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Abstract

Recurrent neural networks (RNNs) have

achieved impressive results in a variety of lin-

guistic processing tasks, suggesting that they

can induce non-trivial properties of language.

We investigate here to what extent RNNs learn

to track abstract hierarchical syntactic struc-

ture. We test whether RNNs trained with a

generic language modeling objective in four

languages (Italian, English, Hebrew, Russian)

can predict long-distance number agreement

in various constructions. We include in our

evaluation nonsensical sentences where RNNs

cannot rely on semantic or lexical cues (“The

colorless green ideasideasideasideasideasideasideasideasideasideasideasideasideasideasideasideasideas I ate with the chair
sleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleep furiously”), and, for Italian, we com-

pare model performance to human intuitions.

Our language-model-trained RNNs make re-

liable predictions about long-distance agree-

ment, and do not lag much behind human

performance. We thus bring support to the

hypothesis that RNNs are not just shallow-

pattern extractors, but they also acquire deeper

grammatical competence.

1 Introduction

Recurrent neural networks (RNNs; Elman, 1990)

are general sequence processing devices that do

not explicitly encode the hierarchical structure

that is thought to be essential to natural language

(Everaert et al., 2015). Early work using ar-

tificial languages showed that they may never-

theless be able to approximate context-free lan-

guages (Elman, 1991). More recently, RNNs have

∗The work was conducted during the internship at Face-
book AI Research, Paris.

achieved impressive results in large-scale tasks

such as language modeling for speech recognition

and machine translation, and are by now standard

tools for sequential natural language tasks (e.g.,

Mikolov et al., 2010; Graves, 2012; Wu et al.,

2016). This suggests that RNNs may learn to track

grammatical structure even when trained on nois-

ier natural data. The conjecture is supported by the

success of RNNs as feature extractors for syntac-

tic parsing (e.g., Cross and Huang, 2016; Kiper-

wasser and Goldberg, 2016; Zhang et al., 2017).

Linzen et al. (2016) directly evaluated the ex-

tent to which RNNs can approximate hierarchi-

cal structure in corpus-extracted natural language

data. They tested whether RNNs can learn to

predict English subject-verb agreement, a task

thought to require hierarchical structure in the gen-

eral case (“the girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl the boys like. . . isisisisisisisisisisisisisisisisis or areareareareareareareareareareareareareareareareare?”).

Their experiments confirmed that RNNs can, in

principle, handle such constructions. However, in

their study RNNs could only succeed when pro-

vided with explicit supervision on the target task.

Linzen and colleagues argued that the unsuper-

vised language modeling objective is not sufficient

for RNNs to induce the syntactic knowledge nec-

essary to cope with long-distance agreement.

The current paper reevaluates these conclu-

sions. We strengthen the evaluation paradigm of

Linzen and colleagues in several ways. Most im-

portantly, their analysis did not rule out the pos-

sibility that RNNs might be relying on seman-

tic or collocational/frequency-based information,

rather than purely on syntactic structure. In “dogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogs

in the neighbourhood often barkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbark”, an RNN might

get the right agreement by encoding information
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about what typically barks (dogs, not neighbour-

hoods), without relying on more abstract structural

cues. In a follow-up study to Linzen and col-

leagues’, Bernardy and Lappin (2017) observed

that RNNs are better at long-distance agreement

when they construct rich lexical representations of

words, which suggests effects of this sort might

indeed be at play.

We introduce a method to probe the syntactic

abilities of RNNs that abstracts away from po-

tential lexical, semantic and frequency-based con-

founds. Inspired by Chomsky’s (1957) insight that

“grammaticalness cannot be identified with mean-

ingfulness” (p. 106), we test long-distance agree-

ment both in standard corpus-extracted examples

and in comparable nonce sentences that are gram-

matical but completely meaningless, e.g., (para-

phrasing Chomsky): “The colorless green ideasideasideasideasideasideasideasideasideasideasideasideasideasideasideasideasideas I

ate with the chair sleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleep furiously”.

We extend the previous work in three addi-

tional ways. First, alongside English, which has

few morphological cues to agreement, we examine

Italian, Hebrew and Russian, which have richer

morphological systems. Second, we go beyond

subject-verb agreement and develop an automated

method to harvest a variety of long-distance num-

ber agreement constructions from treebanks. Fi-

nally, for Italian, we collect human judgments for

the tested sentences, providing an important com-

parison point for RNN performance.1

We focus on the more interesting unsupervised

setup, where RNNs are trained to perform generic,

large-scale language modeling (LM): they are not

given explicit evidence, at training time, that they

must focus on long-distance agreement, but they

are rather required to track a multitude of cues that

might help with word prediction in general.

Our results are encouraging. RNNs trained

with a LM objective solve the long-distance agree-

ment problem well, even on nonce sentences. The

pattern is consistent across languages, and, cru-

cially, not far from human performance in Ital-

ian. Moreover, RNN performance on language

modeling (measured in terms of perplexity) is a

good predictor of long-distance agreement accu-

racy. This suggests that the ability to capture

structural generalizations is an important aspect of

what makes the best RNN architectures so good

1The code to reproduce our experiments and the data
used for training and evaluation, including the human judg-
ments in Italian, can be found at https://github.com/
facebookresearch/colorlessgreenRNNs.

at language modeling. Since our positive results

contradict, to some extent, those of Linzen et al.

(2016), we also replicate their relevant experi-

ment using our best RNN (an LSTM). We outper-

form their models, suggesting that a careful archi-

tecture/hyperparameter search is crucial to obtain

RNNs that are not only good at language model-

ing, but able to extract syntactic generalizations.

2 Constructing a long-distance

agreement benchmark

Overview. We construct our number agreement

test sets as follows. Original sentences are auto-

matically extracted from a dependency treebank.

They are then converted into nonce sentences by

substituting all content words with random words

with the same morphology, resulting in grammat-

ical but nonsensical sequences. An LM is evalu-

ated on its predictions for the target (second) word

in the dependency, in both the original and nonce

sentences.

Long-distance agreement constructions.

Agreement relations, such as subject-verb agree-

ment in English, are an ideal test bed for the

syntactic abilities of LMs, because the form of

the second item (the target) is predictable from

the first item (the cue). Crucially, the cue and

the target are linked by a structural relation,

where linear order in the word sequence does

not matter (Everaert et al., 2015). Consider the

following subject-verb agreement examples: “the

girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”, “the girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl [you met] thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”, “the

girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl [you met yesterday] thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”, “the girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl [you

met yesterday through her friends] thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”.

In all these cases, the number of the main verb

“thinks” is determined by its subject (“girl”), and

this relation depends on the syntactic structure of

the sentence, not on the linear sequence of words.

As the last sentence shows, the word directly

preceding the verb can even be a noun with the

opposite number (“friends”), but this does not

influence the structurally-determined form of the

verb.

When the cue and the target are adjacent (“the

girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”), an LM can predict the target with-

out access to syntactic structure: it can simply

extract the relevant morphosyntactic features of

words (e.g., number) and record the co-occurrence

frequencies of patterns such as NP lur VP lur

(Mikolov et al., 2013). Thus, we focus here on

long-distance agreement, where an arbitrary num-

https://github.com/facebookresearch/colorlessgreenRNNs
https://github.com/facebookresearch/colorlessgreenRNNs


(a)

NOUN VERB ADV VERB

the girl the boys like often goes

cue context target

acl

nsubj

advmod

(b)

ADJ NOUN NOUN

самая глубокая на тот момент отметка

most deep at that moment sign

cue context target

nmod

amod

(c)

VERB NOUN CCONJ VERB

prometteva interessi del 50% al mese sui soldi versati nella sua piramide e continuava

promised interests of 50% by month on-the money put in his pyramid and continued

cue context target

obj cc

conj

Figure 1: Example agreement constructions defined by a dependency and the separating context, in (a) En-

glish, (b) Russian and (c) Italian.

ber of words can occur between the elements of

the agreement relation. We limit ourselves to num-

ber agreement (plural or singular), as it is the only

overt agreement feature shared by all of the lan-

guages we study.

Identifying candidate constructions. We

started by collecting pairs of part-of-speech

(POS) tags connected by a dependency arc.

Independently of which element is the head of the

relation, we refer to the first item as the cue and

to the second as the target. We additionally refer

to the POS sequence characterizing the entire

pattern as a construction, and to the elements in

the middle as context.

For each candidate construction, we collected

all of the contexts in the corpus that intervene be-

tween the cue and the target (we define contexts as

the sequence of POS tags of the top-level nodes

in the dependency subtrees). For example, for

the English subject-verb agreement construction

shown in Fig. 1a, the context is defined by VERB

(head of the relative clause) and ADV (adverbial

modifier of the target verb), which together dom-

inate the sequence “the boys like often”. For the

Russian adjective-noun agreement construction in

Fig. 1b, the context is NOUN, because in the de-

pendency grammar we use the noun “moment” is

the head of the prepositional phrase “at that mo-

ment”, which modifies the adjective “deep”. The

candidate agreement pair and the context form a

construction, which is characterized by a sequence

of POS tags, e.g., NOUN VERB ADV VERB or

VERB NOUN CCONJ VERB (Fig. 1c).

Our constructions do not necessarily correspond

to standard syntactic structures. The English

subject-verb agreement construction NOUN VERB

VERB, for example, matches both object and sub-

ject relative clause contexts, e.g., “girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl the boys

like isisisisisisisisisisisisisisisisis” and “girlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirls who stayed at home werewerewerewerewerewerewerewerewerewerewerewerewerewerewerewerewere”.

Conversely, standard syntactic structures might be

split between different constructions, e.g., rela-

tive clause contexts occur in both NOUN VERB

VERB and NOUN VERB ADV VERB constructions

(the latter is illustrated by the English example in

Fig. 1a).

Construction contexts can contain a variable

numbers of words. Since we are interested in chal-

lenging cases, we only considered cases in which

at least three tokens intervened between the cue

and the target.

Excluding non-agreement constructions. In

the next step, we excluded constructions in which

the candidate cue and target did not agree in num-

ber in all of the instances of the construction in

the treebank (if both the cue and the target were

morphologically annotated for number). This step

retained English subject-verb constructions, for

example, but excluded verb-object constructions,

since any form of a verb can appear both with sin-

gular and plural objects. To focus on robust agree-

ment patterns, we only kept constructions with

at least 10 instances of both plural and singular

agreement.

When applied to the treebanks we used (see

Section 3), this step resulted in between two (En-

glish) and 21 (Russian) constructions per lan-



guage. English has the poorest morphology and

consequently the lowest number of patterns with

identifiable morphological agreement. Only the

VP-conjunction construction (Fig. 1c) was identi-

fied in all four languages. Subject-verb agreement

constructions were extracted in all languages but

Russian; Russian has relatively flexible word order

and a noun dependent preceding a head verb is not

necessarily its subject. The full list of extracted

constructions in English and Italian is given in Ta-

bles 2 and 3, respectively. For the other languages,

see the Supplementary Material (SM).2

Original sentence test set. Our “original” sen-

tence test set included all sentences from each con-

struction where all words from the cue and up to

and including the target occurred in the LM vo-

cabulary (Section 3), and where the singular/plural

counterpart of the target occurred in the treebank

and in the language model vocabulary (this is re-

quired by the evaluation procedure outlined be-

low). The total counts of constructions and orig-

inal sentences in our test sets are provided in Ta-

ble 1. The average number of context words sepa-

rating the cue and the target ranged from 3.6 (He-

brew) to 4.5 (Italian).

Generating nonce sentences. We generated

nine nonce variants of each original sentence as

follows. Each content word (noun, verb, adjec-

tive, proper noun, numeral, adverb) in the sentence

was substituted by another random content word

from the treebank with matching POS and mor-

phological features. To avoid forms that are am-

biguous between several POS, which are particu-

larly frequent in English (e.g., plural noun and sin-

gular verb forms), we excluded the forms that ap-

peared with a different POS more than 10% of the

time in the treebank. Function words (determin-

ers, pronouns, adpositions, particles) and punctu-

ation were left intact. For example, we generated

the nonce (1b) from the original sentence (1a):

(1) a. It presentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresents the case for marriage

equality and statesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstates. . .

b. It staysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstays the shuttle for honesty insur-

ance and findsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfinds. . .

Note that our generation procedure is based on

morphological features and does not guarantee

that argument structure constraints are respected

2The SM is available as a standalone file on the project’s
public repository.

(e.g., “it stays the shuttle” in (1b)).

Evaluation procedure. For each sentence in our

test set, we retrieved from our treebank the form

that is identical to the agreement target in all mor-

phological features except number (e.g., “finds”

instead of “find” in (1b)). Given a sentence with

prefix p up to and excluding the target, we then

compute the probabilities P (t1|p) and P (t2|p) for

the singular and plural variants of the target, t1
and t2, based on the language model. Follow-

ing Linzen et al. (2016), we say that the model

identified the correct target if it assigned a higher

probability to the form with the correct number.

In (1b), for example, the model should assign a

higher probability to “finds” than “find”.3

3 Experimental setup

Treebanks. We extracted our test sets from the

Italian, English, Hebrew and Russian Universal

Dependency treebanks (UD, v2.0, Nivre et al.,

2016). The English and Hebrew treebanks were

post-processed to obtain a richer morphological

annotation at the word level (see SM for details).

LM training data. Training data for Italian, En-

glish and Russian were extracted from the respec-

tive Wikipedias. We downloaded recent dumps,

extracted the raw text from them using WikiEx-

tractor4 and tokenized it with TreeTagger (Schmid,

1995). We also used the TreeTagger lemma anno-

tation to filter out sentences with more than 5%

unknown words. For Hebrew, we used the prepro-

cessed Wikipedia corpus made available by Yoav

Goldberg.5 We extracted 90M token subsets for

each language, shuffled them by sentence and split

them into training and validation sets (8-to-1 pro-

portion). For LM training, we included the 50K

most frequent words in each corpus in the vocab-

ulary, replacing the other tokens with the UNK

symbol. The validation set perplexity values we

report below exclude unknown tokens.

RNN language models. We experimented with

simple RNNs (sRNNs, Elman, 1990), and their

most successful variant, long-short term mem-

ory models (LSTMs, Hochreiter and Schmidhu-

3Obviously, in the nonce cases, the LMs never assigned
the highest overall probability to either of the two candidates.
Qualitatively, in such cases LMs assigned the largest absolute
probabilities to plausible frequent words.

4https://github.com/attardi/

wikiextractor
5http://u.cs.biu.ac.il/˜yogo/hebwiki/

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
http://u.cs.biu.ac.il/~yogo/hebwiki/


ber, 1997). We use the PyTorch RNN implemen-

tation.6 We trained the models with two hidden

layer dimensionalities (650 and 200 units), and a

range of batch sizes, learning rates and dropout

rates. See SM for details on hyperparameter tun-

ing. In general, a larger hidden layer size was the

best predictor of lower perplexity. Given that our

LSTMs outperformed our sRNNs, our discussion

of the results will focus on the former; we will use

the terms LSTM and RNN interchangeably.7

Baselines. We consider three baselines: first, a

unigram baseline, which picks the most frequent

form in the training corpus out of the two candi-

date target forms (singular or plural); second, a

5-gram model with Kneser-Ney smoothing (KN,

Kneser and Ney, 1995) trained using the IRSTLM

package (Federico et al., 2008) and queried us-

ing KenLM (Heafield, 2011); and third, a 5-gram

LSTM, which only had access to windows of five

tokens (Chelba et al., 2017). Compared to KN,

the 5-gram LSTM can generalize to unseen n-

grams thanks to its embedding layer and recurrent

connections. However, it cannot discover long-

distance dependency patterns that span more than

five words. See SM for details on the hyperparam-

eters of this baseline.

Human experiment in Italian. We presented

the full Italian test set (119 original and 1071

nonce sentences) to human subjects through the

Amazon Mechanical Turk interface.8 We picked

Italian because, being morphologically richer, it

features more varied long-distance constructions

than English. Subjects were requested to be native

Italian speakers. They were presented with a sen-

tence up to and excluding the target. The singular

and plural forms of the target were presented be-

low the sentence (in random order), and subjects

were asked to select the more plausible form.

To prevent long-distance agreement patterns

from being too salient, we mixed the test set with

the same number of filler sentences. We started

from original fillers, which were random treebank-

extracted sentences up to a content word in singu-

lar or plural form. We then generated nonce fillers

from the original ones using the procedure out-

lined in Section 2. A control subset of 688 fillers

was manually selected by a linguistically-trained

6https://github.com/pytorch/examples/

tree/master/word_language_model
7Detailed results for sRNNs can be found in the SM.
8https://www.mturk.com/

IT EN HE RU

#constructions 8 2 18 21

#original 119 41 373 442

Unigram

Original 54.6 65.9 67.8 60.2

Nonce 54.1 42.5 63.1 54.0

5-gram KN

Original 63.9 63.4 72.1 73.5

Nonce 52.8 43.4 61.7 56.8

Perplexity 147.8 168.9 122.0 166.6

5-gram LSTM

Original 81.8 70.2 90.9 91.5
±3.2 ±5.8 ±1.2 ±0.4

Nonce 78.0 58.2 77.5 85.7
±1.3 ±2.1 ±0.8 ±0.7

Perplexity 62.6 71.6 59.9 61.1
±0.2 ±0.3 ±0.2 ±0.4

LSTM

Original 92.1 81.0 94.7 96.1
±1.6 ±2.0 ±0.4 ±0.7

Nonce 85.5 74.1 80.8 88.8
±0.7 ±1.6 ±0.8 ±0.9

Perplexity 45.2 52.1 42.5 48.9
±0.3 ±0.3 ±0.2 ±0.6

Table 1: Experimental results for all languages av-

eraged across the five best models in terms of per-

plexity on the validation set. Original/Nonce rows

report percentage accuracy, and the numbers in

small print represent standard deviation within the

five best models.

Italian native speaker as unambiguous cases. To

make sure we were only using data from native (or

at least highly proficient) Italian speakers, we fil-

tered out the responses of subjects who chose the

wrong target in more than 20% of the fillers.

We collected on average 9.5 judgments for each

item (minimum 5 judgments). To account for the

variable number of judgments across sentences,

accuracy rates were first calculated within each

sentence and then averaged across sentences.

4 Results

The overall results are reported in Table 1. We re-

port results averaged across the five models with

the lowest validation perplexity, as well as stan-

dard deviations across these models. In summary,

https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
https://www.mturk.com/


N V V V NP conj V

Italian Original 93.3±4.1 83.3±10.4

Nonce 92.5±2.1 78.5±1.7

English Original 89.6±3.6 67.5±5.2

Nonce 68.7±0.9 82.5±4.8

Hebrew Original 86.7±9.3 83.3±5.9

Nonce 65.7±4.1 83.1±2.8

Russian Original - 95.2±1.9

Nonce - 86.7±1.6

Table 2: LSTM accuracy in the constructions

N V V (subject-verb agreement with an interven-

ing embedded clause) and V NP conj V (agree-

ment between conjoined verbs separated by a

complement of the first verb).

the LSTM clearly outperformed the other LMs.

Rather surprisingly, its performance on nonce sen-

tences was only moderately lower than on original

ones; in Italian this gap was only 6.6%.

The KN LM performed poorly; its accuracy on

nonce sentences was comparable to that of the un-

igram baseline. This confirms that the number of

the target in nonce sentences cannot be captured

by shallow n-gram patterns. The 5-gram LSTM

model greatly improved over the KN baseline; its

accuracy dropped only modestly between the orig-

inal and nonce sentences, demonstrating its syn-

tactic generalization ability. Still, the results are

substantially below those of the LSTM with un-

limited history. This confirms that our test set

contains hard long-distance agreement dependen-

cies, and, more importantly, that the more general

LSTM model can exploit broader contexts to learn

about and track long-distance syntactic relations.

The increase in accuracy scores across the three

LMs (KN, 5-gram LSTM and unbounded-context

LSTM) correlates well with their validation per-

plexities in the language modeling task. We also

found a strong correlation between agreement ac-

curacy and validation perplexity across all the

LSTM variants we explored in the hyperparame-

ter search (68 models per language), with Pearson

correlation coefficients ranging from r = −0.55
in Hebrew to r = −0.78 in English (p < 0.001 in

all languages). This suggests that acquiring ab-

stract syntactic competence is a natural compo-

nent of the skills that improve the generic language

modeling performance of RNNs.

Differences across languages. English was by

far the hardest language. We conjecture that this is

due to its poorer morphology and higher POS am-

biguity, which might not encourage a generic lan-

guage model to track abstract syntactic configura-

tions. There is an alternative hypothesis, however.

We only extracted two constructions for English,

both of which can be argued to be linguistically

complex: subject-verb agreement with an inter-

vening embedded clause, and agreement between

two conjoined verbs with a nominal complement

intervening between the verbs. Yet the results on

these two constructions, comparable across lan-

guages (with the exception of the subject-verb

construction in Russian, which was not extracted),

confirm that English is particularly hard (Table 2).

A qualitative inspection suggests that the low ac-

curacy in the verb conjunction case (67.5%) is due

to ambiguous sentences such as “if you havehavehavehavehavehavehavehavehavehavehavehavehavehavehavehavehave any

questions or needneedneedneedneedneedneedneedneedneedneedneedneedneedneedneedneed/needsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneeds”, where the target can be

re-interpreted as a noun that is acceptable in the

relevant context.9

In languages such as Italian and Russian, which

have richer morphology and less ambiguity at

the part-of-speech level than English, the LSTMs

show much better accuracy and a smaller gap be-

tween original and nonce sentences. These re-

sults are in line with human experimental studies

that found that richer morphology correlates with

fewer agreement attraction errors (Lorimor et al.,

2008). The pattern of accuracy rates in general,

and the accuracy for the shared V NP conj V con-

struction in particular, are consistent with the find-

ing that Russian is less prone to human attraction

errors than Italian, which, in turn, shows less er-

rors than English.

The largest drop in accuracy between original

and nonce sentences occurred in Hebrew. A quali-

tative analysis of the data in this language suggests

that this might be due to the numerical prevalence

of a few constructions that can have multiple alter-

native readings, some of which can license the in-

correct number. We leave a more systematic anal-

ysis of this finding for future research.

Human results. To put our results in context

and provide a reasonable upper bound on the LM

performance, in particular for nonce sentences, we

next compare model performance to that of human

9The nonce condition has higher accuracy because our
substitution procedure in English tends to reduce POS am-
biguity.



Construction #original Original Nonce

Subjects LSTM Subjects LSTM

DET [AdjP] NOUN 14 98.7 98.6±3.2 98.1 91.7±0.4

NOUN [RelC / PartP] clitic VERB 6 93.1 100±0.0 95.4 97.8±0.8

NOUN [RelC / PartP ] VERB 27 97.0 93.3±4.1 92.3 92.5±2.1

ADJ [conjoined ADJs] ADJ 13 98.5 100±0.0 98.0 98.1±1.1

NOUN [AdjP] relpron VERB 10 95.9 98.0±4.5 89.5 84.0±3.3

NOUN [PP] ADVERB ADJ 13 91.5 98.5±3.4 79.4 76.9±1.4

NOUN [PP] VERB (participial) 18 87.1 77.8±3.9 73.4 71.1±3.3

VERB [NP] CONJ VERB 18 94.0 83.3±10.4 86.8 78.5±1.7

(Micro) average 94.5 92.1±1.6 88.4 85.5±0.7

Table 3: Subject and LSTM accuracy on the Italian test set, by construction and averaged.

subjects in Italian.

Table 3 reports the accuracy of the LSTMs and

the human subjects, grouped by construction.10

There was a consistent gap in human accuracy be-

tween original and nonce sentences (6.1% on av-

erage). The gap in accuracy between the human

subjects and the model was quite small, and was

similar for original and nonce sentences (2.4% and

2.9%, respectively).

In some of the harder constructions, particularly

subject-verb agreement with an embedded clause,

the accuracy of the LSTMs on nonce sentences

was comparable to human accuracy (92.5±2.1

vs. 92.3%). To test whether the human subjects

and the models struggle with the same sentences,

we computed for each sentence (1) the number of

times the human subjects selected the correct form

of the target minus the number of times they se-

lected the incorrect form, and (2) the difference in

model log probability between the correct and in-

correct form. The Spearman correlation between

these quantities was significant, for both original

(p < 0.05) and nonce sentences (p < 0.001). This

indicates that humans were more likely to select

the correct form in sentences in which the models

were more confident in a correct prediction.

Moreover, some of the easiest and hardest con-

structions are the same for the human subjects and

the models. In the easy constructions DET [AdjP]

10The SM contains the results for the other languages bro-
ken down by construction. Note that Table 3 reports lin-
guistically intuitive construction labels. The corresponding
POS patterns are (in same order as table rows): DET ADJ

NOUN, NOUN VERB PRON VERB, NOUN VERB VERB, ADJ

ADJ CCONJ ADJ, NOUN ADJ PUNCT PRON VERB, NOUN

NOUN ADV ADJ, NOUN NOUN VERB, VERB NOUN CCONJ

VERB.

NOUN
11 and ADJ [conjoined ADJs] ADJ, one or

more adjectives that intervene between the cue and

the target agree in number with the target, pro-

viding shorter-distance evidence about its correct

number. For example, in

(2) un
a

film
movie

inutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutile
useless

ma
but

almeno
at.least

festivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivo
festive

e
and

giovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanile
youthful

“A useless but at least festive and youthful

movie”

the adjective “festivo” is marked for singular num-

ber, offering a nearer reference for the target num-

ber than the cue “inutile”. At the other end, NOUN

[PP] VERB (participial) and NOUN [PP] ADVERB

ADJ are difficult. Particularly in the nonce con-

dition, where semantics is unhelpful or even mis-

leading, the target could easily be interpreted as a

modifier of the noun embedded in the preceding

prepositional phrase. For example, for the nonce

case:

(3) ortoortoortoortoortoortoortoortoortoortoortoortoortoortoortoortoorto
orchard

di
of

regolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamenti
rules

davvero
truly

pedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/i
pedestrian

“truly pedestrian orchard of rules”

both the subjects and the model preferred to treat

“pedestrian” as a modifier of “rules” (“orchard

of truly pedestrian rules”), resulting in the wrong

agreement given the intended syntactic structure.

Attractors. We define attractors as words with

the same POS as the cue but the opposite num-

ber, which intervene in the linear order of the sen-

11The relatively low nonce LSTM performance on this
construction is due to a few adjectives that could be re-
interpreted as nouns.
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Figure 2: Accuracy by number of attractors in Ital-

ian. Human performance is shown in red and

LSTM in blue (median model among top 5 ranked

by perplexity). Error bars show standard error.

tence between the cue and the target. Attractors

constitute an obvious challenge for agreement pro-

cessing (Bock and Miller, 1991). We show how

their presence affects human and model behavior

in Fig. 2. We limit our analysis to a maximum

of two attractors, since there were only two orig-

inal sentences in the test corpus with three attrac-

tors or more. Both model and human accuracies

degraded with the number of attractors; the drop

in accuracy was sharper in the nonce condition.

While the model performed somewhat worse than

humans, the overall pattern was comparable.

Our results suggest that the LSTM is quite ro-

bust to the presence of attractors, in contrast to

what was reported by Linzen et al. (2016). We di-

rectly compared our English LSTM LM to theirs

by predicting verb number on the Linzen et al.

(2016) test set. We extracted sentences where all

of the words between subject and verb were in our

LM vocabulary. Out of those sentences, we sam-

pled 2000 sentences with 0, 1 and 2 attractors and

kept all the sentences with 3 and 4 attractors (1329

and 347 sentences, respectively). To ensure that

our training set and Linzen’s test set do not over-

lap (both are based on Wikipedia texts), we filtered

out all of test sentences that appeared in our train-

ing data (187 sentences).

Fig. 3 compares our results to the results of

the best LM-trained model in Linzen et al. (2016)

(their “Google LM”).12 Not only did our LM

greatly outperform theirs, but it approached the

performance of their supervised model.13 This

12These subject-verb agreement results are in general
higher than for our own subject-verb agreement construction
(NOUN VERB VERB) because the latter always includes an
embedded clause, and it is therefore harder on average.

13Similarly high performance of LM-trained RNNs on
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Figure 3: Linzen’s attractor set. Our LM-trained

LSTM (blue; “median” model) compared to their

LSTM with explicit number supervision (green)

and their best LM-trained LSTM (red).

difference in results points to the importance of

careful tuning of LM-trained LSTMs, although we

must leave to a further study a more detailed un-

derstanding of which differences crucially deter-

mine our better performance.

5 Related work

Early work showed that RNNs can, to a cer-

tain degree, handle data generated by context-free

and even context-sensitive grammars (e.g., Elman,

1991, 1993; Rohde and Plaut, 1997; Christiansen

and Chater, 1999; Gers and Schmidhuber, 2001;

Cartling, 2008). These experiments were based on

small and controlled artificial languages, in which

complex hierarchical phenomena were often over-

represented compared to natural languages.

Our work, which is based on naturally oc-

curring data, is most closely related to that of

Linzen et al. (2016) and Bernardy and Lappin

(2017), which we discussed in the introduction.

Other recent work has focused on the morpholog-

ical and grammatical knowledge that RNN-based

machine-translation systems and sentence embed-

dings encode, typically by training classifiers to

decode various linguistic properties from hidden

states of the network (e.g., Adi et al., 2017; Be-

linkov et al., 2017; Shi et al., 2016), or looking at

whether the end-to-end system correctly translates

sentences with challenging constructions (Sen-

nrich, 2017).

Previous work in neurolinguistics and psy-

cholinguistics used jabberwocky, or pseudo-word,

sentences to probe how speakers process syntactic

information (Friederici et al., 2000; Moro et al.,

Linzen’s dataset was recently reported by Yogatama et al.
(2018).



2001; Johnson and Goldberg, 2013). Such sen-

tences are obtained by substituting original words

with morphologically and phonologically accept-

able nonce forms. We are not aware of work that

used nonce sentences made of real words to evalu-

ate the syntactic abilities of models or human sub-

jects. As a proof of concept, Pereira (2000) and,

later, Mikolov (2012) computed the probability of

Chomsky’s famous “colorless green ideas” sen-

tence using a class-based bigram LM and an RNN,

respectively, and showed that it is much higher

than the probability of its shuffled ungrammatical

variants.

6 Conclusion

We ran an extensive analysis of the abilities of

RNNs trained on a generic language-modeling

task to predict long-distance number agreement.

Results were consistent across four languages and

a number of constructions. They were above

strong baselines even in the challenging case of

nonsense sentences, and not far from human per-

formance. We are not aware of other collections

of human long-distance agreement judgments on

nonsensical sentences, and we thus consider our

publicly available data set an important contribu-

tion of our work, of interest to students of human

language processing in general.

The constructions we considered are quite in-

frequent (according to a rough estimate based on

the treebanks, the language in which they are most

common is Hebrew, and even there they occur

with average 0.8% sentence frequency). More-

over, they vary in the contexts that separate the cue

and the target. So, RNNs are not simply memo-

rizing frequent morphosyntactic sequences (which

would already be impressive, for systems learning

from raw text). We tentatively conclude that LM-

trained RNNs can construct abstract grammatical

representations of their input. This, in turn, sug-

gests that the input itself contains enough informa-

tion to trigger some form of syntactic learning in a

system, such as an RNN, that does not contain an

explicit prior bias in favour of syntactic structures.

In future work, we would like to better under-

stand what kind of syntactic information RNNs

are encoding, and how. On the one hand, we

plan to adapt methods to inspect information flow

across RNN states (e.g., Hupkes et al., 2017). On

the other, we would like to expand our empirical

investigation by focusing on other long-distance

phenomena, such as overt case assignment (Blake,

2001) or parasitic gap licensing (Culicover and

Postal, 2001). While it is more challenging to ex-

tract reliable examples of such phenomena from

corpora, their study would probe more sophisti-

cated syntactic capabilities, possibly even shed-

ding light on the theoretical analysis of the un-

derlying linguistic structures. Finally, it may be

useful to complement the corpus-driven approach

used in the current paper with constructed evalua-

tion sentences that isolate particular syntactic phe-

nomena, independent of their frequency in a natu-

ral corpus, as is common in psycholinguistics (En-

guehard et al., 2017).
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