodic in the
direction of 3 (and therefore periodic), and we can moreover ensure that this period is not
a factor of 6, in fact, o(3) can be taken to be arbitrarily large. As remarked in § 4.3, this
indicates that the existence of periodic n-satisfactory colorings is not enough to ensure
the existence of translation invariant (i.e., multiplicative) ones.

Remark 84. We previously obtained a different proof of theorem 83 that used the fact
that CK6 is closed in its natural topology. The argument proceeded in two stages. First,
theorem 81 was extended using a variant of the construction in remark 82 to obtain an
infinite countable family of 6-satisfactory colorings such that for each c in the family
there were six colorings d in the family with d5 = c. The members of the family were
arranged as nodes on a complete senary tree, in such a way that the colorings along each
branch converged, and the limit colorings so produced were pairwise different. Further,
all these colorings d satisfy that d(8m) = d(m) and d(3m) = d(10m) for any m ∈ K6.
Lon Mitchell also found an elegant proof; his key insight was that one could get rid of
the topological argument and instead define directly in a combinatorial way the colorings
that the previous limit process had produced.

5.3 Nonmultiplicative 8-satisfactory colorings

We adapt the proof of theorem 83 to show that the result applies to CK8 as well.

Theorem 85. |CK8 | = c.

Proof. We construct a perfect set of 8-satisfactory colorings of K8 by describing the as-
sociated essential tilings of O8 = {(α, β, γ, δ) : α, β, γ, δ ∈ N}. As before, the tilings have
the form T8 + B with 0 ∈ B and are given by tiling strips, which are now of the form
Hk(γ0, δ0) for some fixed γ0, δ0 and some k ∈ N, where

Hk(γ0, δ0) := {(α, β, γ0, δ0) : α ∈ N, β = k or k + 1}.

We begin by describing the four possible types a strip Hk(γ0, δ0) may be depending
on the trace of the tiling on the strip, for which we refer to figure 5.6 (as in the n = 6
case, more types are possible, but these are the only ones we consider). All our tilings
are periodic in the sense that the associated coloring d satisfies d(16m) = d(m) for any
m ∈ K8.

We say the tiling is of type

• 1 if and only if it is (precisely) the depicted tiling with a = 0,

• 2 if and only if it is the depicted tiling with a = −1,

• 3 if and only if it is the depicted tiling with a = −2,
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2 4 8 1 2 4 8 1 2 4

6 5 7 3 6 5 7 3 6 5
α = a

Figure 5.6: Trace of a tiling on a planar strip Hk(γ0, δ0).

• 4 if and only if it is the depicted tiling with a = −3.

We will define the colorings we are interested in by describing the types of the strips
H2k(0, 0), and extending this to a coloring of all of K8 recursively by the rule that if
k + γ0 + δ0 is even and Hk(γ0, δ0) is of type i, then Hk−1(γ0 + 1, δ0) is of type i + 2 and
Hk−1(γ0, δ0 + 1) is of type i+ 3, using cyclic notation modulo 4.

We must verify that this procedure is well-defined, specifically, that the recursion
just described assigns a unique color to any point in O8 once the colors of points in the
(intersection of the orthant with the) plane γ = δ = 0 are specified. For this, first note
that the recursion describes how to assign colors to points in Hk(γ, δ) for k of the same
parity as γ + δ so, in particular, fixing the values of γ and δ, for any point x in the
resulting plane there is a unique k > −1 with x ∈ Hk(γ, δ) and k of the relevant parity.
Now, by induction on γ + δ, let i be the type of Hk+γ+δ(0, 0), and check that the rules
specify that the type of Hk(γ, δ) is precisely i+ 2γ + 3δ (using the cyclic convention), so
the color assigned to x is indeed unambiguous.

Finally, we define the colorings dx for x ∈ [4]Z
+ by setting H0(0, 0) to be of type

1 and, for k > 0, H2k(0, 0) to be of type x(k). The colorings so described are pair-
wise different and are 8-satisfactory since, by construction, dx(16m) = dx(m) for any
m while dx(m), dx(2m), dx(4m), dx(8m) are pairwise distinct, and they are all different
from dx(3m), dx(6m), dx(12m), dx(24m) and, moreover, dx(5m) = dx(12m) and dx(7m) =
dx(24m). Note that, as in the n = 6 case, the set {dx : x ∈ [4]Z

+} is a perfect subset of
CK8 .

Note that for x1 the constant function taking the value 1, the coloring dx
1 is the

Z/2Z× Z/4Z-coloring determined by table 4.21 for a = 1.

Remark 86. We could have presented the proof purely algebraically by building the color-
ings dx recursively, while requiring they satisfy the rules indicated in the last paragraph,
but we chose the geometric presentation as it seems more intuitive.

6 Open questions

For the reader’s convenience, we close the paper by listing the questions we have mentioned
throughout the paper. We omit those that, like question 58, were asked as rhetorical
devices and are answered in the text.
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Question 2. Given any positive integer n, is there a coloring of the positive integers using
n colors such that for any positive integer a, the numbers a, 2a, . . . , na all have different
colors?

Question 3. Assuming that question 2 has a negative answer for n, can we find a better
bound than the smallest prime larger than n on the number of colors required to ensure
a positive answer?

We refine the original formulation of question 16 as follows:

Question 16. Given n > 1, how many n-satisfactory colorings of Kn are there, if any at
all? Is the map n 7→ |CKn| that assigns to each n the number of n-satisfactory colorings
of the core a recursive function (taking values in N ∪ {ℵ0, c})?
Question 22. Given n ∈ Z+, suppose that CKn is nonempty. Should it have isolated
points?

For the operation d 7→ dk on colorings, see item (3) in § 2.2.

Question 24. Given an n-satisfactory coloring c and k ∈ Kn, is there an n-satisfactory
coloring d such that dk = c? In that case, how many such colorings d are there?

Question 27. Let n ∈ Z+.

1. Does any n-satisfactory coloring of Kn extend to one of K̂n?

2. If Tn essentially tiles On via a tiling Tn + B, is there a tiling by Tn of all of Zπ(n)
that essentially extends it?

Question 30. Given an n-satisfactory coloring c of K̂n, let B be the image under t of a
color class of c. The proof of proposition 25 shows that the sum Tn + B is a tiling of
Zπ(n). From this tiling we can define an n-satisfactory coloring c′ with color classes the
preimages under t of the translates t(i) +B, i ∈ [n]. Is c′ = c?

See the discussion surrounding the original presentation of question 31 for additional
details of the setting it references. Briefly, given n, from an n-satisfactory coloring c of
Kn, we obtain n partial tilings of the orthant On, and any point in On belongs to at
least one of the resulting direct sums Tn +B. Any of these sums in turn defines a partial
n-satisfactory coloring of Kn.

Question 31. Are the resulting partial colorings compatible? If they are, their union gives
us a coloring c′ of Kn. Is c′ = c?

Originally, question 42 was listed with three parts, but we proceeded to solve positively
the first two. The following remains, though we expect the answer to be negative and
easily accessible from the techniques we discuss in § 3.4.

Question 42. Let n ∈ Z+. Suppose n admits a strong representative. For a satisfactory
n-coloring c, is the natural density of the set of strong representatives of order n for c
independent of c?

Question 80. Is the set of groupless n infinite, or even of natural density 1?
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Many combinatorial questions remain besides those just listed. They appear in-
tractable with current methods.

Question 87. Is there an n admitting precisely a countable infinity of n-satisfactory
colorings of Kn? Which finite m are precisely the number of n-satisfactory colorings of
Kn for some n?
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n m ∈ Kn c(m) modulo n
1 1 0
2 2α α

3 2α3β α+ 2β

4 2α3β α+ 3β

5 2α3β5γ α+ 3β + 4γ

6 2α3β5γ α+ 3β + 5γ

7 2α3β5γ7δ α+ 3β + 5γ + 6δ

8 2α3β5γ7δ α+ 4β + 6γ + 7δ

9 2α3β5γ7δ α+ 4β + 6γ + 7δ

10 2α3β5γ7δ α+ 4β + 6γ + 9δ

11 2α3β5γ7δ11ε α+ 4β + 6γ + 9δ + 10ε

12 2α3β5γ7δ11ε α+ 4β + 9γ + 7δ + 11ε

13 2α3β5γ7δ11ε13ζ α+ 4β + 9γ + 7δ + 11ε+ 12ζ

14 2α3β5γ7δ11ε13ζ α+ 4β + 9γ + 11δ + 7ε+ 13ζ

15 2α3β5γ7δ11ε13ζ α+ 4β + 9γ + 11δ + 7ε+ 14ζ

16 2α3β5γ7δ11ε13ζ α+ 5β + 8γ + 11δ + 14ε+ 15ζ

17 2α3β5γ7δ11ε13ζ17η α+ 5β + 8γ + 11δ + 14ε+ 15ζ + 16η

18 2α3β5γ7δ11ε13ζ17η α+ 5β + 8γ + 14δ + 12ε+ 16ζ + 17η

19 2α3β5γ7δ11ε13ζ17η19θ α+ 5β + 8γ + 14δ + 12ε+ 16ζ + 17η + 18θ

20 2α3β5γ7δ11ε13ζ17η19θ α+ 5β + 12γ + 8δ + 15ε+ 16ζ + 18η + 19θ

21 2α3β5γ7δ11ε13ζ17η19θ α+ 5β + 12γ + 15δ + 8ε+ 9ζ + 18η + 19θ

22 2α3β5γ7δ11ε13ζ17η19θ α+ 5β + 12γ + 15δ + 8ε+ 18ζ + 19η + 21θ

23 2α3β5γ7δ11ε13ζ17η19θ23ι α+ 5β + 12γ + 15δ + 8ε+ 18ζ + 19η + 21θ + 22ι

24 2α3β5γ7δ11ε13ζ17η19θ23ι α+ 5β + 12γ + 15δ + 18ε+ 9ζ + 21η + 22θ + 23ι

25 2α3β5γ7δ11ε13ζ17η19θ23ι α+ 5β + 12γ + 15δ + 18ε+ 9ζ + 21η + 22θ + 23ι

26 2α3β5γ7δ11ε13ζ17η19θ23ι α+ 5β + 12γ + 15δ + 18ε+ 21ζ + 9η + 23θ + 25ι

27 2α3β5γ7δ11ε13ζ17η19θ23ι α+ 5β + 12γ + 18δ + 20ε+ 25ζ + 9η + 16θ + 22ι

28 2α3β5γ7δ11ε13ζ17η19θ23ι α+ 5β + 12γ + 18δ + 21ε+ 25ζ + 9η + 16θ + 27ι

29 2α3β5γ7δ11ε13ζ17η19θ23ι29κ α+ 5β + 12γ + 18δ + 21ε+ 25ζ + 9η + 16θ + 27ι+ 28κ

30 2α3β5γ7δ11ε13ζ17η19θ23ι29κ α+ 5β + 12γ + 20δ + 26ε+ 28ζ + 9η + 16θ + 19ι+ 23κ

31 2α3β5γ7δ11ε13ζ17η19θ23ι29κ31λ α+5β + 12γ + 20δ + 26ε+ 28ζ + 9η + 16θ + 19ι+ 23κ+30λ

Table 2.1: Linear equations describing an n-satisfactory coloring c for n 6 31.
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n k p

1 1 2
2 1 3
3 2 7
4 1 5
5 2 11
6 1 7
7 94 659
8 2 17
9 2 19
10 1 11
11 2 23
12 1 13
13 198,364 2,578,733
14 2 29
15 2 31
16 1 17
17 2,859,480 48,611,161
18 1 19
19 533,410 10,134,791
20 2 41
21 2 43
22 1 23
23 2 47
24 56,610,508 1,358,652,193
25 1,170,546,910 29,263,672,751
26 2 53
27 6,700,156,678 180,904,230,307
28 1 29
29 2 59
30 1 31
31 27,184,496,610 842,719,394,911
32 162,802,814,486 5,209,690,063,553
33 2 67

Table 3.1: Smallest strong representative p = kn+ 1 of order n for n 6 33.
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k = 4m n p = kn+ 1

4 1 5
8 none none
12 1 and 3 13 and 37
16 1 17
20 none none
24 none none
28 1 29
32 none none
36 1 37
40 1 41
44 none none
48 none none
52 1 53
56 none none
60 1 and 3 61 and 181
64 none none
68 none none
72 1 73
76 none none
80 3 241
84 5 421
88 1 89
92 none none
96 1 97
100 1 101

Table 3.2: 4m-representatives for m 6 25.
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m 106 2 · 106 3 · 106 4 · 106 5 · 106

|C1(m)| 626 1203 1757 2314 2838
|C5(m)| 626 1210 1783 2291 2822
|C(m)| 1252 2413 3540 4605 5660
|CT (m)| 19617 37188 54175 70779 87062
|C1(m)|
|C5(m)| 1 0.994215 0.985418 1.010039 1.005670
|C(m)|
|CT (m)| 0.063822 0.064887 0.065344 0.065062 0.065011

m 6 · 106 7 · 106 8 · 106 9 · 106 107

|C1(m)| 3376 3873 4386 4886 5358
|C5(m)| 3309 3843 4302 4772 5265
|C(m)| 6685 7716 8688 9658 10623
|CT (m)| 103153 119109 134912 150604 166104
|C1(m)|
|C5(m)| 1.020248 1.007806 1.019526 1.023889 1.017664
|C(m)|
|CT (m)| 0.064807 0.064781 0.064398 0.064128 0.063954

Table 3.3: Density of strong representatives of order 5.
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N π(N) π2(N) π2(N)/π(N) π3(N) π3(N)/π(N) π4(N) π4(N)/π(N)

102 25 13 0.52 2 0.08 1 0.04
103 168 87 0.51785. . . 20 0.11904. . . 10 0.05952. . .
104 1229 625 0.50854. . . 134 0.10903. . . 82 0.06672. . .
105 9592 4808 0.50125. . . 1087 0.11332. . . 602 0.06276. . .
106 78498 39276 0.50034. . . 8732 0.11123. . . 4857 0.06187. . .

N π(N) π5(N) π5(N)/π(N) π6(N) π6(N)/π(N)

102 25 1 0.04 2 0.08
103 168 3 0.01785. . . 7 0.0416
104 1229 16 0.01301. . . 19 0.01545. . .
105 9592 147 0.01532. . . 203 0.02116. . .
106 78498 1252 0.01594. . . 1803 0.02296

N π(N) π7(N) π7(N)/π(N) π8(N) π8(N)/π(N)

102 25 0 0 1 0.04
103 168 1 0.00595. . . 1 0.00595. . .
104 1229 6 0.00488. . . 5 0.00406. . .
105 9592 30 0.00312. . . 21 0.00218. . .
106 78498 195 0.00248. . . 165 0.00210. . .
107 664579 1624 0.00244. . . 1344 0.00202. . .

N π(N) π9(N) π9(N)/π(N) π10(N) π10(N)/π(N)

102 25 1 0.04 1 0.04
103 168 1 0.00595. . . 1 0.00595. . .
104 1229 1 0.00081. . . 2 0.00162. . .
105 9592 7 0.00072. . . 5 0.00052. . .
106 78498 42 0.00053. . . 31 0.00039. . .
107 664579 374 0.00056. . . 281 0.00042. . .

Table 3.4: Density of strong representatives of order n, 2 6 n 6 10.

n degree expected density
2 21 · 1 = 2 1/2 = 0.5
3 32 · 2 = 18 1/9 = 0.1
5 53 · 4 = 500 2/125 = 0.016
7 74 · 6 = 14406 6/2401 = 0.00249 . . .

Table 3.5: Degree of Q(ζn,
n
√
j : j ∈ [n] ∩ P) : Q and expected density of the set of strong

representatives of order n in the set of all primes for n prime below 10.
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⊕ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Table 4.1: A Z/6Z-satisfactory group.

⊕ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 5 3 1
3 3 6 4 1 2 5
4 4 5 1 3 6 2
5 5 3 2 6 1 4
6 6 1 5 2 4 3

Table 4.2: Z/6Z-coloring strongly represented by 13 = 2 · 6 + 1.

⊕ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 1 5 4 2
4 4 1 5 2 6 3
5 5 3 4 6 2 1
6 6 5 2 3 1 4

Table 4.3: Z/6Z-coloring strongly represented by 103 = 17 · 6 + 1.

⊕ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 4 5 2 1
4 4 1 5 2 6 3
5 5 3 2 6 1 4
6 6 5 1 3 4 2

Table 4.4: Z/6Z-coloring strongly represented by 487 = 81 · 6 + 1.
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⊕ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 3 1 5
3 3 6 1 5 4 2
4 4 3 5 6 2 1
5 5 1 4 2 6 3
6 6 5 2 1 3 4

Table 4.5: Z/6Z-coloring strongly represented by 547 = 91 ·6+1; this is also the (Z/9Z)∗-
coloring given by the proof of Theorem 77.

⊕ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 5 3 7 1
3 3 6 2 7 1 4 5
4 4 5 7 3 6 1 2
5 5 3 1 6 7 2 4
6 6 7 4 1 2 5 3
7 7 1 5 2 4 3 6

Table 4.6: Z/7Z-coloring strongly represented by 659.

⊕ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 3 7 5 1
3 3 6 7 5 2 1 4
4 4 3 5 6 1 7 2
5 5 7 2 1 3 4 6
6 6 5 1 7 4 2 3
7 7 1 4 2 6 3 5

Table 4.7: Z/7Z-coloring strongly represented by 1429.

⊕ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 3 1 7 5
3 3 6 5 7 4 1 2
4 4 3 7 6 2 5 1
5 5 1 4 2 7 3 6
6 6 7 1 5 3 2 4
7 7 5 2 1 6 4 3

Table 4.8: Z/7Z-coloring strongly represented by 2087.
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⊕ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 7 1 5 3
3 3 6 2 5 7 4 1
4 4 7 5 3 2 1 6
5 5 1 7 2 6 3 4
6 6 5 4 1 3 7 2
7 7 3 1 6 4 2 5

Table 4.9: Z/7Z-coloring strongly represented by 3557.

⊕ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 7 3 1 5
3 3 6 7 1 4 5 2
4 4 7 1 5 6 2 3
5 5 3 4 6 2 7 1
6 6 1 5 2 7 3 4
7 7 5 2 3 1 4 6

Table 4.10: Z/7Z-coloring strongly represented by 17431.

⊕ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 5 7 1 3
3 3 6 5 1 2 7 4
4 4 5 1 7 3 2 6
5 5 7 2 3 6 4 1
6 6 1 7 2 4 3 5
7 7 3 4 6 1 5 2

Table 4.11: Z/7Z-coloring strongly represented by 21911.

⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 1 5 3 7
3 3 6 4 5 7 8 2 1
4 4 8 5 7 2 1 6 3
5 5 1 7 2 6 3 8 4
6 6 5 8 1 3 7 4 2
7 7 3 2 6 8 4 1 5
8 8 7 1 3 4 2 5 6

Table 4.12: Z/8Z-coloring corresponding to the sequence (1, 5, 3, 7).
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⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 1 7 5 3
3 3 6 1 7 8 2 4 5
4 4 8 7 3 2 5 1 6
5 5 1 8 2 7 3 6 4
6 6 7 2 5 3 4 8 1
7 7 5 4 1 6 8 3 2
8 8 3 5 6 4 1 2 7

Table 4.13: Z/8Z-coloring corresponding to the sequence (1, 7, 5, 3).

⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 3 1 5 7
3 3 6 7 1 8 5 4 2
4 4 8 1 7 6 2 3 5
5 5 3 8 6 4 7 2 1
6 6 1 5 2 7 3 8 4
7 7 5 4 3 2 8 1 6
8 8 7 2 5 1 4 6 3

Table 4.14: Z/8Z-coloring corresponding to the sequence (3, 1, 5, 7).

⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 3 7 1 5
3 3 6 4 7 2 8 5 1
4 4 8 7 5 6 1 2 3
5 5 3 2 6 1 4 8 7
6 6 7 8 1 4 5 3 2
7 7 1 5 2 8 3 6 4
8 8 5 1 3 7 2 4 6

Table 4.15: Z/8Z-coloring corresponding to the sequence (3, 7, 1, 5).
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⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 7 1 3 5
3 3 6 5 1 4 7 8 2
4 4 8 1 5 3 2 6 7
5 5 7 4 3 1 8 2 6
6 6 1 7 2 8 3 5 4
7 7 3 8 6 2 5 4 1
8 8 5 2 7 6 4 1 3

Table 4.16: Z/8Z-coloring corresponding to the sequence (7, 1, 3, 5).

⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 7 5 1 3
3 3 6 1 5 4 2 8 7
4 4 8 5 3 1 7 2 6
5 5 7 4 1 3 8 6 2
6 6 5 2 7 8 4 3 1
7 7 1 8 2 6 3 5 4
8 8 3 7 6 2 1 4 5

Table 4.17: Z/8Z-coloring corresponding to the sequence (7, 5, 1, 3).

⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 3 7 5 1
3 3 6 7 5
4 4 8 7 1 6 5 3 2
5 5 3 6 7
6 6 7 5 3
7 7 5 3 6
8 8 1 5 2 7 3 6 4

Table 4.18: The partial multiplication table determined by the sequence (3, 7, 5, 1).
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⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 7 5 3 1
3 3 6 5 7
4 4 8 5 1 3 7 6 2
5 5 7 3 6
6 6 5 7 3
7 7 3 6 5
8 8 1 7 2 6 3 5 4

Table 4.19: The partial multiplication table determined by the sequence (7, 5, 3, 1).

⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 3 7 5 1
3 3 6 a 7 8⊕ a 2⊕ a 4⊕ a 5
4 4 8 7 1 6 5 3 2
5 5 3 8⊕ a 6 4⊕ a a 2⊕ a 7
6 6 7 2⊕ a 5 a 4⊕ a 8⊕ a 3
7 7 5 4⊕ a 3 2⊕ a 8⊕ a a 6
8 8 1 5 2 7 3 6 4

Table 4.20: Group corresponding to the sequence (3, 7, 5, 1) with a = 1, 2, 4, or 8.

⊕ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 4 6 8 7 5 3 1
3 3 6 a 5 4⊕ a 2⊕ a 8⊕ a 7
4 4 8 5 1 3 7 6 2
5 5 7 4⊕ a 3 a 8⊕ a 2⊕ a 6
6 6 5 2⊕ a 7 8⊕ a 4⊕ a a 3
7 7 3 8⊕ a 6 2⊕ a a 4⊕ a 5
8 8 1 7 2 6 3 5 4

Table 4.21: Group corresponding to the sequence (7, 5, 3, 1) with a = 1, 2, 4, or 8.
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195 248 279 311 337 367 394 423 451 480
205 252 283 313 339 368 395 424 452 481
208 253 286 314 340 370 397 425 454 482
211 255 287 317 343 373 399 427 457 484
212 257 289 318 344 374 401 433 458 487
214 258 290 319 347 376 402 434 461 489
217 259 291 322 349 377 403 435 463 492
218 263 294 324 351 379 406 436 465 493
220 264 295 325 353 381 407 437 467 494
227 265 297 327 355 383 409 439 469 496
229 266 298 328 356 385 412 444 471 497
235 267 301 331 357 387 415 445 472 499
242 269 302 332 361 389 416 446 474 500
244 271 304 333 362 390 417 447 475
246 274 305 334 364 391 421 449 477
247 275 307 335 365 392 422 450 479

Table 5.1: Groupless n 6 500.
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