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ABSTRACT
We present the high angular resolution technique of colour-differential interferometry for

direct detection of extrasolar giant planets (EGPs). The measurement of differential phase with

long-baseline ground-based interferometers in the near-infrared could allow the observation

of several hot giant extrasolar planets in tight orbit around the nearby stars, and thus yield

their low- or mid-resolution spectroscopy, complete orbital data set and mass. Estimates of

potentially achievable signal-to-noise ratios are presented for a number of planets already

discovered by indirect methods. The limits from the instrumental and atmospheric instability

are discussed, and a subsequent observational strategy is proposed.

Key words: techniques: high angular resolution – techniques: interferometric – techniques:

spectroscopic – planetary systems.

1 I N T RO D U C T I O N

Since the discovery of a planet around 51 Pegasi by Mayor & Queloz

(1995), the indirect method of radial velocities (RV) has provided

a large harvest of extrasolar planets (ESPs) detection, thus yielding

orbital distance and eccentricity, and lower mass estimates. Very

high accuracy astrometry is another technique to measure the reflex

motion of the parent star resulting from the planet orbital motion,

and should yield, unambiguously, the orbit and mass of giant planets.

However, these are indirect techniques which do not give access to

the ESP spectrum. For a small number of planets whose orbital plane

is oriented edge-on to the Earth, a transit has been observed. For

one of them (HD209458), this yielded some spectral atmospheric

features in addition to the mass and radius (Brown et al. 2000), and

the observation of the secondary transit gave the first estimates of the

thermal emission from hot ESPs (Charbonneau et al. 2005; Deming

et al. 2005).

Direct observations are in general very difficult for current in-

struments because of the very small angular separation between the

star and the planet, and their extremely high luminosity ratio. Lim-

iting the stellar light scattering to the telescope diffraction pattern,

by observing from space or with efficient adaptive optics, could al-

low the detection of planets which are well angularly resolved from

their star. This might be the case for a candidate planet separated

by ≈780 mas (i.e. ≈55 au) from a brown dwarf, whose image and

�E-mail: mvannier@eso.org

spectrum were recently obtained in the infrared (IR) with the Very

Large Telescope (VLT) instrument NACO (Chauvin et al. 2004).

For targets with closer angular separation and less favourable lumi-

nosity ratio, detecting planetary photons out of the noise requires to

decrease the effect of the stellar light within the Airy rings. Several

methods have been proposed in the last two decades for this purpose,

most of them using coronography/nulling techniques with single or

multiple apertures. In any case, the measurement is very challenging

due to, on one hand, the limited number of photons available from

the ESP and, on the other hand, the need for an accurate calibration

of the instrumental stability.

In this paper, we discuss the potential of colour-differential inter-

ferometry (CDI) to directly detect the photons emitted by ESPs. CDI

is based on simultaneous interferometric observations in different

spectral channels. As a high angular resolution and high-dynamic

technique, it presents two major advantages. First, the chromatic

differences in visibility and phases are much less sensitive to in-

strumental and atmospheric instabilities, and therefore are easier to

calibrate than the absolute complex visibility. Since the beginning

of long-baseline optical interferometry with separated apertures,

many early astrophysical results have been obtained using this self-

calibration feature (e.g. Thom, Granes & Vakili 1986; Mourard et al.

1989). Secondly, the colour-differential phase can be measured with

an accuracy much better than the angular interferometric resolution

λ/B. For objects much smaller than the diffraction limit, it is pro-

portional to the variation of the object photocentre with wavelength.

This feature was first presented by Beckers & Hege (1982) for dif-

ferential speckle interferometry and has later been developed by

Petrov, Roddier & Aime (1986), Petrov (1989) and the GI2T team.
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Therefore, differential phase is a close parent of the colour-

differential astrometry method (also called sometimes spectroas-

trometry), based on the displacement with wavelength of the pho-

tocentre of a long exposure image at a telescope focus (Sorokin &

Tokovinin 1985; Lund & Aime 1988; Takami, Bailey & Chrysosto-

mou 2003). For diffraction-limited images, the performance of these

two techniques is proportional to the square root of the number of

collected photons [i.e. to the telescope diameter(s)], and to the base-

line length (Petrov 1989). Thus, long-baseline interferometers have

a very clear advantage compared to the equivalent single-telescope

technique. The measurement of photocentre displacement can yield

decisive angular information on otherwise unresolved objects. It ap-

plies to almost all types of sources where spectral features are linked

to asymmetric high spatial resolution structures, including broad-

line region (BLR) of active galactic nuclei (AGNs), stellar surface

and activity, circumstellar material in young and evolved stars, and

close binary stars with high colour difference.

Lopez & Petrov (2000) and Swain et al. (2000) have pro-

posed to apply CDI (also called colour-differential phase tech-

nique) to objects with extremely high flux dynamics such as ESPs.

They estimate that this method has some potential for observing

‘Pegasi’ planets, i.e. hot extrasolar giant planets (EGPs) in tight or-

bit, therefore strongly irradiated by their star. We investigate, here-

after, in further details the possibilities for observation of EGP using

CDI.

In Section 2, we present the scientific benefits of direct obser-

vation of ESPs with the proposed method and emphasize on hot

giant planets. In Section 3, the principle, formalism and fundamen-

tal noises of CDI are presented. In Section 4, we explicit the signal

provided by phase and closure phase. Assuming that stability at

the level of the fundamental noises can be achieved, we demon-

strate how the spectrum, mass and inclination are derived from the

measurements in the simple case of a circular orbit. In Section 5, we

assume the use of the Very Large Telescope Interferometer (VLTI) to

calculate the potential signal-to-noise ratios of the planetary spec-

trum for a number of known objects. The best targets for future

observations are identified. The effects of astrophysical biases (in-

cluding stellar rotation, stellar spots and exozodiacal light), which

might affect the measurement of the planetary signal, are discussed.

The issue of instrumental and atmospheric effects is presented,

and an observational strategy for reaching the highest precision is

proposed.

2 S C I E N T I F I C C A S E : D I R E C T
M E A S U R E M E N T O F E G P S

To date, the RV measurements led to the discovery of 170 ESPs.

RV detection yields the semimajor axis, the eccentricity and a lower

value M sin i of the mass of the planet. It is estimated that at least

20 per cent of Sun-like stars have a massive planetary companion

(Lineweaver & Grether 2003). RV surveys to be done with increased

accuracy and over longer time-span should yield a vast sample of

extrasolar planetary objects in the next years, and extend our present

knowledge to planets of lower mass and/or at larger orbital radius

(Cumming 2004). A large proportion of the already detected EGPs

were found at a surprisingly small orbital distance a with regard to

their high mass: about 30 per cent of the planets have a semima-

jor axis lower than 0.2 au and a mass over 0.4 M Jup (Jupiter mass).

Even though this odd statistical distribution should be handled care-

fully because the instrumental bias of velocimetric methods favours

tight orbit and massive planets, their mere presence appeared in

contradiction with the hitherto standard models of planetary for-

mation based on the Solar System. This has raised important ques-

tions regarding the origin and formation scenario of planets, some

possible migration process and their physical structures. Whereas

an abundant theoretical literature on the formation and evolution

of EGPs has been produced, key points are still hypothetical and

would benefit from the constraints derived from direct observa-

tion: atmospheric spectra, complete orbital data, planetary mass and

radius, . . .

A low spectral resolution (of about a few tens) over a large band-

width gives the general shape of the planetary spectrum. This pri-

marily yields the effective temperature of the planet. It may also

be sufficient to constrain the presence of dusty clouds in the at-

mosphere: current models of EGP spectrum are strongly depen-

dent(e.g. Barman, Hauschildt & Allard 2001) on whether grain

particles remain present in the atmosphere and thus contribute

to its opacity (‘dusty’ assumption), or are removed from it by

gravitational settling (‘condensed’). Since this affects the radia-

tive/convective energetic balance of the planet, evolution models

indicate that the cooling and contraction time-scales may differ by

factors of 2 to 3, depending on the presence of dusty clouds (Guillot

1999).

The atmospheric chemical composition can be partially inferred

from spectral absorption features: in the near-IR domain and around

10 μm, molecules of H2O, CO, CH4 and NH3 present numerous

absorption bands and molecular lines, whose intensity depends on

the relative abundance of these molecules, on their depth within

the atmosphere and on the presence of higher clouds. Separating

individual lines would require a spectral resolution R > 1000 and

seems out of range for the method we propose hereafter. According

to our computations, though, a few planetary candidates could be

observed at a resolution R = 1500, which could be sufficient to

partially resolve these spectral features.

Some information on the process of energy circulation within the

atmosphere can be inferred from direct detection at various orbital

positions in the case of EGPs with semimajor axis smaller than

≈0.07 au, which are in synchronous rotation around their star. For

these objects, the mechanism of energy transfer between the bright

(‘day’) and dark (‘night’) areas of the atmosphere was studied the-

oretically by Showman & Guillot (2002). A significant difference

of temperature between the two sides is expected; thus their relative

contribution to the thermal emission from the planet depends on the

orbital phase and on wavelength. Although small, this effect could

be constrained by comparing colour-differential measurements at

several orbital positions.

Direct observation will also yield the inclination i and orienta-

tion of the planetary orbit with respect to the observer. The ori-

entation angle of the orbit can be compared to the position angle

of the stellar axis, inferred independently using CDI, as shown by

Chelli & Petrov (1995b). The co-planarity between the stellar and

the planetary planes might constitute a test on the origin of EGPs

by distinguishing between (1) a model where the planets form in

the outskirts of the protostellar disc (in a similar way as the giant

planets of our Solar System) and later undergo a migration process

and (2) an alternative model where giant planet arises from unstable

fragmentation of the protostellar nebula, in which self-gravitating

clumps may rapidly grow to large bodies in non-coplanar orbits

(Mayer et al. 2002). For planets detected by RV measurements,

the knowledge of the orbital inclination i would suppress the am-

biguity on the planetary mass M. Theoretical models on forma-

tion and migration scenarii could therefore be tested with a more

precise statistical distribution of the masses (Stepinski & Black

2000).
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3 F O R M A L I S M O F C D I F O R E S P S

3.1 Colour-differential phase and visibility

Both the European Southern Observatory (ESO) VLTI and the Keck

Interferometer are now offering the possibility to observe in colour-

differential interferometric mode. We hereafter assume, for the in-

strumental characteristics, the use of the VLTI AMBER or MIDI

instruments, both of which are already available to the commu-

nity of observers, in a limited number of modes. AMBER performs

multi-axial combination of two or three beams in the bands J, H
and K, and will yield dispersed fringes with a spectral resolution

ranging from 35 to 12 000 (Petrov et al. 2003). The MIDI instru-

ment (Leinert et al. 2003) combines two beams with a temporal

fringe scanning and operates in the mid-IR N band (8–13 μm) with

a spectral resolution up to 250.

Let T be the global instrumental transfer function of the whole in-

terferometer (including the atmosphere, telescopes, interferometric

delay lines and various instrumental parts down to the detector). For

a source object of spatial distribution Ĩ 0 in the plane of spatial fre-

quencies w and at wavelength λ, the image through the instrument

is

Ĩ (w, λ) = Ĩ 0(w, λ)T̃ (w, λ). (1)

The interferometric visibility V is defined as the normalized am-

plitude of Ĩ (w, λ) and the interferometric phase � as the argument

of Ĩ (w, λ). Note with the ‘*’ contribution from the astrophysical

signal and with ‘t’ the one from the atmospheric, telescope and in-

strumental transfer function. Then, the visibility and phase at that

spatial frequency are

V = | I (w, λ) |
| I (0, λ) | = V∗Vt (2)

and

� = arg[I0(w, λ)] + arg[T (w, λ)] = �∗ + �t. (3)

In practice, the term �t is largely unknown and variable, thus the

interferometric phase cannot be determined as an absolute quan-

tity. Instead, a possibility is to measure the phase relatively between

two sources using a dual-feed interferometer, such as the PRIMA

device will provide to the VLTI (Derie et al. 2003). CDI presents

another possibility: from a spectrally dispersed interferogram, both

the visibility and the phase can be measured relatively and simulta-

neously between various spectral channels (say, a ‘target’ channel

noted λi and a reference channel λr), hence yielding the difference

of interferometric phases and the ratio of visibilities between the

corresponding wavelengths

��(λi , λr) = [
�∗(λi ) − �∗(λr)

] − [
�t(λi ) − �t(λr)

]
(4)

V (λi , λr) = V∗(λi )

V∗(λr)

Vt(λi )

Vt(λr)
. (5)

As it appears from the terms on the right-hand side of the above ex-

pressions, the observables of CDI are not affected by the achromatic
effects from atmospheric or instrumental origin. This non-sensitivity

to an otherwise dominant effects1 is one of the great advantages of

that technique, and allows to measure even small changes of phase

1 The piston at the VLTI for a 100-m baseline is of the order of 10 μm

(rms). The FINITO fringe tracker should allow one to equalize this optical

path difference (OPD) down to 0.05 μm, i.e. a phase shift of ≈0.15 rad in K

and/or of visibility if the brightness distribution varies with wave-

length.

It is common (e.g. at the VLTI and Keck Interferometer instru-

ments) to use a spatial filtering prior to the recombination in order

to clean the beam’s wavefront from the atmospheric or instrumental

effects. The only remaining optical effects after the spatial filter are

differences in intensity between the beams (which can subsequently

be calibrated thanks to photometric channels), and an OPD. In prin-

ciple, this OPD originates exclusively before the filtering, from the

piston and from the chromatic dispersion along the path. Therefore,

it is partly chromatic and will affect the differential measurement

(see Section 5.4 for quantitative detail on that aspect). In practice,

imperfect adaptive optics induce wavefront corrugations which are

turned into additional (chromatic) OPD by the spatial filter (as pre-

sented in detail by Tubbs et al. 2005). In the case of the VLTI with

MACAO correction, that effect is marginal.2

In a given spectral channel, the OPD induces a phase shift of

ψOPD(λ) = (2π/λ) OPD. (6)

The sensitivity of the visibility to the OPD depends on the coher-

ence length L = δ λ/λ2 for a given bandwidth. The visibility varies

as

VOPD(λ) ∝ sin(πOPD δλ/λ2)

πOPD δλ/λ2
. (7)

3.2 Differential visibility and phase for reaching very
high precisions

In principle, the visibility and the phase carry complementary astro-

physical information, and both are useful for our goal of observing

ESPs. In the next section, we show that the amplitude of the signal

from the visibility and the phase (without considering the atmo-

spheric and instrumental effects) is of similar order. Nevertheless,

one should wonder which of these observables is most appropriate

for reaching the very high required precision of measurement. If

the measurement is made in a colour-differential mode and with a

spatial filtering, the precision on both the visibility and the phase is

affected by the following.

(i) The fundamental noises such as photon, readout and back-

ground noises (detailed in Section 3.4). These noises affect the dif-

ferential visibility and phase similarly.

(ii) The chromatic OPD between the beams, introduced by the

longitudinal dispersion in the air and water vapour and by the in-

strument. We show that these variable chromatic effects will be

significantly higher than the astrophysical signal from the differ-

ential phase, and therefore will require proper calibration and/or

correction. They might be substracted from the phase measurement

by using closure phase (Section 3.3), or monitored, calibrated and

corrected by a post-observational fit processing on single-baseline

band. On the other hand, the effect of λ-dependent piston (i.e. the chromatic

piston), measured at a worst site (Swain et al. 2000), was a few 10−2 rad

on the differential phase in K band, i.e. 0.01 μm. See Section 5.4 for further

details on the chromatic OPD.
2 From the simulations made by Tubbs et al. (2006) and for the correction

parameters at VLTI/MACAO (D/r 0 ≈ 10 and at least 30 zernike modes

suppressed by adaptive optics), the rms phase jitter is less than 0.1 rad. This

is lower than the equivalent fundamental (photon) noise of our targets for an

individual exposure (about 0.2 rad per spectral channel for a 25-ms frame).

Therefore, this effect is marginal in the error budget.
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differential phase (Section 5.4). By deriving equations (6) and (7),

we find that the visibility is less sensitive (by several magnitudes)

to variable chromatic OPD than the phase, whatever the considered

spectral range be. Therefore, the visibility is much favoured in this

respect.

(iii) Some post-filtering effects occur during the beam recom-

bination or on the detector plane. Internal spatial modulation

should allow us to correct this effect on the differential phase (see

Section 5.4 for more details), but not on the differential visibility.

As a summary, the colour-differential phase and visibility will be

affected differently by atmospheric and/or instrumental effects. At

this stage, it is too early to estimate which of these two observables

will best allow to reach the very high precision goal (see Section 5.5

for the current precisions on the AMBER instrument). In what fol-

lows, we will consider both of them, with some emphasis on the

phase which, historically, has been more regarded for observing

ESPs.

3.3 Closure phase

Closure phase has first been proposed for observing ESPs by

Ségransan et al. (2000). If more than one interferometric baseline

is available, it probably constitutes the most efficient approach for

suppressing the instrumental effects on the interferometric phase.

We note as (i, j) the baseline ranging between telescopes i and j.
Assuming the beams are spatially filtered, we can expand �t(i, j) in

equation (3) as

�(i, j) = �∗(i, j) + [ψOPD(i, j) + φt(i, j)], (8)

where ψ OPD(i, j) is the phase term introduced by the OPD previous

to the recombination of the beams (see equation 6), and φ t(i, j) corre-

sponds to the effects which occur during and after the recombination.

Closure phase entirely suppresses the OPD effects by summing the

pairs of baselines over a closed loop, so that the phase shifts between

the beam pairs are globally nulled:
∑

(i, j)
ψOPD(i, j) = 0. The closure

phase, noted hereafter with 
, is then


 =
∑
(i, j)

�(i, j) =
∑
(i, j)

�∗(i, j) + φt(i, j). (9)

A way to completely calibrate the instrumental effect
∑

φt(i, j)

would combine the techniques of closure phase, colour-differential

phase and spatial modulation. The latter consists in commuting the

interfering beams prior to their combination (Petrov et al. 2003, and

Section 5.4). The precision of the closure phase measurement would

then be limited only by the fundamental noise on the astrophysical

term
∑

(i, j)
φt(i, j).

3.4 Fundamental noises

We call ‘fundamental noises’ the sources of noise which cannot be

reduced for a given instrumental setup, namely the photon noise,

the background thermal noise and the detector readout noise. Let us

first examine the effect of the noise on the measured phase, which

has been analysed by Petrov (1989) and Chelli & Petrov (1995a). A

correct approximation is to consider that the Gaussian error on the

phase measurement at a given spectral frequency u is

σ�(u) =
√

B2
p(u)/2

M(u)
, (10)

where Bp(u) represents the level of noise and M(u) the fringe signal,

defined as the height of the fringe peak at the spatial frequency u. If

Re

λ

Φ

u

(u)

B(u)

u=0
Im

Φσ

u=B/

Figure 1. Illustration of the interferometric phase amplitude and noise. The

phase � is defined as the argument of the fringe peak in the complex plane

at the spatial frequency u = B/λ. Some error σ � on the measurement is

introduced by the fundamental noise (projection of vector B). In practice,

the absolute phase is highly affected by unknown achromatic terms, so it is

necessary to use relative measurements, e.g. the differential phase between

two spectral channels (i.e. two different spatial frequencies).

V(u) is the visibility contrast and Ni the level of flux brought by the

aperture i to the fringe, then the amplitude of the fringe signal is

M(u) = V (u)
√

Ni N j . (11)

Let us assume hereafter that each of the nTel apertures equally

yields a mean flux 〈N〉, and that there are no redundant baselines.

Then, M(u) = V(u) 〈N〉.
The noise variance B2

p is the sum of the variances from the dif-

ferent sources of noise. The photon noise variance is equal to the

total number of collected photons from the source: N ∗ = nTel 〈N 〉.
The thermal noise variance is N th (the number of photons from the

thermal background), and the readout noise variance on npix pixels

per frame and nf frames can be written as n f npix σ RON. Because

the error on the signal is affected only by the perpendicular projec-

tion of the noise vector in the complex plane (see Fig. 1), the noise

standard deviation is divided, on average, by a factor of
√

2. Then

equation (10) is

σ�(u) =

√(
N∗ + Nth + nf npix σ 2

RON

)
/2

V (u) 〈N 〉 . (12)

For the visibility, the error σ V (u) has a similar form, except for

the fact that it is not normalized by the visibility itself, and that the

factor
√

2 does not apply to the noise B2
p , since we are interested
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here in its amplitude and not in its phase. Therefore

σV (u) =
√

N∗ + Nth + nf npix σ 2
RON

〈N 〉 . (13)

For differential observables, the error includes uncertainties from

both the studied spectral channel λi and the reference channel λref.

If the reference quantity is integrated over a much wider band, as

we suppose to be the case, the latter can be neglected in the first

approximation.

Also, when observing relatively bright sources (typically K =
5 for the present application), equations (12) and (13) may take

different forms for the near-IR (AMBER) and for mid-IR (MIDI)

observations at VLTI. The photon noise is largely dominant in the

noise budget of AMBER; thus the error can be simplified by ne-

glecting the readout and thermal noise terms:

σ�(u) = 1

V (u)

√
nTel

2〈N 〉 (14)

and

σV (u) =
√

nTel

〈N 〉 . (15)

On the other hand, the thermal background noise is the main

source of noise for MIDI. An empirical law gives the expected

value for the relative error on the phase of MIDI, which is inversely

proportional to the N-band brightness 10−m N /2.5 of the source.

Let us now compare the error σ 
 on the closure phase signal and

the error σ � on the phase measurement from an individual baseline,

taken from the array of baselines used for the closure phase. Here,

we assume the photon noise is dominant in the error budget, as it

should be in the case of AMBER triple-baseline measurements.

The error on closure phase is the quadratic sum of the errors from

the individual interferometric phases. The relationship between the

errors on the closure phase with three telescopes (obtained on a

multiple beams recombiner such as AMBER) and on the single-

baseline phase in the same conditions is then simply: σ
 = √
3×σ�.

Moreover, it can be shown (from equation 27) that the ampli-

tude of the astrophysical signal with the closure phase comprises

between 0 and 2 times the amplitude of the single-baseline phase

signal, depending on the interferometric resolution and on the po-

sitions of the baseline vectors relatively to the source. For a source

resolved on all the three baselines, one can consider the mean value


 	 �, as an order of scale. Also, the closure phase measurement

‘costs’ three single-telescope time units. For the same cost, two in-

dependent single-baseline phase measurements could be measured.

So, the amount of observation time for acquiring the same amount

of information differs by a global factor

t
 =
√

3
2 × 3 t� = 6 t�. (16)

In other words, for a given signal-to-noise ratio and quantity of

information, closure phase requires six times more telescope time

than single-baseline phase measurement.

4 D I F F E R E N T I A L P H A S E F O R E S P S

Let us first present the interferometric observables in the general

case of a binary system, and then express how they depend on some

parameters of an extrasolar planetary system (the flux ratio between

planet and star, their angular separation, the orbital phase) and how

they can be translated into estimates of the spectrum, inclination

and mass. We simplify the formalism by presenting the equations of

the interferometric observables at a single wavelength. The phase

is defined with an unknown additional constant, noted k, which

disappears in the colour difference with an appropriate reference

wavelength.

We note, respectively, by I 1(λ) and I 2(λ) the monochromatic lu-

minosity of the two binary components, separated by an angle ρ.

The angular origin is taken on the first component. We first assume

that the spatial distribution of each component is independent of the

wavelength, i.e. both objects appear as a disc of constant diameter,

defined by a normalized function O(θ) and weighted by I(λ). Con-

sider the Fourier transform IO(w, λ) of the brightness distribution in

the plane of spatial frequency w (u, v) covered by a single-baseline

interferometer, where the u-axis component is chosen along the in-

terferometric baseline B and takes the value u =B/λ. Note Ci, the

visibility contrast of each component at the considered spatial fre-

quency. The ‘coherent flux’ is the product Ci Ii.

IO (w, λ) = C1 I1 + C2 I2 [cos(2πu · ρ) + j sin(2πu · ρ)]. (17)

The fringe phase is the argument of IO(w):

�∗ = arctan
C2 I2 sin(2πu · ρ)

C1 I1 + C2 I2 cos(2πu · ρ)
+ k (18)

and the visibility is its normalized amplitude

V∗ =
√

C2
1 I 2

1 + C2
2 I 2

2 + 2C1C2 I1 I2 cos(2πu · ρ)

C1 I1 + C2 I2

. (19)

4.1 Approximation with a faint planetary companion

In what follows, we consider the specific case where the secondary

component is a planet, with luminosity noted to be I p = I 2. Its

angular size is completely unresolved by current long-baseline in-

terferometers; therefore we take C 2 = 1. The stellar component can

be marginally resolved.3 We note hereafter its visibility Cs and its

luminosity I s. For the case of a ‘Pegasi’ planet, the estimation of the

flux ratio between the planet and the star ranges from a few 10−5 to

10−4 in the J band, 10−4 to 10−3 in the K band and several 10−3 in

the N band (see Section 5.1). For planets with larger orbital separa-

tions, these ratios are even smaller; thus the following assumption is

also valid. Considering that I p(λ)/[C s(λ) I s(λ)] 
 1, a first-order

approximation of equation (18) can be made:

�∗(λ) ≈ Ip(λ)

Cs(λ)Is(λ)
sin(2πu · ρ) + k. (20)

Similarly, equation (19) can be approximated by

V∗(λ) ≈ 1 − Ip(λ)

Cs(λ)Is(λ)

[
1 − 1

2
cos(2πu · ρ)

]
. (21)

A favourable point of the differential technique for observing

ESPs comes from the high difference in temperature, and therefore

in colour, between the stellar and the planetary components. This

implies that their flux ratio may vary largely between different spec-

tral channels. If the spectral coverage is wide enough, one or several

spectral channel(s) in which the ratio is expected to be particularly

low may be chosen as a reference λref for the colour-differential

3 Among the targets discussed hereafter, the typical angular diameter of the

stars is 1 mas. For a baseline B = 100 m, this corresponds to a visibility

contrast of about 0.65 in J band and 0.9 in K band.
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measurement, so that the signal in the reference channel is neg-

ligible compared to the signal at other wavelengths. For instance,

observing a ‘Pegasi’ EGP simultaneously in J, H and K bands with

AMBER allows to take λref in the J band, where the planet/star ra-

tio and thus the phase signal is at least 10 times lower than in the

K band. The differential quantities in equations (4) and (5) can

then be approximated by ��∗(λ, λref) ≈ �∗(λ) with k = 0, and

V ∗(λ, λref) ≈ V ∗(λ).

4.2 Effect of the planetary phase

Just like the Moon phase, the orbital phase of the planet determines,

for a given orbital configuration, the proportion of its apparent en-

lightened surface (i.e. the fraction of visible ‘day’ croissant) over

the whole disc area. Let φp be the average orbital longitude of the

planet as seen from the observer (with the origin φp = 0 at the max-

imum apparent separation), and i the inclination of the orbital plane

with respect to the observer’s line of sight. We define the ratio of

the apparent ‘day’ surface over the total disc area as

P = 1

2
(1 + sin φp sin i). (22)

The non-irradiated (i.e. ‘night’) side may also contribute to the total

observed flux from the planet. Let c be the ratio of the brightness

per surface unit between the night and the day sides. Depending

on the wavelength and the circulation of energy in the atmosphere

between the two sides, c might range from 0 (in the case where the

flux contribution from the night side is null) to 1 (if the day and

night parts are equally bright). We consider, here, only the thermal

emission of the planet (which is clearly dominant in the IR flux

budget of hot EGPs) and also assume that the effective temperature

in either the bright or the dark area is homogeneous (i.e. each side

emits isotropically over a semisphere). The ratio of the observed

flux compared to a full ‘day’ disc is

Pc(λ) = P + c(1 − P) = (1 + c) + (1 − c) sin φp sin i

2
. (23)

The apparent flux received from the planet is then P c(λ) I p(λ),

where Ip is the flux when the planet is viewed face-on as a full

disc. In fact, the ratio c can be heavily constrained from theoretical

studies. Models on atmospheric circulation (Showman & Guillot

2002) predict that the difference of temperature between the night

and day sides of ‘Pegasi’ planets is about 400 K. Assuming a global

effective temperature of 1000 K, this means a flux ratio c of about

1/100 in K band, and 0.4 at 10 μm. In the near-IR, the contribution

from the night side yields a chromatic variation below the expected

precision of the measurements (estimated further in this paper), and

therefore we will consider c ≈ 0 and Pc ≈P in that case. The spectral

shift due to Doppler effect should also be taken into account. It is

shown to be negligible in the present case.4

4.3 Resolution and amplitude of the interferometric phase
and closure phase

Note α(λ) = I p(λ)/[C s(λ) I s(λ)], the ratio between the coherent

fluxes from the planet when viewed face-on and from the star. If we

4 For a ‘Pegasi’ planet, the measured Doppler shift of the star δλ∗ is typ-

ically a few 10−7 μm at 2 μm. Assuming a planet/star mass ratio equal to

M Jup/M Sun ≈ 10−3, this yields a shift of about δλp = 10−4 μm on the plan-

etary spectrum. This is far below the available spectral resolution capability

at the VLTI. We can therefore neglect the Doppler shift.

include the planetary phase factor, equation (20) becomes

�∗(λ) = Pc(λ) α(λ) sin(2πu · ρ) + k. (24)

For a given wavelength, the maximum amplitude �max of the

phase along the orbital motion follows two distinct regimes, de-

pending on whether the argument 2πu · ρ reaches π /2 or not. Let

(u · ρ)max be the maximum of the scalar product u ·ρ along the orbit.

If (u · ρ)max � 1/4, the system is resolved and the phase is repre-

sented as a periodic function of amplitude �max(λ) ≈ P c(λ) α(λ).

Alternatively, if (u ·ρ)max < 1/4, the system is not interferometri-

cally resolved, and the maximum phase is

�max(λ) = Pc(λ) α(λ) sin[2π(u · ρ)max]. (25)

If, for lower projected angular separation, u · ρ gets smaller below

the resolution limit, the phase tends asymptotically towards a linear

expression. It is then related to the photocentre vector ε∗, i.e. the

barycentre of the star+planet brightness distribution:

lim
u·ρ→0

�∗(λ) = 2πα(λ)u · ρ = 2π/Cs u · ε∗. (26)

As for the closure phase of an EGP target, it is, according to

equations (9) and (24),∑
(i, j)

�(i, j)(λ) ≈ α(λ) Pc(λ)

∑
(i, j)

sin[2πu(i, j) · ρ]. (27)

The sine function can be decomposed in terms of first order and

of higher order of its Taylor expansion. Then the sum becomes∑
(i, j)

sin[2πu(i, j) · ρ] ≈ 2π

{∑
(i, j)

u(i, j) · ρ +
∑
(i, j)

o
[
(u(i, j) · ρ)3

]}
,

(28)

where o[(u(i, j) · ρ)3] groups the third and higher order terms. The

sum of the first-order terms is null because it can be factorized by

ρ, and the spatial frequencies u(i, j) =B(i, j)/λ is null on the closed

loop of the baselines. If the system is non-resolved, the closure phase

signal decreases fast with
∑

o[(2πu(i, j)·ρ)3] as u(i, j) ·ρ gets smaller.

This trend is to be compared with the decrease of non-resolved phase

from a single baseline (equation 26), which varies with u · ρ on the

first order. Non-resolution is therefore more critical when measuring

a closure phase. Nearby hot EGPs such as 51 Peg (with a separation

<5 mas) are partially resolved and could be observed by closure

phase with VLTI in the near-IR (the interferometric resolution with

AMBER being ≈4 mas in K band), but are too unresolved to give a

measurable signal with a VLTI array at 10 μm (e.g. the Apres-MIDI

project, see Lopez et al. 2003, with a resolution of ≈20 mas).

4.4 Determination of the planetary spectrum from the
interferometric phase

Thanks to the photometric channels offered by the VLTI instru-

ments, the spectroscopic data can be acquired at the same spec-

tral resolution and simultaneously with the interferometric data. We

therefore have the star+planet flux

I (λ) = Is(λ) + Ip(λ). (29)

The spectrum I p(λ) can be determined by combining either the

interferometric phase (equation 24) or the visibility (equation 21)

with the spectroscopic measurement I(λ). (In the following equa-

tions, we omit the dependence of the variables with wavelength λ,

for a more simple notation). The planetary flux as a function of the

phase is

Ip = I Cs�

Cs� + Pc sin(2πu · ρ)
. (30)
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As a function of the visibility, the planetary flux is

Ip = I Cs

[
1 − 1

2
cos(2πu · ρ) − V

]
1 − 1

2
cos(2πu · ρ) + Cs

[
1 − 1

2
cos(2πu · ρ) − V

] . (31)

The primary unknowns above are contained in the angular vector

ρ. Since each of the two equations above contains a complementary

trigonometric function of u .ρ, the scalar product can be determined

by combining them. That yields the spectrum as a function of V(λ)

and �(λ). This assumes, though, that both the differential phase and

the visibility can be measured at the goal precision. Also, from just

one baseline (i.e. a unique u), the vector ρ (and subsequently the

planetary orbital elements) is still undetermined.

We develop hereafter a solution where both the spectrum and

the angular vector ρ can be obtained by a single-time measurement

of just one differential observable along two baseline directions.

We choose to give the formalism as a function of the phase �(λ),

although it could as well be expressed as a function of the visibility.

The orbital elements for a circular orbit5 appear explicitly into the

scalar product u · ρ:

u · ρ(t) = B

λ

a

d
[cos θ sin φp(t) + cos i sin θ cos φp(t)], (32)

where a is the semimajor axis, d the distance between the planet

and the observer, φp(t) the orbital phase, θ the angle between the

baseline direction and the major axis of the apparent ellipse covered

by the inclined orbit. θ is directly related to the longitude of the

ascending node � and to the orientation of the baseline. Since this

method does not aim at detecting new planets, but rather at getting

the spectrum, inclination and mass of planets previously detected

by RV surveys, the orbital parameters a and φp(t) as well as the

lower mass estimate M sin i are supposed to be provided from the

RV data. Also, we assume that the stellar distance d is known (from

the Hipparcos parallax the precision on d is typically 1 per cent for

our targets).

The CDI observations can be made at the maximum star–planet

apparent separation, i.e. at the orbital phase φp = π/2 where ρmax =
a/d. In that configuration, half of the planetary disc appears irra-

diated from the observer’s point of view, and Pc = (1 + c)/2. The

parameter of inclination i then disappears from equation (32) and

only the orientation angle θ remains unknown, so equation (24) can

be written as

�(φp=π/2) = 1 + c

2
α(λ) sin

(
2π

B

λ

a

d
cos θ

)
. (33)

Angle θ is obtained from the ratio between the differential phase

measurements along two different baseline directions, at that posi-

tion φp = π/2 of maximum separation. For instance, if the baselines

(noted as B1 and B2) are perpendicular and have the same length,

the angle θ with respect to the direction of B1 is

θ = arctan
arcsin �B2

arcsin �B1

. (34)

As u · ρ is determined for that position, the error σ Ip on the

planetary spectrum can be estimated by deriving equation (30) as a

5 In the general case, not treated here, of a non-circular planetary orbit,

the additional parameters of eccentricity e and the argument of perihelion ω

would appear in equation (32). These parameters are in principle also known

from RV measurements, so they are not additional unknowns but just add

complexity to the equations presented here.

function of the relative errors σ � on the phase and σ I on the total

spectrum:

σIp = Cs(� σI + I σ�)[Cs� + Pc sin(2πu · ρ)] + I Cs � σ�

[Cs � + Pc sin(2πu · ρ)]2
. (35)

Which of the terms � σ I or I σ � is dominant in the error budget?

For the typical case of a hot EGP around a nearby star, we expect

(see Section 5.2) that the signal-to-noise ratio on the phase �/σ �

will be of the order of a few tens or less. On the other hand, the

error on the spectrum is dominated by the photon noise of the star,

so that s/σs = √
N∗, i.e. several thousands for a magnitude five

star observed during more than 1 h at a low spectral resolution.

Therefore, I σ � � � σ I , so σ Ip is strongly dominated by the phase

error term. Also, equations (35) and (30) can be simplified by the fact

that C s � 
Pc sin (2πu · ρ). The ratio between these two equations

yields that the relative error on the spectrum is approximated by the

relative error on the phase:

σIp/Ip ≈ σ�p/�p. (36)

4.5 Determination of the orbital inclination
and planetary mass

Here, we assume that the flux contribution from the non-irradiated

side is negligible, i.e. that the parameter of planetary phase is Pc =
(1 + c)/2. As mentioned in Section 4.2, this statement should be true

for giant planets with tidally locked orbits observed in the near-IR

wavelengths. Suppose that the differential phase is first measured

along two baselines at the orbital phase φp = π/2, as described in

the previous paragraph, thus yielding the flux ratio, the orientation

angle θ and the scalar product u · ρπ/2. A second set is measured

along the same baselines a quarter of an orbit further, at the orbital

phase φp = π where ρπ = ρπ/2 cos (i) and Pc = (1 + sin i)/2. The

inclination may be determined by combining equations (24) and

(32). We can explicit α from equation (33) with c = 0, and separate

the terms which depend on i from the others in order to get the form

f (i) = g(�π , �π/2):

(1 + sin i) sin (2πu · ρπ/2) tan θ cos i = sin (2πu · ρπ/2)
�π

�π/2

. (37)

There is no straightforward literal solution for the equation above,

but its roots can easily be resolved numerically. The error on the

inclination can be expressed as a function of the error on the phase

using the differential form of each side. If we neglect the error made

on ρπ/2 from RV data and parallax, the derivative of the left-hand

term is d f = (δf /δi) di. The right-hand term is derived with respect

to the error d � = σ � on the two phase measurements, which, in a

first-order approximation, are here supposed to be independent of the

orbital position since the stellar photon noise strongly dominates:

σ �π
≈ σ �π/2

and �π ≈ �π/2. Then, the error σ i = di on the

inclination is

σi = 2
sin 2πu · ρπ/2

δ f /δi

σ�π/2

�π/2

. (38)

From this, the error on the planetary mass M is obtained simply.

If we note K = M sin i, the lower estimate of the mass from RV data,

then

σM = K

tan i
σi . (39)

The errors on i and M are higher for the particular values of i
where δf /δi approaches zero. Such effect is smoothened by using a
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Figure 2. Achievable precision from the photon noise on the orbital incli-

nation i (full lines) and the planetary mass M (dashed and dotted lines) as a

function of i, assuming a planetary mass M = 1.4 M Jup and an orbital dis-

tance of 0.05 au around a solar-type star at a distance of 10 pc (top curves)

and 30 pc (bottom curves). The input noise on the differential phase signal

corresponds to 5 h of exposure time on 2 UT with AO, in K band at a low

spectral resolution. The errors on i (and thus on M) rise sharply for certain

spatial frequencies. This effect is smoothened by considering several (here

seven) spectral channels.

weighted estimator of σ i over several spectral channels, i.e. several

spatial frequencies ui = B/λi . Fig. 2 shows some typical results, as

a function of the inclination. When observing over a few hours, a

close-in EGP (a ≈ 0.05 au) at a distance up to a few tens of parsecs,

the error on the inclination i is lower than 0.1 rad for most values of

i. The error on the mass is lower than 0.1 Jupiter mass, except if the

inclination tends towards low values where, for a given M sin i, the

error on M increases fast with 1/tan i.

5 E S T I M AT E S O F O B S E RVA B I L I T Y

5.1 Assumption on the astrophysical source

For estimating the potential of differential interferometry for ESPs

observation, we considered a selection of about 70 objects with

short orbital distance, among the 170 ESPs detected so far by RV

(from the catalogue established by J. Schneider).6 Only the objects

ranging below M ≈ 13 M Jup, often considered as the deuterium

combustion critical mass and a limit for brown dwarf classification,

are investigated hereafter; since brown dwarfs have a high intrin-

sic thermal emission independent of their distance to the star, they

would be more favourable candidates for the observation using the

differential phase method (Ségransan et al. 2000). The fluxes of the

EGPs are modelled using some synthetic spectra furnished by T.

Barman, following the method described by Barman et al. (2001).

These synthetic spectra were calculated for an irradiated 1-Jupiter

mass EGP orbiting at various distances (0.05, 0.08, 0.1, 0.2, 0.3,

0.5 and 1 au) around a G2 star. We use the model of a ‘condensed’

atmosphere, which appears far more realistic than the ‘dusty’ or

‘blackbody’ (BB) model for the case of hot EGPs7 on which we

6 See http://www.obspm.fr/encycl/catalog.html
7 Barman et al. (2001) have investigated both models of ‘condensed’ and

‘dusty’ planetary atmospheres. For planets with orbital distance a < 0.15 au,

the authors have only used the hypothesis of a condensed atmosphere, which

is favoured in the case of strongly irradiated planets. ‘Condensed’ means here

focus hereafter. A spline interpolation of these synthetic spectra to

the actual orbital distance of the considered EGP is computed. The

planetary flux is then obtained by scaling its emitted radiation to

the estimated surface of the disc, using an empirical fit taken from

Guillot’s mass–radius computations for a dozen of strongly irradi-

ated EGPs (Guillot 1999). It predicts a radius decreasing from about

1.5 RJup for the most close-in and least-massive EGPs to about 1.05

RJup for 10 Jupiter-mass planets. We coarsely estimate the planetary

mass by adding to M sin i (given by velocimetry measures) a mean

factor of 30 per cent accounting for the unknown inclination term.

Due to the various uncertainties on mass, age and input physics,

the fitted law on the radius contains a relative error of typically

±15 per cent. That means an error of ±30 per cent rms on the plan-

etary fluxes, and the same error on the signal-to-noise ratio estimate.

This translates in a large error of ±60 per cent on the estimated ex-

posure time for a given signal-to-noise ratio.

5.2 Results of the modelling

Fig. 3 shows an example of the amplitudes of interferometric phase

with VLTI and the corresponding levels of fundamental noise over

a long exposure, for a 51 Peg-like system (orbital separation of

0.05 au) and a giant planet at separation 0.08 au, both at a distance of

10 pc. The amplitude of the differential phase in the J, H and K bands

of AMBER is estimated to range between several units and a few

tens above the noise level, depending on which spectral channels are

compared with each other. For MIDI, the colour-differential mea-

surement is much less favourable due to the flatness of the phase as

a function of wavelength; the signal-to-noise ratio of the differential

phase is of the order of one unit, in this case.

Table 1 lists, for a number of known EGPs, the estimated ob-

servation time t 3σ needed to get a signal-to-noise ratio of 3 on the

planetary flux in each spectral channel.

The most favourable targets for CDI are the EGPs with the shortest

orbital distance (around 0.05 au or less). The explanation for this is

simple. When the distance a decreases, the stellar flux impinging

the planet increases faster (as 1/a2), and the overall signal increases

as well. For a given orbital distance, nearby and bright stars are

obviously favoured, since their photon noise is lower and the angular

separation is larger. For such nearby ‘Pegasi’ objects, t 3σ may be as

small as a few tens of minutes with AMBER/VLTI in the full K band.

(If we considered, instead of a condensed model, the pessimistic

assumption of a BB emission, t 3σ would be a couple of hours for

these objects.) These results can be extrapolated to the medium-

resolution mode (R = 1500) offered by AMBER, by applying a

factor of 1500/35 on t 3σ : each of the three most favourable targets

could barely be observed at medium resolution within a full night

with a signal-to-noise ratio of 3. In the low-resolution mode R =
35, a dozen of targets would yield a significant signal-to-noise ratio

in K band within a full night, according to the synthetic spectra

assumption. Their orbital distances range between a = 0.038 and

0.07. The H band, and even more the J band, offers a lower signal

for an equivalent amount of fundamental noise, and only a handful

of objects could be observed within a few hours in these bands.

that all the dust has been removed from the atmosphere by gravitational set-

tling, thus spectral absorption features appear deeper. On the opposite case,

the dusty models assume that the dust and grain particles remain in the atmo-

sphere and contribute to diffuse the light. For comparison, we also considered

an improbable BB radiation model, taken as the lowest and smoothest (i.e.

most pessimistic) limit for the flux of our targets in the near- and mid-IR

range.
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Figure 3. Estimated amplitude of interferometric phase φ (λi ), as a function of wavelength at a low spectral resolution, for a hypothetical Jupiter-mass planet at

an orbital separation of 0.05 au (full line) or 0.08 au (dotted line) around a G2 star located at 10 pc. The signal is to be compared with the levels of fundamental

noise (thick lines) corresponding to 5 h of exposure time on the AMBER and MIDI instruments of the VLTI (assuming two 8-m telescopes with AO and a

spectral resolution R = 35).

Table 1. Estimated potential of colour-differential interferometric observa-

tion on some known EGP candidates, in H and K bands (AMBER/VLTI) and

in N band (MIDI/VLTI). The effective integration time t 3σ for obtaining a

signal-to-noise ratio of 3 in each spectral channel, with a spectral resolution

R = 35, is indicated in hours (up to a limit of 30 h). It does not include

the calibration exposures and the overheads (in particular the chopping, for

observations made in N band). We used synthetic spectrum models from

Barman et al. (2001) for the planetary flux (see text for details). Note that

the error on t 3σ is large (±60 per cent), mostly due to the unknowns on the

planetary mass and age.

EGP V (mag) Sp. type a M sin i ρ t 3σ (h)

(au) (M Jup) (mas) H K N

tauBoo 4.5 F7 0.046 3.8 2.88 2.0 0.2 7.8

upsAnd1 4.63 F7 0.059 0.71 4.25 4.4 0.3 3.4

51 Peg 5.49 G2 0.05 0.47 3.16 4.2 0.3 7.2

HD75289 6.35 G0 0.046 0.42 1.54 12.8 0.8 >30

H179949 6.25 F8 0.045 0.84 1.63 14.5 1.0 >30

HD46375 7.94 K1 0.041 0.249 1.19 >30 2.3 >30

H217107 6.16 G8 0.07 1.28 3.45 >30 2.5 >30

HD83443 8.23 K0 0.038 0.35 0.84 >30 4.7 >30

H187123 7.79 G5 0.042 0.52 0.81 >30 5.0 >30

H209458 7.65 G0 0.045 0.69 0.93 >30 6.9 >30

The signal-to-noise ratio also drops strongly when observing the

same object in N band (MIDI), where the thermal noise is high.

Only a very few number of targets (all of which with a < 0.06 au,

around very nearby stars) might be detected with MIDI within a

nighttime.

5.3 Astrophysical noises

Some astrophysical sources other than the ESP might affect the

colour-differential detection. If we assume that the field of view is

not polluted by some other sources of light in the foreground or

background of the star, the astrophysical noises include the stellar

rotation and non-radial stellar oscillations, the stellar activity (spots

and faculae) and the exozodiacal light.

Since the star of any extrasolar planetary system can be considered

as mostly unresolved, the angular effects of stellar rotation, non-

radial oscillations and stellar activity will produce on the fringe

pattern a differential phase proportional to the displacement of the

stellar photocentre ε(λ), as stated in equation (26).

5.3.1 Stellar rotation

Several authors (Lagarde 1994; Chelli & Petrov 1995b) have com-

puted the photocentre displacements produced by a rotating star

possibly affected also by radial or non-radial oscillations. Their re-

sults can be summarized by saying that the maximum photocentre

displacement �εmax(λl , λref), measured between wavelength λl of

an absorption line and a reference wavelength λref taken in the con-

tinuum, is given by

�εmax(λl , λref) ≈ A(1 − p)
R∗
d∗

Vrot sin i + Vnr

�Vline

, (40)

where R∗ is the stellar radius, d∗ the distance, V rot sin i the rotation

velocity and V nr the amplitude of the velocity fluctuations due to

non-radial oscillations. The line is described by its depth p (with 0 <

p < 1), defined without stellar rotation and instrument broadening,

and by its equivalent width V line, which combines the natural width

of the line and the effect of the instrument spectral resolution. The

factor A is an integration factor depending on the stellar limb dark-

ening and on the exact line profile. For all usual set of parameters,

0.1 < A < 0.2, and we will take here A = 0.15. For any spectral

resolution smaller than R = 10 000, the measured line width will be

dominated by the instrument profile and V line = c/R. For stars close

to the solar type, the typical V rot sin i is a few km s−1. V nr is smaller

than 100 m s−1 and can therefore be neglected with regard to the

rotation velocity. Among the targets listed in Table 1, the strongest

rotation effect is expected on τ Bootis, with V rot sin i = 14 km s−1,
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p = 0.5 and R∗/d ∗ ≈ 1 mas. For baseline B = 100 m, wavelength

λ = 2 μm and the lowest resolution of AMBER R = 35, we get

�εmax(λl , λref) = 1.2 × 10−7 arcsec

and

�rot(λl , λref) = 1.8 × 10−4 rad.

This phase value is comparable to the signal expected from a

‘Pegasi’ planet displayed in Fig. 4. It must therefore be measured. A

possible solution is to use the higher spectral resolution of AMBER

(R = 12 000) to measure the phase across one line [�rot(λl , λref] ≈
0.06 rad, signal-to-noise ratio ≈50 for 30 min of integration time),

in order to obtain the exact diameter of the star and the position

angle of its rotation axis. These values can then be combined with

measured spectra to compute the effect of stellar rotation at low

resolution. In addition, the position angle of the rotation axis gives

an interesting clue on the position angle of the planetary orbit, and

can eventually be compared with the actual orientation of the orbital

plane.

5.3.2 Stellar spots

For solar-type star, the typical total size of the spots may represent

about 1 per cent of the disc. The theoretical computation by Aigrain,

Favata & Gilmore (2004) shows important differences between stars

of various type and age, but photometric variations in white light stay

lower than a few 10−5 over a few hours. This order of scale seems

consistent with the data gathered by VIRGO/SOHO for the sun: after

substracting the long-term drift, we computed a relative standard

deviation due to solar activity of about 2 × 10−5 over a few hours in

the red band. The relative variations of photometry are expected to be

significantly lower in the near-IR range than at shorter wavelengths

or over the whole integrated spectrum. We therefore take 10−5 as an

estimate of the variations in J band. Assume, in the most pessimistic

case, that the sunspot’s distribution is non-symmetrical with respect

to the rotation axis and is located at the maximum possible separation

of the photocentre (i.e. almost one stellar radius from the disc centre).

The resulting shift of interferometric phase is then lower than the

level of noise over a few hours of integration; e.g. about 7 × 10−6 rad

for a star at 10 pc. The stellar spots can therefore be considered to

have a negligible effect.

5.3.3 Exozodiacal light

Exozodiacal light is the scattered diffusion of the stellar light by the

surrounding dust. Its distribution is in principle symmetrical around

the star, so its effect on the displacement of the photocentre is only

an additional weight that lowers the effect of the asymetrical distri-

bution due to the planet. In a general case, the quantity of exozodical

light is largely unknown, as it depends on the (hypothetical) history

of collisions in the planetary system. We consider the only available

data, the zodiacal light in our Solar System, taken from the estimated

dust temperature according to the COBE model. The emission from

the dust is much higher at 10 μm than at shorter wavelength, and

strongly decreases with the orbital radius, from about 104 MJy sr−1

at 0.01 au to 20 MJy sr−1 at 1 au, for a solar-like system located

at 10 pc. In the most pessimistic configuration of a face-on zodia-

cal disc, the integration of the 10-μm emission between 0.01 and

1 au gives a relative weight of about 10−5 rad. That is, a factor of

about 10−2 below the noise level in N band. Although it would be

hazardous to extrapolate our knowledge of the Solar System’s zodi-

acal light to other stars, the large margin below the detection levels

even for the most pessimistic case indicates that exozodiacal light

is unlikely to bias the measurements.

5.4 Instrumental and atmospheric chromatic effects

From the present study, it appears that if the measurements were

affected only by the fundamental noises and if we properly treat the

astrophysical phenomena, the goal of doing hot EGP spectroscopy

with the VLTI is achievable. This assumes, though, being able to

measure differences of phase ranging from a few 10−5 to 10−4 rad.

In terms of stability, this is a very challenging technical goal: up to

now, differential interferometry with GI2T allowed to approach a

precision of 10−2 rad (Vakili et al. 1994) and the similar technique

of differential speckle interferometry showed results in the 10−3 rad

range (Sánchez et al. 1997). We have therefore to gain at least one

order of magnitude in the control on the differential phase stability.

In Petrov et al. (2003), we describe a systematic analysis of all in-

strumental and atmospheric contributions to the differential phase.

Due to the single-mode fibre spatial filtering, the effects occurring

before the fibres produce only temporal variations of the chromatic

OPD. These variations are due to instrumental factors (changes in

the difference of temperature between the fibres, combination of

residual beam motions through imperfect optical elements,. . .) and

the chromatic dispersion of the air (in the open atmosphere and

in the interferometric tunnels) where the refractive index depends

on the local properties of temperature, pressure and humidity. After

the fibres, additional errors on the chromatic phase may come from

the beam combination and detector defects, together with chromatic

variations of the spectrograph point spread function (PSF). Also, a

significant ‘chromatic-like’ effect might come from the instanta-

neous (achromatic) piston in each frame combined to the fact that

the spectral channels on the detector are not read exactly at the same

time. This can be corrected using a specific data processing and will

eventually be cancelled when a fringe tracker is operational.

Overall, we estimate that this could produce phase variations of

several 10−2 rad over the bandwidth in the near-IR, in a time-scale

of a few minutes. Our strategy to overcome these effects has several

angles.

(i) By design and construction, the instrumental effects have

been reduced and made slow enough to be eliminated by an internal

modulation at typical 0.02-Hz frequency (Vannier et al. 2003). This

modulation consists in regularly exchanging two of the beams feed-

ing AMBER, using a dedicated Beam Commuting Device (BCD).

The atmospheric and astrophysical terms are then inversed while

the instrumental terms remain constant, assuming the modulation

is fast enough. Instrumental effects can therefore be eliminated in

the difference between measurements made with and without beam

commutation.

(ii) The remaining variable chromatic terms come from atmo-

spheric dispersion. Akeson, Swain & Colavita (2000) made mea-

surements with Palomar Testbed Interferometer in the IR and found

phase perturbations as large as a few 10−2 rad, which they inter-

preted as mainly due to variation of the thickness of water vapour

in the two beams. The dominant effect of water vapour dispersion

has been further analysed theoretically and quantified by Colavita

et al. (2004), who found a similar amplitude on the resulting error of

differential phase. In the mid-IR, these effects were recently mea-

sured with MIDI and discussed by Meisner & Le Poole (2003) and

Tubbs et al. (2004). In the latter reference, the authors found the

measurements to be in agreement with a model for the refraction of

the air based on the HITRAN data base.
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Since the spectral intervals used by the VLTI instruments are

not affected by strong atmospheric lines, the dispersion over these

intervals is fairly smooth with wavelength. In the near-IR, the

difference in dispersion between the beams follows a known stan-

dard law, function of wavelength, multiplied by only two unknown

variable parameters: the integrated thickness differences in dry air

and in water vapour [see Ciddor (1996) for a detailed discussion on

the dispersion law]. We estimate that these effects can be extracted

from each exposure frame of the data set, the number of variable as-

trophysical and atmospheric unknowns being lower than the number

of differential phase equations (Vannier et al. 2005a). An alternative

(or complementary) possible way to monitor the dispersion law is

to use a spectral channel where the astrophysical signal is known

to be very low, such as at the beginning of the J band. In both the

cases, a side effect of the removal of the continuous dispersion from

the differential phase is that it might as well suppress part of the as-

trophysical signal which would have a similar shape in wavelength.

Therefore, it might decrease the planetary continuum signal. And

it remains to show in practice up to which extent the variations of

the atmospheric dispersion due to changing conditions of the air

during each exposure frame and between the science source and its

calibrator star can indeed be monitored for correction.

(iii) The use of closure phase with three telescopes eliminates

all the OPD terms, including the atmospheric ones, whatever is their

amplitude. However, the beam combination and detector terms re-

main. They can be removed by commuting two of the three AMBER

beams using the BCD. This produces the modulated closure phase,

which is in principle independent of any atmospheric and instrumen-

tal effect. Nevertheless, the use of closure phase has a substantial

cost in telescope time, as shown previously (Section 4.3).

Our observing plan can finally be summarized as follows. Use

the colour-differential phases individually from three baselines (i.e.

three telescopes), eliminate the instrumental effects by commut-

ing the beams and try to suppress the atmospheric effects in the

model fitting. If this is insufficient, we will use the modulated clo-

sure phase from the combination of the three baselines. We are

quite confident that one of these steps will yield phase or closure

phase chromatic variations close to the level set by the fundamental

noises.

5.5 Current precision on AMBER

First tests of the stability of the differential and closure phase were

performed during the first commissioning and advanced guaranteed

time runs of AMBER (end of 2004). The extremely high accuracy

needed for ESPs was not the first priority in these early phases of

AMBER commissioning, and the following results have been ob-

tained without Beam Commutation Device (which is currently being

commissioned), without specific thermal insulation of the fibres and

with a software and observing procedures not yet optimized for ex-

treme accuracies. The corrections of the atmospheric longitudinal

dispersion were not implemented. A very important factor is that

the fringe tracker is not yet available; this implies using very short

exposures and correcting the effects of the achromatic variations of

the piston. The data of these early runs, as well as most recent BCD

commissioning data, are still being processed as we write this, and

a detailed discussion of the results would anyway go well beyond

the scope and possible length of this paper. However, we summa-

rize here the situation at the present time (2005 November). More

information can be found in Vannier, Millour & Petrov (2005b) and

Millour, Petrov & Vannier (2006).

We have observed calibrator stars at medium (R = R) and low

spectral resolution (R = R). In both the cases, we analyse the tem-

poral stability of the measurements in each spectral channel as a

function of time as well as the statistical dispersion of the values

as a function of wavelength, over several series of exposure frames,

which are about 20 s long each, separated by about 1 min and there-

fore spanning over a total time of 5 min.

The medium resolution observations display differential phase

measurements with a statistical dispersion of σ = 8 × 10−3 rad for

25 s of effective observations (twice the photon noise level), stable

over a range of 15 min. The structures in the wavelength direction

are up to 30 pixels (0.2 μm) in width, with amplitudes reaching 20 ×
10−3 rad. They are stable over at least a few minutes. An important

point is that these features appear also in the closure phase, with

amplitudes comparable to, or larger than, the quadratic addition of

the single-baseline structures. This indicates that they are not due to

OPD but are rather produced by spatial filtering and detector defects.

In medium resolution, they will be filtered down to typically 3 ×
10−3 rad, which means that we still need to use the BCD to eliminate

them.

In low resolution, the standard deviation of the differential phase

measurements for each spectral channel and within each series of

frames is typicallyσ =1.8×10−3 rad (i.e. 1 μarcsec fringe displace-

ment). This is less than two times the fundamental noise, computed

from the measured flux and instrumental visibility. Over the total 5

min, we get σ = 0.9 × 10−3 rad, again very close to twice the photon

noise. This shows that the different series of exposures is statistically

independent on this time-scale. Therefore, in current conditions, the

accuracy of 0.5 × 10−4 rad required for the spectroscopy of the most

favourable ‘Pegasi’ planets could be reached with 1200 such frame

series, i.e. 18 h of observation. With the planned improvement of the

VLTI (less vibrations, reduced overheads), we can expect to multi-

ply by two the number of usable frames, and to improve the average

instrumental contrast by also a factor of 2 (i.e. an additional gain

of a factor 4 in time). Then, from the point of view of fundamental

signal-to-noise ratio, the observation of hot giant exoplanets would

be achievable in about 2 h.

A fairly stable chromatic pattern appears on all the frame series,

with a peak-to-valley amplitude of 10−2 rad between the spectral

channels of the K band. This pattern varies typically by 10−3 rad be-

tween successive frame series, and these variations appear stationary

over our 5-min time-span. They are due to a combination of vari-

able atmospheric dispersion and instrumental effects, as mentioned

in the previous section. We saw that the contribution produced in the

instrument could in principle be calibrated by a Beam Commutation

every minute down to at least 10−3 rad, and that the contribution due

to atmospheric dispersion part could be fitted in each data frame (see

Section 5.4). Then, only 2 h of observation would be necessary for

the spectroscopy of the most favourable candidates.

At the moment, our closure phases are much noisier (typically

σ = 10−2 rad rms) than the individual differential phases, therefore

we could not assess the contribution of detection effects to the differ-

ential phase wavelength pattern. This is due to the fact that we have

too few frames with good fringes simultaneously on the three base-

lines. That specific effect should be corrected with only a fraction

of the improvements currently in progress on the VLTI vibrations

and photometric stability. With a larger proportion of simultaneous

good-quality frames, the closure phase combined with beam com-

mutation would be free of instrumental and atmospheric effects, and

would also allow the observation of our best target in 2 h.

The differential visibility measurements in low resolution vary

by only 4 × 10−3 rad with time within each frame series, but the
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general slope of the curve changes dramatically between the succes-

sive series, leading to a variation of about 50 × 10−3 rad rms over

5 min. This variation is dominated by the changes in the achromatic

piston jitter due to seeing and vibration fluctuations. Currently, we

have no tool to correct this effect, except including an estimation of

the exposure jitter in the model fitting, with an impact on the signal-

to-noise ratio which cannot be estimated yet. So the differential

visibility is currently not usable for very high precision applica-

tions. This situation will change very significantly when a fringe

tracker is operational.

If none of the BCD, dispersion fit or closure phase correction

works, we would have to use calibrators at least 20 min away in

time, with an error dominated by the calibration of about 510−3 rad

every 40 min. Thus, if we are strictly limited to the current situation,

only a planet brighter than 10−3 times the star could be observable

in a 20-h time with the Unit Telescopes. For that time, the first

spectroscopy of a ‘Pegasi’ planet would still be worthwhile. We are

nevertheless confident that a large part of the variable effects could

be substracted or corrected, and that the necessary observational

time will therefore be reduced significantly.

6 C O N C L U S I O N

CDI on ground-based long-baseline interferometers with large aper-

tures (such as the VLTI or the Keck Interferometer) has the potential

for making direct observation EGPs around nearby stars, if it is lim-

ited by the fundamental noises. This method gains from previous

data obtained from RV observations and will be used for getting

low-resolution spectroscopy, planetary mass and inclination rather

than for new discoveries.

The most favourable targets are the hot EGPs, or ‘Pegasi’ planets,

which orbit at a short distance from their star. More than a dozen

of such objects could be observed with AMBER/VLTI in the near-

IR. In the mid-IR, the thermal background imposes a strong limit

and only a handful, if any, of objects might be observable with

MIDI/VLTI in a reasonable time. As the irradiation from the star,

and thus the effective temperature of the planet, decreases fast with

orbital distance, we estimate that EGPs at separation larger than

0.2 au cannot be observed by that method from the current long-

baseline interferometers.

Using an appropriate observation procedure, differential interfer-

ometric measurements of EGPs are expected to be unaffected by

the astrophysical biases. On the other hand, the variable chromatic

effects from the instrument and the atmosphere will be significantly

higher than the astrophysical signal, and therefore require to be

properly calibrated and/or corrected. From our theoretical and early

observational results, we estimate that the goal of getting a pre-

cision close to the fundamental noise limits can be achieved on

colour-differential phase from single baselines, as soon as the cur-

rent VLTI stabilization work is concluded. The standard deviation

of the phase for each spectral channel is currently less than twice

the photon noise over a fast-calibration period. This fundamental

precision can be improved with a better control of the VLTI jitter

and reduced overheads. Chromatic effects from atmospheric and

instrumental origin will then dominate the error budget. If we are

strictly limited by the current performances, only planets brighter

than 10−3 times the stellar flux can be observed. However, on AM-

BER we expect to obtain very soon a closure phase at least as good

as the current differential phases, which would lead to 18 h of ob-

servation for the currently estimated flux of ‘Pegasi’ planets. If the

other calibration techniques that we are testing (beam commuta-

tion, fit of the atmospheric dispersion) work as expected, then this

interval should be reduced to less than 2 h. We therefore consider

the spectroscopy of the most favourable hot giant planets with large

interferometers as a short-term perspective.

On a further perspective, a space-borne instrument for using

colour-differential measurements would present an enormous im-

provement. It would suppress all the chromatic dispersion effects

from the air and would largely increase the range of the poten-

tial targets, by giving access to the mid-IR with a low thermal

noise.
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