
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or direct commercial advantage and that copies show this notice on the first page or
initial screen of a display along with the full citation. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New
York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

Colorization using Optimization

Anat Levin Dani Lischinski Yair Weiss

School of Computer Science and Engineering
The Hebrew University of Jerusalem∗

Figure 1: Given a grayscale image marked with some color scribbles by the user (left), our algorithm produces a colorized image (middle).
For reference, the original color image is shown on the right.

Abstract

Colorization is a computer-assisted process of adding color to a
monochrome image or movie. The process typically involves seg-
menting images into regions and tracking these regions across im-
age sequences. Neither of these tasks can be performed reliably in
practice; consequently, colorization requires considerable user in-
tervention and remains a tedious, time-consuming, and expensive
task.

In this paper we present a simple colorization method that re-
quires neither precise image segmentation, nor accurate region
tracking. Our method is based on a simple premise: neighboring
pixels in space-time that have similar intensities should have similar
colors. We formalize this premise using a quadratic cost function
and obtain an optimization problem that can be solved efficiently
using standard techniques. In our approach an artist only needs to
annotate the image with a few color scribbles, and the indicated
colors are automatically propagated in both space and time to pro-
duce a fully colorized image or sequence. We demonstrate that high
quality colorizations of stills and movie clips may be obtained from
a relatively modest amount of user input.

CR Categories: I.4.9 [Image Processing and Computer Vision]:
Applications;

Keywords: colorization, recoloring, segmentation

1 Introduction

Colorization is a term introduced by Wilson Markle in 1970 to de-
scribe the computer-assisted process he invented for adding color

∗e-mail: {alevin,danix,yweiss}@cs.huji.ac.il

to black and white movies or TV programs [Burns]. The term is
now used generically to describe any technique for adding color to
monochrome stills and footage.

Colorization of classic motion pictures has generated much con-
troversy [Cooper 1991], which partially accounts for the fact that
not many of these movies have been colorized to date. However,
there are still massive amounts of black and white television shows
that could be colorized: the artistic controversy is often irrelevant
here, while the financial incentives are substantial, as was suc-
cinctly pointed out by Earl Glick1 in 1984: “You couldn’t make
Wyatt Earp today for $1 million an episode. But for $50,000 a seg-
ment, you can turn it into color and have a brand new series with
no residuals to pay” [Burns]. Colorization of still images also ap-
pears to be a topic of considerable interest among users of image
editing software, as evidenced by multiple colorization tutorials on
the World Wide Web.

A major difficulty with colorization, however, lies in the fact that
it is an expensive and time-consuming process. For example, in or-
der to colorize a still image an artist typically begins by segment-
ing the image into regions, and then proceeds to assign a color to
each region. Unfortunately, automatic segmentation algorithms of-
ten fail to correctly identify fuzzy or complex region boundaries,
such as the boundary between a subject’s hair and her face. Thus,
the artist is often left with the task of manually delineating compli-
cated boundaries between regions. Colorization of movies requires,
in addition, tracking regions across the frames of a shot. Exist-
ing tracking algorithms typically fail to robustly track non-rigid re-
gions, again requiring massive user intervention in the process.

In this paper we describe a new interactive colorization tech-
nique that requires neither precise manual segmentation, nor accu-
rate tracking. The technique is based on a unified framework appli-
cable to both still images and image sequences. The user indicates
how each region should be colored by scribbling the desired color in
the interior of the region, instead of tracing out its precise boundary.
Using these user supplied constraints our technique automatically
propagates colors to the remaining pixels in the image sequence.
This colorization process is demonstrated in Figure 1. The under-
lying algorithm is based on the simple premise that nearby pixels

1Chairman, Hal Roach Studios.

689

© 2004 ACM 0730-0301/04/0800-0689 $5.00

in space-time that have similar gray levels should also have similar
colors. This assumption leads to an optimization problem that can
be solved efficiently using standard techniques.

Our contribution, thus, is a new simple yet surprisingly effec-
tive interactive colorization technique that drastically reduces the
amount of input required from the user. In addition to coloriza-
tion of black and white images and movies, our technique is also
applicable to selective recoloring, an extremely useful operation in
digital photography and in special effects.

1.1 Previous work

In Markle’s original colorization process [Markle and Hunt 1987] a
color mask is manually painted for at least one reference frame in
a shot. Motion detection and tracking is then applied, allowing col-
ors to be automatically assigned to other frames in regions where
no motion occurs. Colors in the vicinity of moving edges are as-
signed using optical flow, which often requires manual fixing by
the operator.

Although not much is publicly known about the techniques used
in more contemporary colorization systems used in the industry,
there are indications [Silberg 1998] that these systems still rely
on defining regions and tracking them between the frames of a
shot. BlackMagic, a commercial software for colorizing still im-
ages [NeuralTek 2003], provides the user with useful brushes and
color palettes, but the segmentation task is left entirely to the user.

Welsh et al. [2002] describe a semi-automatic technique for col-
orizing a grayscale image by transferring color from a reference
color image. They examine the luminance values in the neighbor-
hood of each pixel in the target image and transfer the color from
pixels with matching neighborhoods in the reference image. This
technique works well on images where differently colored regions
give rise to distinct luminance clusters, or possess distinct textures.
In other cases, the user must direct the search for matching pix-
els by specifying swatches indicating corresponding regions in the
two images. While this technique has produced some impressive
results, note that the artistic control over the outcome is quite in-
direct: the artist must find reference images containing the desired
colors over regions with similar textures to those that she wishes to
colorize. It is also difficult to fine-tune the outcome selectively in
problematic areas. In contrast, in our technique the artist chooses
the colors directly, and is able to refine the results by scribbling
more color where necessary. Also, the technique of Welsh et al.
does not explicitly enforce spatial continuity of the colors, and in
some images it may assign vastly different colors to neighboring
pixels that have similar intensities.

2 Algorithm

We work in YUV color space, commonly used in video, where Y
is the monochromatic luminance channel, which we will refer to
simply as intensity, while U and V are the chrominance channels,
encoding the color [Jack 2001].

The algorithm is given as input an intensity volume Y (x,y, t) and
outputs two color volumes U(x,y, t) and V (x,y, t). To simplify nota-
tion we will use boldface letters (e.g. r,s) to denote (x,y, t) triplets.
Thus, Y (r) is the intensity of a particular pixel.

As mentioned in the introduction, we wish to impose the con-
straint that two neighboring pixels r,s should have similar colors if
their intensities are similar. Thus, we wish to minimize the differ-
ence between the color U(r) at pixel r and the weighted average of
the colors at neighboring pixels:

J(U) = ∑
r

(

U(r)− ∑
s∈N(r)

wrsU(s)

)2

(1)

where wrs is a weighting function that sums to one, large when Y (r)
is similar to Y (s), and small when the two intensities are different.
Similar weighting functions are used extensively in image segmen-
tation algorithms (e.g. [Shi and Malik 1997; Weiss 1999]), where
they are usually referred to as affinity functions.

We have experimented with two weighting functions. The sim-
plest one is commonly used by image segmentation algorithms and
is based on the squared difference between the two intensities:

wrs ∝ e−(Y (r)−Y (s))2/2σ 2
r (2)

A second weighting function is based on the normalized correlation
between the two intensities:

wrs ∝ 1+
1

σ2
r

(Y (r)−µr)(Y (s)−µr) (3)

where µr and σr are the mean and variance of the intensities in a
window around r.

The correlation affinity can also be derived from assuming a
local linear relation between color and intensity [Zomet and Pe-
leg 2002; Torralba and Freeman 2003]. Formally, it assumes that
the color at a pixel U(r) is a linear function of the intensity Y (r):
U(r) = aiY (r)+bi and the linear coefficients ai,bi are the same for
all pixels in a small neighborhood around r. This assumption can
be justified empirically [Zomet and Peleg 2002] and intuitively it
means that when the intensity is constant the color should be con-
stant, and when the intensity is an edge the color should also be
an edge (although the values on the two sides of the edge can be
any two numbers). While this model adds to the system a pair of
variables per each image window, a simple elimination of the ai,bi
variables yields an equation equivalent to equation 1 with a corre-
lation based affinity function.

The notation r ∈ N(s) denotes the fact that r and s are neighbor-
ing pixels. In a single frame, we define two pixels as neighbors if
their image locations are nearby. Between two successive frames,
we define two pixels as neighbors if their image locations, after ac-
counting for motion, are nearby. More formally, let vx(x,y),vy(x,y)
denote the optical flow calculated at time t. Then the pixel (x0,y0, t)
is a neighbor of pixel (x1,y1, t +1) if:

∥

∥(x0 + vx(x0),y0 + vy(y0))− (x1,y1)
∥

∥< T (4)

The flow field vx(x0),vy(y0) is calculated using a standard motion
estimation algorithm [Lucas and Kanade 1981]. Note that the opti-
cal flow is only used to define the neighborhood of each pixel, not
to propagate colors through time.

Now given a set of locations ri where the colors are specified
by the user u(ri) = ui,v(ri) = vi we minimize J(U),J(V) subject
to these constraints. Since the cost functions are quadratic and
the constraints are linear, this optimization problem yields a large,
sparse system of linear equations, which may be solved using a
number of standard methods.

Our algorithm is closely related to algorithms proposed for other
tasks in image processing. In image segmentation algorithms based
on normalized cuts [Shi and Malik 1997], one attempts to find the
second smallest eigenvector of the matrix D −W where W is a
npixels×npixels matrix whose elements are the pairwise affinities
between pixels (i.e., the r,s entry of the matrix is wrs) and D is a
diagonal matrix whose diagonal elements are the sum of the affini-
ties (in our case this is always 1). The second smallest eigenvector
of any symmetric matrix A is a unit norm vector x that minimizes
xTAx and is orthogonal to the first eigenvector. By direct inspec-
tion, the quadratic form minimized by normalized cuts is exactly
our cost function J, that is xT(D−W)x = J(x). Thus, our algorithm
minimizes the same cost function but under different constraints. In
image denoising algorithms based on anisotropic diffusion [Perona

690

and Malik 1989; Tang et al. 2001] one often minimizes a function
similar to equation 1, but the function is applied to the image inten-
sity as well.

3 Results

The results shown here were all obtained using the correlation based
window (equation 3, or equivalently using the local linearity as-
sumption). The mean and variance µ,σ for each pixel were calcu-
lated by giving more weight to pixels with similar intensities. Vi-
sually similar results were also obtained with the Gaussian window
(equation 2). For still images we used Matlab’s built in least squares
solver for sparse linear systems, and for the movie sequences we
used a multigrid solver [Press et al. 1992]. Using the multigrid
solver, the run time was approximately 15 seconds per frame. The
threshold T in equation 4 was set to 1 so that the window used was
3×3×3.

Figure 2 shows some still grayscale images marked by the user’s
color scribbles next to the corresponding colorization results. Since
automating the choice of colors was not our goal in this work, we
used the original color channels of each image when picking the
colors. As can be seen, very convincing results are generated by our
algorithm even from a relatively small number of color scribbles.

Typically, the artist may want to start with a small number of
color scribbles, and then fine-tune the colorization results by adding
more scribbles. Figure 3 demonstrates such a progression on a still
image.

Figure 4 shows how our technique can be applied to recoloring.
To change the color of an orange in the top left image to green,
the artist first defines a rough mask around it and then scribbles in-
side the orange using the desired color. Our technique is then used
to propagate the green color until an intensity boundary is found.
Specifically, we minimize the cost (equation 1) under two groups
of constraints. First, for pixels covered by the user’s scribbles, the
final color should be the color of the scribble. Second, for pixels
outside the mask, the color should be the same as the original color.
All other colors are automatically determined by the optimization
process. In this application the affinity between pixels is based not
only on similarity of their intensities, but also on the similarity of
their colors in the original image. Note that unlike global colormap
manipulations, our algorithm does not recolor the other orange in
the image, since colors are not propagated across intensity bound-
aries. The bottom row of the figure shows another example.

Figures 5 and 6 show selected frames from colorized movie
clips. Even though the total number of color scribbles is quite
modest, the resulting colorization is surprisingly convincing. We
have also successfully colorized several short clips from the televi-
sion show “I Love Lucy” and from Chaplin’s classic movie Modern
Times. The original clips were obviously in black and white, so in
these examples we did not have a color reference to pick the colors
from.

Figures 7 and 8 compare our method to two alternative meth-
ods. In figure 7 the alternative method is one where the image
is first segmented automatically and then the scribbled colors are
used to “flood fill” each segment. Figure 7a shows the result of
automatic segmentation computed using a version of the normal-
ized cuts algorithm [Shi and Malik 1997]. Segmentation is a very
difficult problem and even state-of-the-art methods may fail to auto-
matically delineate all the correct boundaries, such as the intricate
boundary between the hair and the forehead, or the low contrast
boundary between the lips and the face. Consequently, the coloriza-
tion achieved with this alternative method (figure 7b) is noticeably
worse than the one computed by our method (figure 7c). In both
cases, the same color scribbles were used. Distinctive colors were
deliberately chosen so that flaws in the colorization would be more
apparent.

Figure 8 compares our method for colorizing image sequences
to an alternative method where a single frame is colorized and then
optical flow tracking is used to propagate the colors across time.
Since our method uses optical flow only to define the local neigh-
borhood, it is much more robust to tracking failures.

In both cases, either using automatic segmentation or using
tracking to propagate colors across time, the results could be im-
proved using more sophisticated algorithms. In other words, if the
automatic segmentation had been perfect then flood filling segments
would have produced perfect results. Likewise, if dense optical flow
had been perfect then propagating colors from a single frame would
have also worked perfectly. Yet despite many years of research in
computer vision, state-of-the-art algorithms still do not work per-
fectly in an automatic fashion. An advantage of our optimization
framework is that we use segmentation cues and optical flow as
“hints” for the correct colorization but the colorization can be quite
good even when these hints are wrong.

4 Summary

Despite considerable progress in image processing since 1970, col-
orization remains a manually intensive and time consuming pro-
cess. In this paper, we have suggested a method that helps graphic
artists colorize films with less manual effort. In our framework,
the artist does not need to explicitly delineate the exact boundaries
of objects. Instead, the artist colors a small number of pixels in se-
lected frames and the algorithm propagates these colors in a manner
that respects intensity boundaries. We have shown that excellent
colorizations can be obtained with a surprisingly small amount of
user effort.

An attractive feature of phrasing colorization as an optimization
problem is that it clarifies the relationship between this problem and
other problems in image processing. Specifically, we have shown
that our algorithm minimizes the same cost function that is mini-
mized in state of the art segmentation algorithms but under different
constraints. In future work, we will build on this equivalence and
import advances in image segmentation (e.g. more sophisticated
affinity functions, faster optimization techniques) into the problem
of colorization. Additionally, we plan to explore alternative color
spaces and propagation schemes that treat hue and saturation dif-
ferently. We are optimistic that these additional improvements will
enable us to perform convincing colorizations with an even smaller
number of marked pixels.

Acknowledgments

We would like to thank Raanan Fattal for his help with our multigrid
solver. This work was supported in part by the Israel Science Foun-
dation founded by the Israel Academy of Sciences and Humanities
and by the Israeli Ministry of Science and Technology.

References

BURNS, G. Colorization. Museum of Broadcast Communications:
Encyclopedia of Television,
http://www.museum.tv/archives/etv/index.html.

COOPER, R. 1991. Colorization and moral rights: Should the
United States adopt unified protection for artists? Journalism
Quarterly (Urbana, Illinois), Autumn.

JACK, K. 2001. Video Demystified, 3rd edition ed. Elsevier Science
& Technology.

LUCAS, B., AND KANADE, T. 1981. An iterative image reg-
istration technique with an application to stereo vision. In
Proc. Int. Joint Conf. AI, 674–679.

691

Figure 2: Still image colorization examples. Top row: the input black-white image with scribbled colors. Bottom row: resulting color image.

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 3: Progressively improving a colorization. The artist begins with the scribbles shown in (a1), which yield the result in (a2). Note that
the table cloth gets the same pink color as the girl’s dress. Also, some color is bleeding from the cyan pacifier onto the wall behind it. By
adding color scribbles on the table cloth and on the wall (b1) these problems are eliminated (b2). Next, the artist decides to change the color
of the beads by sprinkling a few red pixels (c1), yielding the final result (c2). Note that it was not necessary to mark each and every bead.

692

(a) (b) (c)

Figure 4: Recoloring of still images. (a) the input image; (b) pixels marked in white are constrained to keep their original colors; (c) resulting
image.

(a) (b) (c)

Figure 5: Video clip colorization example. This 83-frame clip was colorized using 7 marked frames. (a) two of the marked frames; (b) two
colorized frames; (c) for comparison, the corresponding frames from the original clip, before color was removed. The input clip, the full set
of marked frames, and the resulting colorized clip are available on the ACM SIGGRAPH 2004 Full Conference DVD-ROM.

MARKLE, W., AND HUNT, B., 1987. Coloring a black and white
signal using motion detection. Canadian patent no. 1291260,
Dec.

NEURALTEK, 2003. BlackMagic photo colorization software, ver-
sion 2.8. http://www.timebrush.com/blackmagic.

PERONA, P., AND MALIK, J. 1989. Scale-space and edge detection
using anisotropic diffusion. IEEE Transactions on PAMI 8, 5,
565–593.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLAN-

NERY, B. 1992. Numerical Recipes in C: The art of scientific
computing. Cambridge University Press.

SHI, J., AND MALIK, J. 1997. Normalized cuts and image seg-
mentation. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 731–737.

SILBERG, J., 1998. The Pleasantville post production team
that focussed on the absence of color. Cinesite Press Arti-
cle, http://www.cinesite.com/core/press/articles/1998/10 00 98-
team.html.

693

(a) (b) (c) (d)

Figure 6: Another video colorization example. (a-b) two of the five marked frames; (c-d) two of the 43 colorized frames.

(a) (b) (c)

Figure 7: A comparison with automatic segmentation. For visualization purposes disctinctive colors were used. (a) Segmented image. (b)
Result of coloring each segment with a constant color. Segmenting fuzzy hair boundary is a difficult task for typical segmentation methods.
(c) Our result.

(a) (b)

Figure 8: A comparison with traditional flow-based tracking. Dense optical flow was computed on the grayscale images, and the color
channels from the first frame (colorized using our technique for stills) were warped accordingly. In this experiment, only the frame shown in
Figure 6a was marked. (a) Frame 13 from the colored clip, using our technique. (b) Flow-based colorization of the same frame: note the color
bleeding on the floor (around the left foot and between the right arm and the rug). While our technique also experiences some difficulties
when occluded areas appear, flow-based colorization diverges much earlier.

TANG, B., SAPIRO, G., AND CASSELES, V. 2001. Color image
enhancement via chromaticity diffusion. IEEE Transactions on
Image Processing 10, 5, 701–708.

TORRALBA, A., AND FREEMAN, W. T. 2003. Properties and ap-
plications of shape recipes. In IEEE Computer Vision and Pat-
tern Recognition (CVPR).

WEISS, Y. 1999. Segmentation using eigenvectors: A unifying

view. In Proceedings ICCV, 975–982.

WELSH, T., ASHIKHMIN, M., AND MUELLER, K. 2002. Trans-
ferring color to greyscale images. ACM Transactions on Graph-
ics 21, 3 (July), 277–280.

ZOMET, A., AND PELEG, S. 2002. Multi-sensor super resolu-
tion. In Proceedings of the IEEE Workshop on Applications of
Computer Vision.

694

