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Abstract
A proper coloring of the vertices of a graph is called a star coloring if every

two color classes induce a star forest. Star colorings are a strengthening of acyclic
colorings, i.e., proper colorings in which every two color classes induce a forest.

We show that every acyclic k-coloring can be refined to a star coloring with at
most (2k2 − k) colors. Similarly, we prove that planar graphs have star colorings
with at most 20 colors and we exhibit a planar graph which requires 10 colors. We
prove several other structural and topological results for star colorings, such as:
cubic graphs are 7-colorable, and planar graphs of girth at least 7 are 9-colorable.
We provide a short proof of the result of Fertin, Raspaud, and Reed that graphs
with tree-width t can be star colored with

(t+2
2

)
colors, and we show that this is

best possible.
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1 Introduction

A proper r-coloring of a graph G is an assignment of labels from {1, 2, . . . , r} to the vertices
of G so that adjacent vertices receive distinct labels. The minimum r so that G has a
proper r-coloring is called the chromatic number of G, denoted by χ(G). The chromatic
number is one of the most studied parameters in graph theory, and by convention, the
term coloring of a graph is usually used instead of proper coloring. In 1973, Grünbaum [10]
considered proper colorings with the additional constraint that the subgraph induced by
every pair of color classes is acyclic, i.e., contains no cycles. He called such colorings
acyclic colorings, and the minimum r such that G has an acyclic r-coloring is called the
acyclic chromatic number of G, denoted by a(G). In introducing the notion of an acyclic
coloring, Grünbaum noted that the condition that the union of any two color classes
induce a forest can be generalized to other bipartite graphs. Among other problems, he
suggested requiring that the union of any two color classes induce a star forest, i.e., a
proper coloring avoiding 2-colored paths with four vertices. We call such a coloring a star
coloring. Star colorings have recently been investigated by Fertin, Raspaud and Reed [8],
and Nes̆etr̆il and Ossona de Mendez [15].

In this paper we bound the minimum number of colors used in a star coloring when the
graph is restricted to certain natural classes. In particular, we prove that planar graphs
can be star colored with 20 colors, and we give analogous results for graphs embedded in
arbitrary surfaces.

We begin by collecting some basic definitions and observations in Section 2. In Sec-
tion 3 we define the central notion of an in-coloring. We use this concept, which is equiv-
alent to a star coloring, in most of our proofs. For example, it leads to a simple proof of
the fact that every graph of maximum degree ∆ can be star colored with ∆(∆ − 1) + 2
colors. When ∆ = 3, we improve this to 7.

In Section 4, we investigate the connection between acyclic colorings and star colorings
further. We define a refinement of acyclic colorings that allows us to improve the bound
on the star chromatic number for planar graphs to 20. There are stronger results for
planar graphs with large girth, and similar results for graphs embedded in an arbitrary
surface in Section 5.

In Section 6, we bound the star chromatic number in terms of tree-width by showing
that chordal graphs with clique number ω have star colorings using

(
ω+1

2

)
colors. This

implies that outerplanar graphs have star colorings with at most 6 colors. We construct
an example to show that these results are best possible and to obtain a planar graph with
star chromatic number 10.

We conclude the paper by investigating the complexity of star coloring in Section 7.
We show that even if G is planar and bipartite, the problem of deciding whether G has a
star coloring with 3 colors is NP -complete. In Section 8, we collect some open questions
for future investigation.
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2 Definitions and preliminaries

Suppose F is a nonempty family of connected bipartite graphs, each with at least 3
vertices. An r-coloring of a graph G is said to be F-free if G contains no 2-colored subgraph
isomorphic to any graph F in F . These F -free colorings are a natural generalization of
acyclic colorings: if F consists of all even cycles, then a coloring is F -free if and only if it
is acyclic. We denote the minimum number of colors in an F -free coloring of G by χF (G).
If the family F consists of a single graph F , then we use χ

F
(G). In this notation, if F is

the family of all even cycles, then χF (G) = a(G).
In this paper, we concentrate on the case when F = {P4}, the path on 4 vertices.

Recall that a star is a graph isomorphic to K1,t for some t ≥ 0 and a graph all of whose
components are stars is called a star-forest. In a proper coloring that avoids a 2-colored
P4, the union of any two color classes cannot induce a cycle since every even cycle contains
P4 as a subgraph. Hence the union induces a star-forest (every component must be a star,
since otherwise it would contain a 2-colored P4). We will use the following terminology.

Definition 2.1. An r-coloring of G is called a star coloring if there are no 2-colored paths
on 4 vertices. The minimum r such that G has a star coloring using r colors is called the
star chromatic number of G and is denoted by χ

P4
(G) or χs(G).

Observe that if H is a subgraph of F , then an H-free coloring of G is certainly an
F -free coloring of G, i.e., χ

F
(G) ≤ χ

H
(G). Every member of the family of bipartite graphs

F has a 3 vertex path as a subgraph, hence we can deduce the following proposition.

Proposition 2.2. χF (G) ≤ χ
P3

(G) = χ(G2) ≤ min{∆(G)2 + 1, n}.
Proof. The second inequality follows from the observation that a coloring in which each
bicolored path has at most two vertices can be obtained by coloring every pair of vertices
that are at a distance two apart with distinct colors. The graph G2 is obtained from G
by inserting edges between any two vertices whose distance in G is two, and the bound
follows since the chromatic number is always at most the maximum degree plus 1.

The last inequality above can be exact (e.g., C5), but for families of graphs that have
unbounded maximum degree (such as planar graphs), Proposition 2.2 provides no useful
bound on the star chromatic number.

If the family F does not contain a star, then every graph in F has P4 as a subgraph,
so χF ≤ χs. Thus, for such a family, a bound on the star chromatic number also bounds
χF . On the other hand, suppose that the family F contains K1,t, and we consider F -free
colorings of planar graphs. Since a planar graph may contain an arbitrarily large star
and every k-coloring of K1,tk contains a 2-colored K1,t, we conclude that χF cannot be
bounded by an absolute constant. This suggests that the star chromatic number is the
most interesting parameter to study, since it bounds χF for all well-behaved choices of
F for interesting families such as planar graphs. In Section 4, we will show that χs is
bounded above by 20 for all planar graphs.

For some of our results, we use the more general language of list-colorings. A list-
coloring of a graph G is a proper coloring where the colors come from lists assigned at
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each vertex. The list-chromatic number of G is the minimum size of lists that can be
assigned to the vertices so that G can always be colored from them. Clearly, the list-
chromatic number is always at least the chromatic number. We may also consider star
colorings in which each vertex receives a color from its assigned list. The smallest list
size that guarantees the existence of such a coloring of a graph is its star list-chromatic
number.

3 Orientations and star colorings

It is convenient to define the following digraph coloring notion that is equivalent to star
coloring.

Definition 3.1. A proper coloring of an orientation of a graph G is called an in-coloring
if for every 2-colored P3 in G, the edges are directed towards the middle vertex. We will
call such a P3 an in-P3. A coloring of G is an in-coloring if it is an in-coloring of some
orientation of G. A list in-coloring of G is an in-coloring of G where the colors are chosen
from the lists assigned to each vertex.

Nes̆etr̆il and Ossona de Mendez [15] consider a very similar idea that they define in
terms of a derived graph. We prove the following lemma, which corresponds to their
Corollary 3.

Lemma 3.2. A coloring of a graph G is a star coloring if and only if it is an in-coloring
of some orientation of G.

Proof. Given a star coloring, we can form an orientation by directing the edges towards
the center of the star in each star-forest corresponding to the union of two color classes.

Conversely consider an in-coloring of ~G, an orientation of G. Let uvwz be some P4 in
G. We may assume the edge vw is directed towards w in ~G. For the given coloring to be
an in-coloring at v, we must have three different colors on u, v, w.

Thus χs(G) is the minimum number of colors used in an in-coloring of any orientation
of G. If we restrict our attention to acyclic orientations, we can use Lemma 3.2 to improve
the degree bound.

Theorem 3.3. Let G be a graph with maximum degree ∆. If G has an acyclic orientation
with maximum indegree k, then χs(G) ≤ k∆ + 1.

Proof. Let ~G denote the acyclic orientation of G, and let v1, v2, . . . , vn be an acyclic
ordering of the vertices obtained by iteratively deleting the vertices of indegree zero.
Thus in ~G all edges are directed from the vertex of smaller index towards the vertex of
larger index. Now greedily color v1, . . . , vn as follows: to color vi select a color from its
list that is not used on any vertex vj where j < i and the distance between vi and vj in G
is at most two. This ensures that adjacent vertices receive different colors, and that there
is no 2-colored P3 in ~G in which the middle vertex has outdegree 1 or 2. Since each vertex
has at most k colored neighbors when it is colored, and these in turn have at most ∆− 1
other neighbors each, the greedy coloring can be completed from the assigned lists.
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The theorem gives a slightly better bound on χs in terms of the maximum degree.

Corollary 3.4. χs(G) ≤ ∆(∆− 1) + 2. Equality can occur only if some component of G
is ∆-regular.

Proof. We may assume that G is connected, and that T is a spanning tree in G. If G has
a vertex v of degree less than ∆, then orient all edges in T towards v and extend this to
an acyclic orientation in the natural way. The result now follows from Theorem 3.3.

If G is ∆-regular, then remove one vertex w, color the remaining graph using ∆(∆ −
1) + 1 colors and assign a new color to w.

Although the bound in Corollary 3.4 is sharp (for example, for C5), it is not asymp-
totically optimal: Fertin, Raspaud and Reed [8] claim to have a proof along the lines
of Alon, McDiarmid and Reed [4] that O(∆3/2) colors are sufficient and Ω(∆3/2/ log ∆)
colors may be necessary in a star coloring of a graph of maximum degree ∆.

For cubic graphs Corollary 3.4 yields a bound of 8; however this can be improved to
7 by the following theorem. Note that the Möbius ladder M8 obtained by adding edges
between antipodal vertices of an 8-cycle has χs(M8) = 6.

Theorem 3.5. If G has maximum degree at most 3, then G can be star colored from lists
of size 7.

Proof. We will prove by induction on n that some orientation of G can always be in-
colored from lists of size 7. If G is small we may color each vertex with its own color. We
may assume that G is connected, else the components may be colored separately. If G is
not cubic, then we remove a vertex, say x, of degree less than three and inductively color
the smaller graph. Since x has at most six vertices in its first and second neighborhoods,
we may color it with a different color and orient its incident edges towards x.

Thus we assume G is connected and cubic. Suppose that C is a minimal cycle in G,
given by C =< u1, u2, . . . , ut >. Let G′ = G − C. For 1 ≤ j ≤ t, let vj denote the
neighbor of uj in G′. Let c be an in-coloring of G′.

Orient all the edges between G′ and C so that they are directed into C, and orient
the edges on C so that they point from the smaller index to the larger index, except for
edge u4u3, which is oriented in the opposite direction in the case when t ≥ 4. Thus C has
sinks at u3 and ut (if t ≥ 5) and sources at u1 and u4 (if t ≥ 5). We will now extend c
to obtain an in-coloring of this orientation of G. This can be easily done when t = 3 by
coloring the vertices in decreasing order: u3, u2, u1 (in fact, each vertex only has to avoid
the colors of 5 vertices from its first and second neighborhoods).

For t ≥ 4 we color the vertices in decreasing order, except that we color u3 before u4:
ut, ut−1, . . . , u5, u3, u4, u2, u1. At each step, we claim that we can choose a color from the
list of the vertex we are coloring to ensure that every 2-colored P3 points towards the
center vertex.

Each ui loses potentially three colors from its list because of its neighbor vi in G′ and
because of vi’s two other neighbors. So we may assume that the lists are of size 4 and we
need to consider P3’s that are formed using at least two vertices on C.
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To color ut, we need only avoid the colors appearing on vt−1 and v1 since utut−1vt−1

and utu1v1 are not in-P3’s. This leaves us a choice of 2 colors for ut. To color ut−1, we
must avoid the color given to ut in addition to the color of vt−2, however we need not
consider the color of vt since ut−1utvt is an in-P3. When we need to choose a color for ui

(for i between t − 2 and 5), we must avoid the color on ui+1, ui+2 and vi−1. Note that
we need not consider the colors on ui−1 and vi+1 since ui−1 has not been colored yet, and
uiui+1vi+1 is an in-P3. Since the list has size 7, there is a color remaining.

When we choose a color for u3, both its neighbors on C are uncolored. Our choices
are thus constrained by the colors on v4, v2 and u5. Again, there is a color remaining in
the list. For u4 now, the colors on u5 and u3 are both excluded, but u4u5v5 and u4u3v3

are in-P3’s, so the only other color that is potentially lost is the one of u6.
In the penultimate step we choose a color on u2 that is not the color on u3 or ut or

v1. Note that u2u3u4 and u2u3v3 are in-P3’s. Finally to color u1, we observe that every
relevant P3 which ends in u1, except for u1u2u3, is an in-P3. Hence at most 3 colors are
excluded from the list: those of u2, u3 and ut. Since there is a color remaining in the list,
the coloring can be completed.

4 Refining acyclic colorings

Recall that an acyclic coloring of a graph is a proper coloring with no 2-colored cycles. In
his paper introducing acyclic colorings Grünbaum showed that planar graphs are acycli-
cally 9-colorable [10]. There was a brief flurry of activity [14, 1, 12, 13, 2] culminating in
Borodin’s substantial accomplishment that planar graphs are acyclically 5-colorable [5].
Already in his paper, Grünbaum noted (without proof) that bounding the acyclic chro-
matic number bounds the star chromatic number. We state the result, a proof of which
was given by Fertin, Raspaud and Reed [8].

Theorem 4.1. a(G) ≤ χs(G) ≤ a(G)2a(G)−1.

For planar graphs, this gives a bound of 80 on the star chromatic number. Nes̆etr̆il and
Ossona de Mendez [15] improved this to 30 by using an argument similar to our notion of
in-coloring. To improve the bound further, we refine acyclic colorings to exploit the local
structure.

Definition 4.2. Let F be a star forest in G with bipartition X, Y such that X consists of
all centers in F . The F-reduction of G is obtained by considering the bipartite subgraph
induced by the X, Y -cut in G, contracting all edges in F and removing any loops or
multiple edges formed.

Note that the graph induced by the X, Y -cut contains F as a (usually proper) sub-
graph, so the F -reduction is well defined and X can be viewed as its vertex set. We
illustrate this with an example in which vertices in X are denoted by ⊗ and those in Y
by •. Edges not in the cut are denoted by dotted lines and edges in F with double lines.
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Figure 1: Graph and F -reduction

Theorem 4.3. If every F -reduction of G is k-colorable, then every acyclic r-coloring of
G can be refined to a star coloring of G with at most rk colors.

Proof. Consider an acyclic coloring of G with r colors, i.e., every pair of color classes
induces a forest. We will orient G according to the coloring: in each component of the
forest induced by two color classes, pick a root and orient the edges towards this root.
Observe that in every 2-colored P3 of this coloring at least one edge is directed towards
the middle vertex. We will now refine this coloring to obtain an in-coloring. Consider the
i-th color class Xi in the acyclic coloring. Let Fi be the subgraph of G that consists of all
edges that point into Xi. By the observation above Fi is a star forest. By hypothesis, the
Fi-reduction of G is k-colorable, and we refine the colors on the vertices in Xi accordingly.
This results in a coloring of G with rk colors. This coloring must be an in-coloring, since
two vertices in Xi are connected by a directed P3 precisely if they are adjacent in the
Fi-reduction of G.

Theorem 4.3 allows us to improve the current bound of 30 given by Nes̆etr̆il and Ossona
de Mendez [15] for the star chromatic number for planar graphs.

Corollary 4.4. If G is planar, then χs(G) ≤ 20.

Proof. Planar graphs are 4-colorable, acyclically 5-colorable, and closed under taking
minors (and thus, F -reductions). It follows that χs(G) ≤ a(G)k ≤ 5 · 4 = 20.

Using other results from acyclic coloring, we also improve bounds on the star chromatic
number for planar graphs of girth at least 5 and 7 mentioned in [6].

Corollary 4.5. If G is a planar graph of girth at least 7, then χs(G) ≤ 9. If G is a
planar graph of girth at least 5, then χs(G) ≤ 16.

Proof. Borodin, Kostochka and Woodall [6] have shown that if the girth of a planar graph
is at least 7, then a(G) ≤ 3. Furthermore every F -reduction of a graph of girth g has girth
at least g/2. Thus every F -reduction of G is planar and triangle-free and consequently
3-colorable by Grötzsch’s theorem [9]. If the girth of G is at least 5, then a(G) ≤ 4 (again,
see [6]), so the second bound follows from the Four Color Theorem.
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Closer examination of the coloring in Theorem 4.3 also leads to an improvement of
the bound in Theorem 4.1.

Corollary 4.6. For any graph G, χs(G) ≤ a(G)(2a(G) − 1).

Proof. In the orientation of G produced in the proof of Theorem 4.3, a vertex in Xi has
outdegree at most a(G)− 1, hence the Fi-reduction of G has maximum degree 2a(G)− 2
and is thus (2a(G) − 1)-colorable.

We show in Section 6 that this bound is optimal up to a factor of about 4.

Remark 4.7. Theorem 4.3 can be strengthened by replacing acyclic coloring by the slightly
weaker notion of a weakly acyclic coloring defined in [11]. A weakly acyclic coloring is a
proper coloring such that every connected 2-colored set of vertices contains at most one
cycle (as opposed to none). In other words it is an F-free coloring, where F is the family
of all connected bipartite graphs with more edges than vertices. The proof is identical,
except that in a unicyclic 2-colored component the cycle is oriented cyclically and all other
edges are oriented towards the cycle.

5 Graphs on higher surfaces

How low can we push χs if we allow for a sufficiently high girth? Since there are graphs of
arbitrarily high girth and high chromatic number we obviously need additional constraints,
such as an embedding on a surface. The following lemma is part of the folklore.

Lemma 5.1. For every surface S there is a girth γ such that the vertex set of every graph
of girth at least γ embedded in S can be partitioned into a forest and an independent set
I such that the distance (in G) between any two vertices in I is at least 3.

Corollary 5.2. For every surface S there is a constant γ such that every graph G of girth
at least γ embedded in S has χs(G) ≤ 4.

Proof. Star color the forest with 3 colors (see, e.g., Theorem 6.1) and use the fourth color
on the independent set.

The following example shows that this result is best possible.

Example 5.3. Consider the planar graph G obtained by adding a pendant vertex to
every vertex of a cycle on n vertices, Cn, where n is not divisible by 3. We show that
χs(G) = 4. To obtain such a 4-coloring, orient the cycle cyclically and in-color it with 4
colors. Then orient the remaining edges towards the cycle and color the pendant vertices
with the color of the predecessor of their neighbor on the cycle.

Now assume that there was a 3-in-coloring of G. Since n is not divisible by 3 the
cycle cannot be cyclically oriented, since this would force it to be colored cyclically
(1, 2, 3, 1, 2, . . . ). Thus some vertex v on the cycle has outdegree 2. We may assume
that v has color 1 and its neighbors on the cycle have colors 2 and 3. But then no matter
what the color of the vertex pendant to v is we get a 2-colored P3 with center vertex v of
outdegree at least 1.
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Our next result bounds χs for embedded graphs. For ease of exposition we state and
prove the theorem for orientable surfaces.

Theorem 5.4. If G is embedded on a surface of genus g, then χs(G) ≤ 20 + 5g.

Proof. The proof uses induction on g; the base case is given by Corollary 4.4. For the
inductive step consider a graph embedded on a surface of genus g+1. Let C be a shortest
non-contractible cycle in G. Now G − C consists of one graph (or perhaps two graphs)
which can be embedded in a surface of genus g (or perhaps two such surfaces). By the
inductive hypothesis G−C can be star colored with 20+5g colors. Next color the square
of C, C2, using at most 5 new colors (Proposition 2.2). We claim that these colorings
combine to form a star coloring of G. A potential 2-colored P4 must contain two vertices
from C, say u and w with the same color. Now the vertex v between u, w on P4 is not in
C, but since u, w are at distance at least 3 on C the path uvw together with one of the
u, w-segments of C yields a shorter non-contractible cycle.

We suspect that the bound in the preceding theorem is far from tight. It is, however,
superior to the bound we get from Theorem 4.3. Suppose G is embedded on a surface
of genus g. Alon, Mohar, and Sanders [3] have shown that a(G) = O(g4/7) and this is
nearly best possible since there are graphs with a(G) = Ω(g4/7/ log1/7 g). Together with
Heawood’s bound χ(G) = O(g1/2) this only yields a bound of O(g15/14) for χs.

6 Tree-Width and a construction

In this section, we use the tree-width of a graph to bound χs. The tree-width of a graph
is a measure of how tree-like the graph is. Tree-width was introduced by Robertson
and Seymour and is a fundamental parameter both for the study of minors and the
development of algorithms. For an introduction to this topic see Diestel [7].

Fertin, Raspaud, and Reed [8] proved the following result for graphs with bounded
tree-width.

Theorem 6.1. If G has tree-width t, then G has a star coloring from lists of size
(

t+2
2

)
.

Their proof uses the structure of k-trees. We give a slightly simpler proof below, using
the notion of chordal graphs.

Definition 6.2. A graph without chordless (i.e., induced) cycles of length at least 4 is
called chordal. The clique number of a graph G, denoted by ω(G), is the order of a largest
complete subgraph of G.

It is well-known (see, e.g., [7, Cor 12.3.9]) that the tree-width of a graph G can be
expressed as

min{ω(H)− 1 : E(G) ⊂ E(H); H chordal}.
We also use that a chordal graph has a perfect elimination ordering v1, . . . , vn of its
vertices; for each vertex vi, its neighbors with index larger than i form a complete graph.
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Proof of Theorem 6.1. It suffices to prove that every chordal graph G with ω(G) = t has
a star coloring from lists of size

(
t+1
2

)
. Let v1, . . . , vn be a perfect elimination ordering of

G. Orient all edges to point from the earlier to the later vertex in this ordering. Now
color the vertices, from last to first, by choosing a color for every vertex that appears
neither in its first nor second out-neighborhood.

We first need to show that we have enough colors in every list. Let v be given. The
first out-neighborhood N = N+(v) has size at most t − 1, since {v} ∪ N forms a clique.
The vertices in N are linearly ordered, so that the first vertex can have at most one
out-neighbor outside of N , and so on. Altogether the first and second out-neighborhoods
contain at most (t − 1) + 1 + 2 + · · ·+ (t − 1) =

(
t+1
2

) − 1 vertices.
The coloring obtained is clearly proper, but it remains to be seen that the coloring is

an in-coloring. Let vivjvk be any P3 and assume i < k. If i < j < k, then vi receives a
color different from vk. If j < i < k, then it follows from the elimination ordering that
vi and vk are adjacent, and again receive different colors. Thus every 2-colored P3 is an
in-P3.

The next construction shows that Theorem 6.1 is best possible:

Theorem 6.3. There is a sequence of chordal graphs G1, G2, G3, . . . such that ω(Gt) = t
and χs(Gt) =

(
t+1
2

)
. Moreover, G3 is outerplanar and G4 is planar.

Proof. We give a recursive construction with base cases G1 = K1 and G2 = P4. Let t ≥ 3
and Gt−1 be a chordal graph with ω(Gt−1) = t − 1 and χs(Gt−1) =

(
t
2

)
. Let P be a

path with vertices denoted u1, . . . , un, for n = 2
(

t
2

)
+ 2. Make every ui adjacent to every

vertex of a clique with vertices v1, . . . , vt−2. Take n copies of Gt−1, say H1, . . . , Hn and
for 1 ≤ j ≤ n add edges joining uj with every vertex in Hj. Call the resulting graph Gt.
It is easy to check that Gt is chordal and has clique number t, so that χs(Gt) ≤ (

t+1
2

)
.

Furthermore, G3 is outerplanar and G4 is planar.
Suppose that c is a star coloring of Gt with at most

(
t+1
2

) − 1 colors and without loss
of generality every vi has color i. Call a vertex of P redundant if it has the same color
as another vertex of P . At most

(
t+1
2

) − 1 − (t − 2) = n/2 colors can appear on P , so
that there must be adjacent redundant vertices uj and uj+1 on P . We may assume that
c(uj) = t− 1 and c(uj+1) = t. Since uj and uj+1 are redundant, colors 1 through t− 2 are
not used on Hj and Hj+1. If some vertex in Hj were colored t and some vertex in Hj+1

were colored t−1, then there would be a 2-colored P4. Consequently we may assume that
neither t − 1 nor t appears as a color in Hj. Since χs(H) =

(
t
2

)
there must be at least

t +
(

t
2

)
=

(
t+1
2

)
colors used on Gt, a contradiction.

Observe that since Gt is chordal we obtain a(Gt) = χ(Gt) = ω(Gt) = t so that
Corollary 4.6 is optimal within a factor of 4.

Theorem 6.1 and 6.3 also imply the following result obtained in [8], since outerplanar
graphs have tree-width 2:

Corollary 6.4. If G is outerplanar, then χs(G) ≤ 6 and this is best-possible.

the electronic journal of combinatorics 11 (2004), #R26 10



Observe that G3 has 41 vertices, but we have a slightly more clever construction with
19 vertices. It is also worth pointing out that G4 is the planar graph with the highest
known star chromatic number.

Corollary 6.5. There is a planar graph G = G4 such that χs(G) = 10.

7 Complexity

Given a graph G, construct the gadget graph G(t) by replacing every edge uv of G with a
separate copy of K2,t in such a fashion that u and v are identified with the vertices in the
part of size 2. Note that G(t) is bipartite, and that every embedding of G in some surface
extends to an embedding of G(t) in a natural fashion.

Lemma 7.1. Let G be any graph, and t ≥ k ≥ 3. Then χ(G) ≤ k if and only if
χs(G(t)) ≤ k. Thus when k ≥ 4, equality holds in the first inequality if and only if it holds
in the second.

Proof. If there is a k-coloring of G, then it can be extended to a star coloring of G(t) on
k colors by giving every vertex in the larger partite set of a K2,t a color different from
that of its two (precolored) neighbors. Now suppose that G(t) has a star coloring with k
colors. We claim that if u, v are adjacent vertices in G, then they must get different colors
in G(t), so that the k-coloring of G(t) yields a k-coloring of G. Indeed, if the vertices in
the partite set of size 2 in K2,t have the same color, then the only way to extend this to
a star coloring is by giving all vertices in the set of size t a different color, resulting in at
least t + 1 > k different colors being used.

The proof can be adjusted to show that G can be colored from lists of size k if and
only if G(t) can be star colored from lists of size k. Thus we can easily build bipartite
graphs in which the star chromatic and star list chromatic number can differ arbitrarily
much.

A graph can be 2-colored such that no P4 is 2-colored if and only if it is a star-forest.
Lemma 7.1 shows that most other star coloring problems are NP -complete.

Theorem 7.2. The problem of deciding if a planar bipartite graph has a star coloring
with at most 3 colors is NP -complete.

Proof. The problem is clearly in NP . To show that it is NP -complete it will suffice
to reduce PLANAR-3-COLORABILITY to the problem. So let G be an instance of
PLANAR-3-COLORABILITY. Observe that G(3) can be constructed from G in polyno-
mial time, G(3) is planar and bipartite, and χs(G(3)) ≤ 3 if and only if χ(G) ≤ 3.

Corollary 7.3. Given a graph G, it is NP -complete to decide if χ(G) = χs(G) even if
G is a planar graph with χ(G) = 3.

Proof. Add a disjoint triangle to G(3) in the transformation above.
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Theorem 7.4. For 2 ≤ t ≤ k and k > 2, given a graph G with χ(G) = t, it is NP -
complete to decide if χs(G) ≤ k.

Proof. We know that k-COLORABILITY is NP -complete. But by Lemma 7.1 we also see
that k-COLORABILITY can be transformed into STAR k-COLORABILITY of bipartite
graphs (t = 2). To obtain the case for 3 ≤ t ≤ k simply add in a disjoint Kt.

8 Questions

We conclude with a number of questions.
1. What is the smallest integer r such that if G is planar, then χs(G) ≤ r? We know

that 10 ≤ r ≤ 20, but have no compelling reason to think that either of our bounds is
correct. We also do not know the best bound if we restrict the class of planar graphs to
those of girth, say 5.

2. Suppose G is planar. Nes̆etr̆il and Ossona de Mendez [15] have shown that if G
is bipartite, then χs(G) ≤ 18. Recently we have been able to improve this bound to 14.
Can this be improved further?

3. What is the smallest t such that if G is embedded on Sg, then χs(G) = O(gt)? We
know that 4/7 ≤ t ≤ 1 (see [3] and Theorem 5.4).

4. Suppose G is embedded on Sg. The width of G, denoted by w(G), is the length of
a shortest non-contractible cycle in G. If w(G) ≥ 100 · 2g, is χs(G) ≤ 25?
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