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The one- and two-orbital double-exchange models for manganites are studied using Monte Carlo computa-

tional techniques in the presence of a robust electron-phonon coupling �but neglecting the antiferromagnetic

exchange JAF between the localized spins�. The focus in this effort is on the analysis of charge transport. Our

results for the one-orbital case confirm and extend previous recent investigations that showed the presence of

robust peaks in the resistivity versus temperature curves for this model. Quenched disorder substantially

enhances the magnitude of the effect, while magnetic fields drastically reduce the resistivity. A simple picture

for the origin of these results is presented. It is also shown that even for the case of just one electron, the

resistance curves present metallic and insulating regions by varying the temperature, as it occurs at finite

electronic density. Moreover, in the present study these investigations are extended to the more realistic

two-orbital model for manganites. The transport results for this model show large peaks in the resistivity versus

temperature curves, located at approximately the Curie temperature, and with associated large magnetoresis-

tance factors. Overall, the magnitude and shape of the effects discussed here resemble experiments for mate-

rials such as La0.70Ca0.30MnO3, and they are in agreement with the current predominant theoretical view that

competition between a metal and an insulator, enhanced by quenched disorder, is crucial to understanding the

colossal magnetoresistance �CMR� phenomenon. However, it is argued that further work is still needed to fully

grasp the experimentally observed CMR effect, since in several other Mn oxides an antiferromagnetic charge-

ordered orbital-ordered state is the actual competitor of the ferromagnetic metal.

DOI: 10.1103/PhysRevB.73.224441 PACS number�s�: 75.47.Lx, 75.30.Mb, 75.30.Kz

I. INTRODUCTION

One of the most outstanding open problems in the area of
transition metal oxides is the explanation of the colossal
magnetoresistance �CMR� effect that appears in the Mn ox-
ides that are widely referred to as manganites. These com-
pounds present a rich phase diagram with a variety of com-
peting states which are stabilized by changing the carrier
concentration using a standard chemical doping process in-
volving ions with different valences, or by varying the
carrier bandwidth via isovalent doping.1–29 Notorious
among the low-temperature regimes stabilized in manganites
are a ferromagnetic �FM� metallic phase and several
antiferromagnetic/charge/orbital ordered insulating states.

For the compounds with intermediate or small Curie tem-

peratures, the experimentally obtained resistivity versus tem-

perature curves present a sharp peak, which occurs precisely

at the transition toward ferromagnetism. In the vicinity of

this peak, the CMR effect is observed, which consists of

enormous changes in the resistivity upon the introduction of

relatively small magnetic fields. Although technological ap-

plications of CMR compounds in the read-sensor industry

will still need an increase by at least a factor 2 of the cur-

rently available critical temperatures where the large magne-

toeffects occur, the physics behind this remarkable CMR

phenomenon defines a challenging basic-science problem

that has attracted the attention of the condensed matter com-

munity.

The explanation of the CMR effect is certainly the crucial

goal of theoretical investigations in the manganite context.

Early theoretical work showed that the standard double ex-
change �DE� model was not sufficient to understand these
materials.17 In fact, a DE model cannot even produce an
insulator at high temperatures, in the realistic regimes of
electronic densities,30 and this pointed toward the importance

of other couplings, such as electron-phonon, for a proper

description of these compounds.18 Progress was later made

with the realization that manganite models have tendencies

toward mixed phase regimes, typically involving metallic

and insulating states in coexistence.4,20 This discovery was

possible only after the DE model and its close variations

were studied with unbiased computational methods beyond

mean-field approximations. Inhomogeneous states with a va-

riety of length scales appear frequently in these studies and

the full strength of computational techniques is clearly

needed to fully understand this and other families of complex

oxides.3 The theoretical discovery of phase separation

tendencies15,31,32 triggered an enormous experimental effort

that confirmed the relevance of mixed states in most of the

CMR compounds �for a review see Ref. 10�. Percolative pic-

tures were envisioned to understand these materials. Model

calculations by Mayr et al.33 and Burgy et al.,34,35 using sim-

plified spin systems and random resistor networks, revealed a

phenomenology very similar to that of real CMR materials in

the regime of couplings and electronic densities where me-

tallic and insulating states were in competition. In fact, a

large peak in the resistivity of the resistor network was found

at intermediate temperatures, and a huge change in its value

was found to occur in the presence of magnetic fields. The
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key role of quenched disorder was noted in these investiga-
tions, to obtain large enough effects.34,35

This initial effort using simple models was followed by
calculations of resistivities in the more realistic, although
still simplified, one-orbital model for manganites. Verges et
al.21 numerically showed that an insulator can appear at in-
termediate and large temperatures if the electron-phonon
coupling � is robust enough. This regime, caused by local-
ized polarons, is followed by a rapid transition to a metal
upon cooling. In this model, the two tendencies in competi-
tion at low temperatures are both ferromagnetic, and they
only differ in the character of the charge distribution �uni-
form versus localized�. Although having two competing FM
states cannot solve the entire CMR issue, since often the
competition in experiments is between a ferromagnet against
an antiferromagnetic/charge/orbital ordered state, the results
were sufficiently interesting and challenging that they de-
served further work. Moreover, they could be of relevance to

important Mn oxides such as La0.7Ca0.3MnO3, which at least

naively seem well separated from charge ordered states in

the phase diagrams. Recently, Kumar and Majumdar36 made

a very important contribution by proposing a new Monte

Carlo �MC� algorithm to study fairly large lattices of the

one-orbital model including phonons. Their main observa-

tion is that the clean limit results of Ref. 21 are much en-

hanced by including on-site quenched disorder, together with

a robust electron-phonon coupling.37 This role of disorder to

trigger polaron formation in systems with strong electron-

lattice coupling is an effect that complements the nanoscale

phase coexistence near a first-order transition boundary also

triggered by quenched disorder emphasized in other

studies.34,35 Large peaks in the resistivity versus temperature

curves were reported in Ref. 36, resembling experiments for

some manganites. Their conclusion regarding the importance

of disorder was in agreement with previous in-

vestigations,34,35,38–40 and provided further confirmation of

the currently widely accepted view of manganites, namely

that the essence of CMR lies in the competition of phases

�metal versus insulator�, supplemented by quenched disorder

to obtain large enough effects in sufficiently wide regions of

parameter space.

In spite of this tremendous progress, there are still several

aspects of the CMR problem that need further refinement.

Two issues are notable: �i� It is important to show that the

results previously obtained for the one-orbital model, focus-

ing on the resistivity peak, do also appear for a more realistic

two-orbital model. Several manganites present orbital order

and, as a consequence, using two orbitals per Mn atom is

crucial for a proper description of these materials. �ii� The

consideration of the antiferromagnetic spin coupling JAF be-

tween the localized t2g spins is also crucial. For instance, this

coupling is needed to stabilize several important phases with

charge/orbital and antiferromagnetic order, as previously

shown.10,41 The full understanding of the CMR effect needs

these two extra refinements.

In the present paper, investigations of both the one- and

two-orbital models for manganites are reported, with empha-

sis on the resistivity versus temperature curves. The main

results discussed in this paper are the following: �1� We pro-

vide an independent confirmation of the results of previous

investigations discussed in Refs. 21 and 36. The study of
resistivity in Ref. 36 relied on the analysis of the optical
conductivity extrapolated to zero frequency. In addition, a
novel algorithm was used to generate the classical spin con-
figurations. In our present effort, a different numerical
method �exact diagonalization� is used and, more important,
the transport properties are estimated using the Landauer for-
malism based on transmission coefficients. Fortunately, our
study shows that the results of Kumar and Majumdar36 re-
porting resistivity peaks in the one-orbital model are indeed
qualitatively correct, even when a fairly different approach is
used to calculate transport properties. This confirmation of
previous investigations helps provide a robust foundation for
computational studies of models for manganites. �2� Still
within the one-orbital model context, here a comprehensive
analysis of the influence of quenched disorder and electronic
density is provided, thus considerably extending the studies
reported in previous efforts. A surprising result is that even

just one eg electron on a finite lattice can present transmis-

sion characteristics that include a resistance versus tempera-

ture curve in qualitative agreement with results at finite elec-

tronic densities n and with experiments. Charge localization

is found to be responsible for all these features, as previously

remarked in Refs. 21 and 36 as well. A toy example is here

discussed to understand these results in very simple terms.

�3� Finally, one of our main new contributions is the exten-

sion of the previous investigations in the one-orbital model

context into a two-orbital model framework. After a compre-

hensive analysis of the two-orbital model properties, re-

ported here, it is concluded that this model presents a phe-

nomenology similar to that of the one-orbital model

simulations, at least for the case JAF=0. In other words,

sharp peaks in the resistivity versus temperature are observed

in robust regions of parameter space. This conclusion adds

more evidence that theoretical investigations are on the right

track toward an understanding of the challenging CMR ef-

fect.

However, the important inclusion of JAF is postponed for

future investigations. Working at the special case JAF=0

greatly simplifies the numerical analysis, particularly regard-

ing the convergence properties: the localized spins do not

have conflicting tendencies, such as ferro- and antiferro ar-

rangements with close energies, thus they rapidly tend to-

ward ferromagnetic ground states at low temperatures, even

if the initial starting Monte Carlo configuration is random.

The assumption JAF=0 effectively reduces the global effort

to merely making sure that the classical lattice displacements

regulated by the electron-phonon coupling are properly con-

verged. Important metastabilities were not found in our in-

vestigations. The considerably more subtle technical difficul-

ties that will arise with the inclusion of JAF in the model

Hamiltonians are left for future considerations.

A clarification about the models used here is important. In

this effort, and in fact in most of theoretical work in manga-

nites, the starting point is the double exchange model with

mobile electrons interacting with localized spins. The reason

is that this model leads in a natural way to most of the phases

found experimentally in the Mn oxide investigations, and in

addition efforts as reported here and in related literature have

also found large magnetoresistance effects. However, other
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points of view have been expressed based on the pairing of

oxygen holes into heavy bipolarons.42 Clearly, the physics of

manganites is sufficiently complex that several perspectives

exist in the literature and further work will clarify which

approach is the best to understand the CMR effect.

The organization of the paper is the following. In Sec. II,

results for the one-orbital model are presented, starting with

a brief discussion of the model itself and technical aspects.

The main portion of this section is devoted to the numeri-

cally calculated resistivity versus temperature curves, ob-

tained at several electronic densities, electron-phonon cou-

plings, and strength of the quenched disorder. The results for

the one electron problem are included in this section, to-

gether with evidence that charge localization is responsible

for the insulating regime. A simple toy example is presented

to understand the results. In Sec. III, a similar analysis is

presented but using the two-orbital model. Section IV con-

tains the conclusions of our effort, and suggestions for fur-

ther work.

II. ONE-ORBITAL MODEL

A. Definition and details of simulation

The one-orbital model used in this study is given by

H1b = − t �
�ij�,�

�ci,�
†

c j,� + h.c.� − JH �
i,�,�

ci,�
† �� �,�ci,� · S� i

− �t �
i,�,�

�ui,−� − ui,��ci,�
†

ci,� + t�
i,�

�ui,��2

+ �
i,�

��i − ��ni,�, �1�

where ci,�
† creates an electron at site i with spin �, ��,� are

the Pauli spin matrices, �ij� indicates nearest-neighbor sites,

and t is the nearest-neighbor hopping amplitude �t=1 also

sets the energy unit�. Classical localized spin S� i represents

the t2g degrees-of-freedom. The third term in the Hamil-

tonian accounts for the energy corresponding to the lattice-

carrier interaction, with � being the strength of the electron-

phonon coupling. ui,� are the distortions of the oxygen atoms

surrounding a Mn ion at site i. The index � in three dimen-

sion �3D� �two dimension �2D�� runs over three �two� direc-

tions x ,y and z �x and y�. The tendency toward increasing the

magnitude of the lattice distortions is balanced by the fourth

term in the Hamiltonian, which represents the stiffness of the

Mn-O bonds. Since the study of quantum phonons in this

context is not possible with currently available algorithms,

the oxygen displacements are considered classical, approxi-

mation widely used in studies of manganites.10 �i represents

the strength of the disorder at a given site and are chosen

from a bimodal distribution of width 2� with mean 0. The

overall electronic density n is controlled by the chemical

potential �. In the rest of the paper, spatial labels will be

denoted without arrows or bold letters independently of the

dimension. Also the notation i+ j is meant to represent the

lattice site given by the vectorial sum of the vectors corre-

sponding to i and j, respectively.

In this manuscript, the limit of an infinite Hund coupling

will be considered, which is another widely used simplifica-

tion known to preserve the essential physics of manganites.10

In this limit, the spin of the eg-electron perfectly aligns along

the localized t2g-spin direction, and the Hamiltonian is re-

duced to

H1b = − t�
�ij�
�	cos

�i

2
cos

� j

2
+ sin

�i

2
sin

� j

2
ei�	i−	j�
di

†
d j

+ h.c.� − �t�
i,�

�ui,−� − ui,��di
†
di + t�

i,�

�ui,��2

+ �
i

��i − ��ni, �2�

where �i and 	i are the spherical coordinates of the core spin

at site i �assumed classical�. The operators di
† now create an

electron at site i with spin parallel to the core spin at i, and

ni=di
†di. Note that for an infinite Hund coupling, the system

can be shown to be particle-hole symmetric with respect to

density n=0.5. Thus, results at densities n and 1−n are

equivalent.

The technique used here to handle this Hamiltonian in-

volves the standard exact diagonalization of the quadratic

fermionic sector for a given spin background updated at each

Monte Carlo step.10,20 In the one-orbital study, mainly lattice

sizes 8
8 and 4
4
4 were used.43 In addition, 104 steps

were typically employed for thermalization, followed by

another 104 for measurements. For larger lattices, such as

12
12 and 6
6
6, 104 measurement steps were per-

formed after 2000 steps for thermalization. Most of the simu-

lations have started with a random configuration of spins, but

simulations with a FM starting configuration have also been

carried out in order to check for convergence. Furthermore,

independent Monte Carlo runs corresponding to different

starting random seeds for the initial random spin configura-

tion have also been averaged wherever possible to increase

the accuracy of the results.

Note that while in principle in finite clusters it is not pos-

sible to observe true singularities associated with phase tran-

sitions, in practice a very good approximation to singular

behavior can be observed. This is exemplified in Fig. 1

where the spin correlations indicate a clear sharply defined

different behavior between smaller and larger temperatures,

with respect to a characteristic temperature that it is safe to

associate with the Curie temperature.

The resistivity � has been calculated by taking the inverse

of the mean conductivity �, where the latter is related to the

conductance G by G=�Ld−2, with d being the dimension and

L the linear size of the lattice. The calculation of the conduc-

tance G has been carried out following the approach exten-

sively discussed before by Verges.44 The use of the resistivity

notation is to facilitate the interpretation of results and com-

parison with experiments, namely we do not claim to have

observed Ohmic behavior in our small system simulations.

For the purposes of our paper, whether the resistivity or re-

sistance is used as the key observable the conclusions are the

same. The units used for the resistivity in the entire manu-

script are �h /e2� in 2D, and �hL /e2� in 3D. Precisely in 3D,

the results presented in the figures were obtained by multi-

plying the resistance by the linear size L, assuming a lattice
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spacing one. To restore the proper units to our results, the

real lattice spacing of Mn oxides must be used.

Finally, it is important to remark that a sizable portion of

the computational work presented here was carried out on

parallel supercomputers, in particular on the NCCS XT3 su-

percomputer �2.4-GHz AMD Opteron processor and

2 Gbytes of memory� at Oak Ridge National Laboratory.

Typical simulations in this effort made use of 100 to 200

nodes in parallel. These supercomputer resources have de-

creased substantially the amount of real time that would have

been needed. Indeed, we estimate that the entire effort would

have taken at least one year to complete on standard small-

size computer clusters. The message-passing interface was

used to parallelize the runs that sweep over the various

Hamiltonian parameters such as � and temperature. Further-

more, quenched disorder adds an extra level of computa-

tional effort since it requires the simulation and average of

results from many different configurations. This extra level

of complexity has also been parallelized.

B. Density n=0.3

The discussion of our computational results starts at the

electronic density n=0.3 �equivalent to n=0.7, due to the

symmetry discussed in the previous section�. Figure 1 is a

typical example of the resistivity curves obtained in the

present effort. In the clean limit, �=0, there is a rapid

change in resistivity near the transition to ferromagnetism.

This is a typical pure double-exchange behavior: in the ab-

sence of a sufficiently strong �, quenched disorder, or other

couplings that may lead to competing states, then a metal is

obtained at temperatures above the Curie temperature.

As already clearly established in this field, pure double-

exchange models are not enough to address the physics of

the CMR materials. However, note the dramatic effect of

quenched disorder inducing a peak on the resistivity, as

shown in Fig. 1. Even for the small systems studied here, the

ratio of resistivities between its maximum and minimum val-

ues is as large as �6 for �=0.7. Note the correlation be-

tween the peak location and the temperature where ferromag-

netic order appears �signaled in our calculations by the value

of the spin-spin correlation at the largest possible distance in

the cluster under investigation�. The comparison of our re-

sults with those of recent publications36 shows that the peak

in the resistivity is a robust feature of the model.

Although a variety of previous theoretical and experimen-

tal investigations have convincingly shown the importance of

quenched disorder in the CMR context, nevertheless it is

interesting to observe that a resistivity peak can also be

found by varying � even in the clean limit �=0, as shown in

Fig. 2�a�. This observation will appear repeatedly in the rest

of the results discussed below, namely there seems to exist a

qualitative relation between increasing � at small � and sim-

ply increasing � at �=0. This fact will be exploited in

the studies presented below to simplify our task, since a

simulation with nonzero quenched disorder needs averages

over several disorder configurations, rendering the effort

more time consuming than a clean-limit analysis. However,

there is an important difference between the two cases: ob-

serving the resistivity peak in the clean limit requires a fine

tuning of �.

For a nonzero �, the range of couplings with a resistivity

peak is much wider �see in Sec. II C for a more detailed

discussion�. Fine tuning is not compatible with the CMR

effect since the phenomenon appears in a large number of

manganese oxides, with a distribution of �’s. Nevertheless,

while it is clear that working at nonzero � and smaller than

critical � is more realistic, to the extent that the emphasis of

a clean-limit investigation in a fine-tuned range of � is re-

stricted to the vicinity of the Curie temperature, then both

approaches appear to lead to similar conclusions.

Note that at very low temperatures the clean limit result

shows insulating behavior, while the results with a nonzero

disorder strength do not present such a feature. Although this

fact establishes an interesting difference between the two

cases, and in addition it is known that some manganites do

present such an upturn in resistivity at low temperatures,20

the issue will not be studied in detail in the rest of the manu-

FIG. 1. �Color online� Monte Carlo results obtained using a 4


4
4 lattice. Shown are the resistivity and spin-spin correlations,

the latter at the maximum allowed distance �23�, versus tempera-

ture, working at �=0.9, n=0.3, and for the disorder strengths �

indicated. The results shown are mainly for one configuration of

quenched disorder, but as many as ten configurations were used in

particular cases of temperatures and �’s, and no substantial devia-

tions were observed between disorder configurations.

FIG. 2. �Color online� �a� Influence of the electron-phonon cou-

pling � in the clean limit �=0, and �b� effect of magnetic fields

�values indicated� for �=0.9 and �=0.6, on the resistivity curves,

using a 4
4
4 lattice at density n=0.3.
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script since the focus of the effort is in the resistivity peak

near the Curie temperature. The analysis of the puzzling low-

temperature resistivity upturn in the clean limit is left for

future work.

It is also remarkable that the numerical results for resis-

tivity resemble qualitatively the experimental data in the

presence of magnetic fields. A typical example is shown in

Fig. 2�b�, where external fields of a small value in units of t

are used. It is fair to remark that in this section a linear scale

is used for � while in most of the materials with truly CMR

effects a logarithmic scale is needed, showing that the mag-

nitude of the effect discussed here is substantially smaller.

Also note that the fields used here are small when compared

with the natural unit, i.e., the hopping amplitude, but in

physical units such as teslas a field H=0.1 can be substantial.

These quantitative differences could be related to the small

size of the Monte Carlo systems used or, more likely, with

the absence of a strongly insulating charge-ordered orbital-

ordered antiferromagnetic state as the direct competitor of

the FM metallic state.

C. Density n=0.1

Several of the effects discussed at the realistic density

n=0.3 in the Sec. II B were found to be magnified by reduc-

ing the electronic density. The lattice to be shown is now two
dimensional, to illustrate the similarity systematically found
between results in two and three dimensions. In Fig. 3, the
influence of the quenched disorder strength � on the resis-
tivity plots is shown. As in Fig. 1, the case of a “small” � is
considered first, namely one where in the clean limit the
resistivity does not present insulating behavior. As found
for n=0.3, with increasing � a prominent peak is generated,
which is located at the Curie temperature �conclusion based
on the study of spin correlations, not shown�. The ratio of
the maximum and minimum resistivities is now 30–50 in
the range of � analyzed here, considerably larger than at
n=0.3.

As remarked for n=0.3, there appear to exist analogies

between the processes of increasing � at “small” � and in-

creasing � in the absence of quenched disorder. This relation

is clear as well at n=0.1, and part of the evidence is shown in

Fig. 4�a�, which was obtained in the clean limit. In a narrow

� range, a prominent resistivity peak is found, as in Fig. 2�a�.
Note the use of a logarithmic scale for the resistivity, show-

ing that the magnitude of the effect is truly colossal.

The effect of magnetic fields at n=0.1 is very pronounced

�see Fig. 4�b��, once again resembling the magnitude of the

CMR effect in real materials. The region in the vicinity of

the resistivity peak is the most affected. The magnetoresis-

tance ratios �Fig. 4�c�� are as large as those reported in the

real Mn oxides with the largest CMR effects. The trade-off is

that the effect occurs only in a small window of �, but this

range, as well as the magnetoresistance value, can be further

enlarged by adding quenched disorder.

For the particular case n=0.1, it is interesting to remark

the abruptness of the changes in the resistivity near the peak

in Fig. 4�a� that resemble a first-order transition. The same

occurs at the equivalent density n=0.9, as shown in Figs.

5�a�–5�c�. There, the results of a longer Monte Carlo time

simulation are presented and these numbers strongly suggest

that indeed a first-order transition occurs. The evidence is the

jump found in �a� the spin correlations and �b� the resistivity.

Also, in �c� the MC time evolution for the energy is shown.

This presents sudden events, that resemble tunneling be-

tween two clearly distinct states. Note that the temperature

chosen is slightly biased toward the highest energy state,

FIG. 3. �Color online� Influence of the disorder strength � �in-

dicated� on the resistivity versus temperature curves, working at

�=1.2, n=0.1, and using an 8
8 lattice.

FIG. 4. �Color online� �a� Influence of the electron-phonon coupling � on the resistivity versus temperature curves, �b� influence of

magnetic fields on the resistivity curve and on the spin-spin correlation at the maximum allowed distance �42� on an 8
8 lattice, and �c�
magnetoresistance ratios versus temperature, calculated for two representative magnetic fields in the clean limit �=0, at n=0.1, and using an

8
8 lattice.
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since it is very difficult to fine tune T such that both compet-

ing states are visited an approximately equal amount of MC

time. The first-order nature of the transition also highlights

clear similarities with experiments for some manganites,

such as La0.7Ca0.3MnO3.

To finalize the study at density n=0.1, it is important to

address to what extent quenched disorder �i.e., �� does play

a key role in generating the resistivity peak. After all, both in

this section and at n=0.3 it was observed that even in the

clean limit �=0 there is a � range where a peak is present.

The key observation is that while in the clean limit a fine

tuning of � is needed to obtain the resistivity peak, including

quenched disorder the range becomes much wider. For in-

stance, in Fig. 6�a� the area where a resistivity peak exists is

shown in the �-� plane. Avoiding fine tuning of couplings is

crucial to understand CMR materials, since a wide variety of

Mn oxides—with a distribution of bandwidths and

couplings—present the CMR effects. Any proposed mecha-

nism must be fairly universal to be robust, and the inclusion

of quenched disorder indeed renders the range of couplings

for CMR much wider than in the clean limit.

D. Other electronic densities and finite-size effects

The results presented thus far are only particular cases of

the comprehensive analysis carried out in this effort, involv-

ing several electronic densities, couplings, and temperatures.

As examples of other results obtained in the context of the

one-orbital model, in Fig. 5�d� results at n=0.7 and in the

clean limit are shown. A resistivity peak is also observed at

n=0.2 for a 12
12 cluster �Fig. 5�f��, showing the robust-

ness of the feature. However, the particular case n=0.5 is

special since in this regime a staggered charge-ordered state

is formed and, as a consequence, the system is strongly in-

sulating at low temperatures in a wide range of electron-

phonon couplings � �see Fig. 5�e��. This fact was also no-

ticed in Ref. 36. Since at this density there is no peak in the

resistivity, n=0.5 will not be further analyzed here.

To complete the present analysis, size effects have also

FIG. 5. �Color online�. Results mainly in the clean limit �=0

illustrating a variety of issues discussed in the text. �a�,�b�, and �c�
The first-order �discontinuous� character of the transition at n=0.9,

�=1.4, using an 8
8 lattice. �a� The spin-spin correlations at the

maximum distance. Also shown in red are results at �=0.4 and

averaged over five disorder configurations, showing the smearing

of the transition with disorder; �b� is the resistivity versus T; and

�c� is the Monte Carlo time evolution of the energy at T=0.034,

showing the presence of two states. �d� The resistivity versus

temperature at n=0.7 �8
8 lattice�, at the �’s indicated. �e� The

same as �d� but at n=0.5 and using a 12
12 cluster. �f� The same

as �e� but for n=0.2.

FIG. 6. �Color online� �a� Influence of quenched disorder on the size of the parameter-space region where the resistivity peak exists. In

the plane �-�, M �I� denotes the region where the resistivity is metallic �insulating� at all temperatures, while M-I is the area where the

resistivity peak is present. The calculation was done on an 8
8 cluster, with n=0.1; �b� and �c� illustrate the similarity of results obtained

using a 6
6
6 lattice �shown� as compared with the 4
4
4 results discussed before. �b� Resistivity versus temperature at n=0.9 in the

clean limit �=0, for the �’s indicated. �c� Resistivity � versus T at n=0.8 at the �’s indicated and for �=0.
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been investigated. It was one of our purposes to use the

standard “exact diagonalization” �ED� method in this study,

in order to avoid considering also issues of accuracy if an

approximate technique would have been employed, in addi-

tion to the intrinsic subtleties related with the physics in-

volved in the problem. Moreover, we wanted to compare our

results against those obtained with approximate methods car-

ried out on 8
8
8 lattices.36 The penalization for using the

ED method is that it is possible to carry out simulations

only on up to 6
6
6 clusters and compare those with the

4
4
4 systems used in the figures discussed so far. The

results are in Figs. 6�b� and 6�c�. The existence of the resis-

tivity peak, the overall shape of the curves, and the depen-

dence with � are very similar between the two lattices, sup-

porting the conclusion that the results are robust and that

indeed a CMR regime has been identified in these simula-

tions �and in those reported before in Ref. 36�.

E. The one-electron problem

The results reported in the previous sections indicate that

the magnitude of the resistivity peak, namely the ratio be-

tween the maximum and minimum resistivities, increases

when reducing the density n. In fact, the CMR effect is much

larger at n=0.1 than at n=0.3. As a consequence, it is natural

to wonder if for the case of just one electron a peak in the

resistivity will also appear. Our effort is carried out in the

grand canonical ensemble, but it is possible to tune the

chemical potential with sufficient accuracy so that just one

mobile electron is MC simulated. The results are shown in

Figs. 7�a�–7�c�, obtained on an 8
8 cluster. It is remarkable

to find that indeed the one-electron problem has a resistivity

versus temperature curve clearly resembling those of the

other electronic densities. The inset of Fig. 7�a� shows that

ferromagnetism in the classical spins is obtained in this case

as well. In the bulk, likely only a finite-size FM region can

be associated with a single electron, but on a finite small

cluster this region can be as large as the entire system, as it

occurs in our case.

An interesting detail of the one-electron study is that the

insulating regime is observed even at �=0. This occurs only

at this very small electronic density; at n=0.1 or 0.3, a robust

value of � is needed to see a similar behavior. This can be

understood as follows. The cluster spin-spin correlations

are sketched in Fig. 7�b� at low temperature: here the entire

8
8 cluster is ferromagnetic in agreement with expecta-

tions. However, at higher temperatures, in the “insulating”

portion of the �=0 resistivity curve, there are patches that

are FM as well, as shown in Fig. 7�c�. This is correlated with

charge localized in the darker regions �not shown�.45

Namely, in the insulating regime there is a “self-trapping” of

the electrons that takes place, in the form of a small FM

polaron. The lattice does not need to be distorted to see this

curious effect. At temperatures higher than T�0.125, the

resistivity now changes to a metallic state with a more uni-

form distribution of charge. The FM polarons at inter-

mediate temperatures have sizes involving several lattice

spacings and, thus, as n grows it is not surprising that their

overlap rapidly renders the system fully metallic. At densities

n=0.1 or larger, only with increasing � is that a charge lo-

calized regime �with small polarons� can be achieved. This

issue will be discussed in more detail in Sec. II F. Overall,

the one electron case shows a resistivity profile similar to

other densities, but the origin of the insulating state resides

on the spin degree of freedom rather than the phononic, and

in this respect it is anomalous.

F. Intuitive understanding of the results

To intuitively understand the results, the picture emerging

from the one electron problem is important. It seems that

upon cooling a paramagnetic metal first turns into an insula-

FIG. 7. �Color online� �a�–�c� Results obtained in the one electron limit. �a� Resistivity � versus T at �=0 for an 8
8 lattice, showing

that even the �=0 results present a peak. The inset contains the spin-spin correlations at the maximum distance; �b�, �c� the �=0 spatially

resolved nearest-neighbor spin-spin correlations NN�i�=��ij�S
�

i ·S
�

j, where the sum is over the four neighbors j of site i. The results were

obtained at T=0.004 and T=0.072, respectively, namely before and after the resistivity peak. Dark colors denote large values of NN�i�,
namely regions where the spins are aligned ferromagnetically. �d�–�i� Density-of-states at �=1.5, �=0, using an 8
8 lattice, at the various

temperatures indicated. The red lines �vertical� indicate the location of the chemical potential such that n=0.1 in all the panels. �j� Natural

logarithm of the resistivity � versus temperature plotted on the same scale with �n �defined in text� and the inverse of the density of states

at the chemical potential, 1 /N��=��, using the same parameters as in �d�–�i�. Both log10��� and 1/N��=�� are normalized to coincide with

the maximum of �n. Results shown correspond to averages over several independent Monte Carlo runs.
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tor via localization of charge �this is the insulating regime of

the resistivity curve� and then, fairly abruptly, a transition to

a metallic FM state occurs. Although we have not calculated

the entropy explicitly �this is typically complicated to do in

numerical simulations�, we believe that in the range of �’s

where this phenomenon occurs, there is a competition be-

tween a FM metallic state and a charge localized �CL� state.

The former has lower energy, but the latter has higher en-

tropy due to the fact that the charge can be localized in a

variety of arrangements. For this reason at high temperature

the CL state dominates, but then a crossing to the FM metal

occurs at low temperatures.

This intuitive picture is compatible with a visual investi-

gation carried out in this effort. In the interesting coupling

and density regimes, Monte Carlo snapshots of the classical

spin configurations and electronic density of charge system-

atically reveal charge localization in the insulating region.

This is correlated with the appearance of new structure in the

density-of-states �DOS�, as shown in Figs. 7�d�–7�i�. In this

figure, the DOS is shown for the case n=0.1 varying the

temperature in the interesting regime identified in Fig. 4. The

DOS starts developing a pseudogap �PG� feature at the

chemical potential at T=0.15. This PG grows upon cooling

and it reaches its maximum depth at the temperature where

the resistivity is maximized. Upon further cooling, the DOS

turns into a typical FM density-of-states of a finite system,

showing multiple spikes.20 The presence of a PG in the DOS

of a model for manganites was first observed in Ref. 8, and

our present results are compatible with those early observa-

tions. Clearly, the resistivity peak is unrelated with Anderson

localization that produces a mobility edge in the DOS, but

not a PG.

The ideas discussed here related with DOS pseudogaps

and charge localization can be made more quantitative as

follows. In Fig. 7�j�, the inverse of the DOS at the chemical

potential is shown, together with the logarithm of the resis-

tivity. Both quantities show a similar trend with temperature,

and the PG indeed appears correlated with the behavior of

the resistivity. However, note that the use of the logarithmic

scale for � indicates that the effect leading to the PG forma-

tion affects much more strongly the transport properties of

the system than others. This is typical of a percolative system

where small changes in the electronic distribution can lead to

dramatic changes in the transport characteristics.

For systems without quenched disorder the average local

density is always constant due to translational invariance.

Therefore, we measure the localization of the charge by cal-

culating the error in ni given by

�n
2 =

1

N
�

i

�ni − n�2. �3�

This quantity indicates the difference between the actual

charge ni at each site and the nominal average density in the

full cluster, i.e., n. For a system with a uniform distribution

of charge �n vanishes. This indeed occurs at very low tem-

peratures. But for a system with charge localization then �n

is different from zero, as it occurs at the resistivity peak. In

Fig. 7�j�, �n is plotted versus temperature, showing that it

follows the behavior of the resistivity indicating that local-

ization of the charge is the main reason for the insulating

regime observed above the Curie temperature.

To gain further qualitative understanding for the existence

of the peak in the resistivity, we have studied a special clus-

ter that seems to have common features with those analyzed

thus far. The cluster is a 4
4
4 lattice, where the 32 sites

on the right have a relatively small �, i.e., not strong enough

to lead to localization of charge, while the 32 sites on the left

have a large �. This allows us to clearly separate in space

regions with and without charge localization. Monte Carlo

simulating this system lead us to the resistivity and spin-spin

correlations shown in Fig. 8�a�. The shape is very similar to

that of other simulations previously described. An important

point to notice is that the total amount of charge on the left

FIG. 8. �Color online� Possible explanation for the existence of the resistivity peak, using a 4
4
4 and the couplings and densities

indicated. Results shown are for the artificial “left-right” system described in the text, where the left �right� of the lattice has a relatively large

�small� �. �a� Various quantities �see middle inset� versus temperature. The growth of �n �left� and n �left� with decreasing temperature is

indicative of localization of charge in the large � region �left�. The trends in these quantities are very similar to the resistivity in its insulating

range. At the Curie temperature �see spin-spin correlations�, the localization features remain the same but now the mobile carriers can

conduct much better than in a paramagnetic spin background. �b�–�e� Electronic density �proportional to the diameter of the spheres� at the

temperatures indicated.
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side of the cluster grows with decreasing temperature and so

does �n, the quantity that measures the degree of localiza-

tion. The increase of these two quantities with cooling

�shown in the figure as well� is correlated with the increase

of resistivity, namely with the insulating regime in the resis-

tivity plot. Thus, it is clear that the insulator portion of the

resistance is caused by charge localization. Examples of the

local densities are in Figs. 8�b�–8�e�.
At the temperature where the resistivity turns metallic

upon cooling, namely at the Curie temperature, note that the

localization parameters remain approximately the same as at

higher temperatures. Thus, the amount of charge that is lo-

calized does not change dramatically at the metal-insulator

transition. What does change is the spin background and

since the conducting properties of a ferromagnet and a para-

magnet are very different, then there is a remarkable reduc-

tion of the resistance below the Curie temperature. The com-

bination of these two effects leads to the resistivity peaks

found in the Monte Carlo simulations.

III. TWO-ORBITAL MODEL

A. Definition

The two orbitals used in this model arise from the two eg

bands that are active at the Mn ions in Mn-oxides, as exten-

sively discussed before.10,20,23 The Hamiltonian for this

model is10,20,23

H2b = �
�,��,i,�

t���

�
S��i,	i,�i+�,	i+��ci,�

†
ci+�,��

+ ��
i

�Q1i�i + Q2ixi + Q3izi� + �
i

�
�=1

�=3

D�Q�i
2 , �4�

where the factor that renormalizes the hopping in the JH=�
limit is

S��i,	i,� j,	 j� = cos��i

2
�s�� j

2
� + sin��i

2
�sin�� j

2
�e−i�	i−	j�.

�5�

The parameters t���

�
are the hopping amplitudes between the

orbitals � and �� in the direction �. In this section, we re-

strict ourselves to two dimensions, such that taa
x =−3tab

x

=−3tba
x =3tbb

x =1, and taa
y =3tab

y =3tba
y =3tbb

y =1. Q1i, Q2i,

and Q3i are normal modes of vibration that can be expressed

in terms of the oxygen coordinate ui,� as

Q1i =
1

3
��ui,z − ui−z,z� + �ui,x − ui−x,x� + �ui,y − ui−y,y�� ,

Q2i =
1

2
�ui,x − ui−x,x� ,

Q3i =
2

6
�ui,z − ui−z,z� −

1

6
�ui,x − ui−x,x� −

1

6
�ui,y − ui−y,y� .

Also, xi=cia
† cib+cib

† cia, zi=cia
† cia−cib

† cib, and �i=cia
† cia

+cib
† cib. The constant � is the electron-phonon coupling re-

lated to the Jahn-Teller distortion of the MnO6

octahedron.2,8,10,11,14,20,22,23 Regarding the phononic stiff-

ness, and in units of taa
x =1, the D� parameters are D1=1 and

D2=D3=0.5, as discussed in previous literature.46 The rest of

the notation is standard. Note that in the large Hund coupling

limit there is no spin index. The JAF coupling between the

localized spins is neglected, as for the one-orbital model. In

some of the results below, a Zeeman term with field strength

H was added. The number of Monte Carlo steps and MC

starting configurations are similar to the one-band case.

The main purpose of the numerical study discussed in this

section is to investigate if the two-orbital model for manga-

nites can also produce a resistivity peak, as observed in the

one-orbital case. The study in this section is presented with

the same caveats as the one-orbital investigation: �i� it is an

important step toward a realistic theoretical description of

manganites since Mn-oxides have two active eg orbitals, but

�ii� the model does not include the coupling JAF which is

crucial to generate the realistic insulating state, with antifer-

romagnetic and orbital order. Nevertheless, the observation

of features that in several ways resemble experiments is ex-

citing and at least part of the essence of real materials ap-

pears to have been captured by the models discussed here,

even in purely FM regimes. We are aware that conclusions

similar to ours have also been reached recently indepen-

dently by Kampf and Kumar.47

B. Density n=0.3

Typical computational results for the two-orbital model at

n�0.3 are shown in Fig. 9�a�. In the clean limit �=0, there

is a narrow region of � where a well-defined peak is found in

the resistivity. The location of the peak is correlated with the

FIG. 9. �Color online� Clean limit ��=0 results� �a�: Resistivity

versus T for various values of �, using the two-orbital model for

manganites. The simulation was performed on an 8
8 lattice with

20 electrons �n�0.3�. �b� Spin-spin correlation at the maximum

distance versus T for various values of �. Lattice, density, and MC

steps are as in �a�. �c� Resistivity versus T for a 12
12 lattice,

considering 2 orbitals per site, 44 electrons �n�1/3�, JAF=0.0, and

the values of � indicated. �d� Spin-spin correlation at the largest

possible distance �62� on a 12
12 lattice, in the clean limit, with

the same convention and parameters as in �a�.
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appearance of ferromagnetic order, as shown in Fig. 9�b�.
The systematic tendencies and behaviors observed in the
two-orbital model simulations are very similar to those found
for the one-orbital model.

Finite-size effects do not seem to modify strongly our
conclusions, as also found for the one-orbital case. In Fig.
9�c�, results obtained using a 12
12 cluster are reported. A
resistivity peak is observed in a very similar range of � as
found using the 8
8 cluster. Although these results are not
sufficient to fully prove that the behavior found on finite
lattice survives the bulk limit, they are very suggestive: in
two- and three-dimensional lattices, for a wide range of elec-
tronic densities, for a variety of lattice sizes, with and with-
out quenched disorder, and both for the one- and two-orbital
models the resistivity peak is present in the study of charge
transport.

This resistivity peak in the two-orbital model is also dras-
tically affected by relatively small magnetic fields, as ob-
served for the one-orbital case. Typical results are in Figs.
10�a� and 10�b�. The magnitude of the magnetoresistance
effect shown in the figure is comparable to the numbers
found for the one-orbital case at similar electronic densities
�see Fig. 2�c��.

It is also important to discuss the influence of quenched
disorder. Typical results are in Fig. 10�c�. As anticipated
from recent previous investigations,36 and from the one-
orbital study in this manuscript, it was observed that intro-
ducing quenched disorder enhances substantially the features
found in the clean limit. For instance, at �=1.66, the �=0
curve does not show a resistivity peak, but this feature is
generated at �=0.2 and the same �. In cases where the re-
sistivity already has a peak in the clean limit, this structure is

enlarged with increasing �.

C. Density n=0.1

In Fig. 11, Monte Carlo results at n=0.1 are presented for

the two-orbital model. The behavior of the resistivity is very

similar to what was observed for the one-orbital case �see

Figs. 6�b� and 4�b��, namely a clearly defined peak is ob-

served, and a sharp �likely first order� transition in the resis-

tance occurs upon cooling through the Curie temperature.

At this electronic density, the changes in resistance upon

heating or cooling are much larger than at other densities

such as n=0.3.

Overall, it is clear that the models with one and two or-

bitals behave fairly similarly, and the existence of a peak in

the resistivity is a robust result of this effort and previous

Monte Carlo simulations.36

IV. CONCLUSIONS

The research effort discussed in this paper reached several

goals. First, it confirmed recent reports by other groups21,36

regarding the existence of a large peak in the resistivity ver-

sus temperature for the one-orbital model for manganites,

including a robust electron-phonon coupling. This confirma-

tion is interesting since the results of the previous36 and cur-

rent efforts were obtained using different techniques to esti-

mate transport properties, and also with different methods to

simulate the one-orbital model. Second, a comprehensive

analysis of the influence of couplings, quenched disorder

strength, and electronic density was here described. This in-

cludes the case of just one electron on an otherwise carrier

empty lattice, in the presence of classical t2g spins. This one-

electron problem also presents a large resistance peak when

varying the temperature. A very simple explanation for the

behavior of these systems was discussed, based on a compe-

tition between tendencies to charge localization and ferro-

magnetism.

The work described here also includes a study of the two-

orbital model for manganites. The overall conclusion is that

its behavior is similar to that of the one-orbital model. Since

these results are themselves also fairly similar to experi-

FIG. 10. �Color online� �a� Resistivity versus T for several �’s

�indicated�. Results were obtained with �closed symbols� and with-

out �open symbols� a magnetic field H=0.1. The simulation was

performed on an 8
8 lattice, with 20 electrons �n�0.3�. �b� Mag-

netoresistance �defined as ����0�−��H�� /��H��
100 versus T for

the same parameters as in �a�. �c� Resistivity versus T for various

values of � and with and without quenched disorder, as indicated.

The enhancement of the resistivity peak with increasing � is shown.

The lattice size and various parameters are as in Figs. 9�c� and 9�d�.

FIG. 11. �Color online� Results for the two-orbital model at

n=0.1 and the �’s indicated. �a� Resistivity versus temperature us-

ing an 8
8 lattice. Note how sharp is the low temperature transi-

tion from low to high resistance. �b� Spin-spin correlation at the

maximum distance.
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ments, our effort and those of other groups provide evidence
that the theoretical studies based on double-exchange models
that focus on the regime of competition between a metal and
an insulator are on the right track toward a full explanation
of the CMR phenomenon �for a different perspective see Ref.
42�. Both with one and two orbitals, quenched disorder is
important to enlarge the magnitude of the effects and
broaden its range in parameter space, thus avoiding the fine
tuning of couplings needed in the clean limit.

How do these results fit into the general picture advocated
by some of the authors10,20 in recent literature? In those early
investigations, the competition between a metal and an insu-

lator was the key new factor introduced to account for CMR.

This competition is also present in the current effort, involv-

ing a FM metallic versus a FM insulating polaronic state.

What is different is that in the present and related

investigations21,36 both the metal and the insulator at low

temperatures are ferromagnetic, and they differ only in the

arrangement of charge �extended versus localized character�.
We believe that this is the main reason for having obtained

resistivity curves that while qualitatively resembling experi-

ments, they still do not correspond to the huge magnetore-

sistance values observed in real CMR materials unless the

densities are tuned to small values. The next level of sophis-

tication of the simulations of manganite models must address

the competition between different magnetic orders. Although

the current results have a qualitative resemblance with sev-

eral experiments, it is known that the largest effects in real

manganites occur when an antiferromagnetic/charge/orbital

ordered state competes with the ferromagnetic metal. To

achieve this final goal, the coupling JAF must be incorporated

in the investigations. This will require levels of numerical

accuracy higher than in the present effort, due to the compe-

tition of very different states that typically lead to metasta-

bilities and long thermalization times. Results will be pre-

sented in the near future.
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