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Abstract. We present and evaluate a novel idea for scalable lossy colour
image coding with Matching Pursuit (MP) performed in a transform
domain. The idea is to exploit correlations in RGB colour space between
image subbands after wavelet transformation rather than in the spatial
domain. We propose a simple quantisation and coding scheme of colour
MP decomposition based on Run Length Encoding (RLE) which can
achieve comparable performance to JPEG 2000 even though the latter
utilises careful data modelling at the coding stage. Thus, the obtained
image representation has the potential to outperform JPEG 2000 with a
more sophisticated coding algorithm.

Keywords: Colour image coding, Matching Pursuit, Wavelets, Run
Length Encoding.

1 Introduction

1.1 Colour Image Coding

Due to the large size of raw image and video data files there is great demand for
lossy compression methods. Most still image and video data are in colour and
are represented for display in RGB colour space thus tripling the raw file size
comparing to grayscale. Nevertheless, most of the research effort in algorithms
for lossy colour image compression is focused on single-channel methods which
are then extended to exploit inter-colour redundancies by applying decorrelating
transforms. The current coding standard JPEG 2000 utilises the YCbCr trans-
form which attempts to separate luminance (Y) from chrominance (C). Coarser
quantisation of C channels improves coding performance without significant vi-
sual degradation [2]. JPEG 2000 also utilises the concept of transform coding us-
ing discrete wavelets and supports the generation of scalable bit-streams. Sparse
approximation techniques that raised interest in the field of image and video
compression in the late 90s [1,14] could potentially be the next step in scal-
able image coding. Moreover they provide new options to exploit inter-channel
redundancies in colour images [5,9].
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Algorithm 1. Single channel Matching Pursuit [11].
Initialisation: Rf1 = f .
for n = 1 to N do

Find atom gγn ∈ D such that:
|〈Rfn, gγn〉| = maxgγ∈D (|〈Rfn, gγ〉|) .
Update residual:
Rfn+1 = Rfn − 〈Rfn, gγn〉gγn .

end for

1.2 Matching Pursuit

Mallat and Zhang proposed in 1993 [11] a simple greedy technique to obtain a
sparse approximation of a given signal f from a Hilbert space H. The algorithm,
called Matching Pursuit (MP), finds the approximation of f by a sum of N
atoms gγn selected from a dictionary D:

f ≈
N∑

n=1

〈Rfn, gγn〉gγn . (1)

The dictionary is a set of functions from H normalised to have unit norm. For
any dictionary that spans H a decomposition given by Eq. 1 converges to f as
N → ∞ [11]. Full Search MP, used in image and video compression applications
[3,4] for single channel signals, is summarised by Alg. 1. At each iteration the
atom most correlated with the actual signal residual Rfn is selected and removed
from Rfn.

1.3 Multi-channel Matching Pursuit

MP can be extended to decompose vector signals without losing the convergence
property [9]. The atom that, according to some criterion, best matches all the
components of the input signal is selected. Multi-channel MP for RGB images
is summarised by Alg. 2.

Algorithm 2. Multi-channel Matching Pursuit for RGB images.

Initialisation: Rfr
1 = fr , Rfg

1 = fg , Rfb
1 = fb.

for n = 1 to N do
Find atom gγn ∈ D that maximises the L2-norm:

γn = maxγ∈Γ

√
〈Rfr

n, gγ〉2 + 〈Rfg
n, gγ〉2 + 〈Rfb

n, gγ〉2.
Update residuals:
Rfr

n+1 = Rfr
n − 〈Rfr

n, gγn〉gγn .
Rfg

n+1 = Rfg
n − 〈Rfg

n, gγn〉gγn .

Rfb
n+1 = Rfb

n − 〈Rfb
n, gγn〉gγn .

end for
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This algorithm was applied in image space (i. e. to raw RGB values) to colour
image coding in [5]. The idea was to explore inter-channel correlations and depen-
dencies of a typical image directly in RGB colour space. In the spatio-frequency
domain the dependencies between corresponding subbands of R, G and B chan-
nels can be even stronger [6]. In this paper we explain the idea of MP performed
in the transform domain and apply it for the first time to colour image coding.
The first time MP was performed in the wavelet transform domain for grayscale
image coding in [19] and for grayscale video coding in [18]. It was shown in
[19] that MP with wavelets can achieve a coding performance comparable to
JPEG 2000 for grayscale images. We extend the ideas from [19] to colour coding
proposing a new method of coding coefficients.

The next section discusses details of our implementation of MP. Section 3
analyses MP performed in the transform domain. Section 4 describes quanti-
sation and coding of the MP data into bit-stream. Section 5 presents coding
results and compares performance with JPEG 2000. Finally, Section 6 concludes
the paper and gives the ideas for the performance improvement.

2 Implementation of Matching Pursuit

The main shortcoming of MP is high computational complexity of encoder (atom
finding process). On the other side decoding (composing an image back) requires
just summing up the atoms which makes MP suitable for asymmetric application
in which one encodes the stream once and decodes many times. We argue here
that using short support separable filters and performing search in a transform
domain keeps also the computational complexity of encoder tractable. Separa-
bility refers to the property that each 2D dictionary entry is a tensor product of
two 1D vectors. The dictionary is fully specified by a typically small set of 1D fil-
ters (mother functions). This reduces number of multiply-accumulate operations
when calculating convolutions [14].

The MP algorithm is implemented similarly to the full 2D separable inner
product search from [20]. The maximal inner products and the corresponding
atom indexes are stored for each location in the image. At each iteration, inner
products have to be recomputed only on a sub-area of the image. For colour
coding it has to be done for all channels and requires approximately three times
more multiply-accumulate operations than for grayscale. The overall complexity
of our MP implementation can be summarised as:

τ (sep) = τ
(sep)
init +

N∑

n=1

(
τ

(sep)
updaten

+ τ
(sep)
searchn

)
. (2)

If W denotes the maximum length of bases in the dictionary, Sx the width and
Sy the height of the image then, following [20], the overall complexity can be
estimated as:

τ (sep) = Oinit(SxSyK2W )+

Oupdate(NK2W 3) + Osearch(NSxSy). (3)
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Eq. 3 shows that the size of the dictionary and lengths of bases are critical for
complexity of the general MP algorithm with maximum length of basis more
important than the number of bases. Moreover, when MP is performed in a
transform domain we typically have: K2W 3 > SxSy. This implies that recalcu-
lation of the inner products is the most demanding part of the algorithm.

3 Matching Pursuit in Transform Domain

MP has been found to be useful for residual video coding [14]. For still image
coding the use of non-separable filters of footprint up to quarter of the image
size to represent image features at different scales and Fast Fourier Transform
(FFT) has been proposed in [4]. The coding performance was comparable to
JPEG 2000 at low bit rates. However, matching of long and non-separable filters
makes the method from [4] computationally extremely demanding. For practical
image coding, as concluded in Sec. 2, one should prefer a dictionary with short
filters. When the filters are shorter than 64 samples the FFT slows down the
calculation of convolutions. To preserve low complexity and a dictionary capable
of capturing image features at different scales the use of the 2D Discrete Wavelet
Transform (2D-DWT) has been proposed in [19]. MP decomposition was per-
formed for wavelet subbands. Like the codec in [4] the method proposed in [19] is
comparable in coding performance to the JPEG 2000 standard but additionally
has a tractable computational complexity.

In this work we present and analyse in more detail the idea of performing
MP in transform domain. Performing MP after transformation like DCT or
DWT reduces complexity and improves coding performance. Let us start with
the simple observation that applying an orthonormal linear transform T does
not change the output of MP. If the transform T is linear and preserves inner
product,

〈f, g〉 = 〈T {f}, T {g}〉 for all f, g ∈ H, (4)

then the MP decomposition of signal f (see Eq. 1) obtained in the transform
domain is:

T {f} ≈
N∑

n=1

〈T {Rfn}, T {gγn}〉T {gγn}. (5)

In practice it can be computationally easier to match filters in the spatio-
frequency domain. To give an example for the discrete case, consider a dictionary
entry with support W : g(t) = 1/

√
W for t = 1, 2, . . . , W . Its DCT or DFT is

the Dirac delta g(ω) = 1 with support 1. Performing an inner product with such
a short signal requires only one multiplication. It is known that for transforms
like DCT, DFT or DWT the filters applied locally in the transform domain
correspond to some global structures in the image domain. Therefore MP can
be more efficient when performed in the transform domain. In principle, a very
similar idea was used indirectly in [4] where convolutions with filters in a dic-
tionary were performed in the Fourier domain. In [19] filters designed for video
coding in the image domain were applied to wavelet subbands after performing
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Fig. 1. Percentage of the image en-
ergy (y-axis) represented by a given
number of atoms (x-axis) using dif-
ferent numbers of wavelet scales
(grayscale Goldhill)

Fig. 2. PSNR performance in dB (y-
axis) for a given number of atoms
(x-axis) using different numbers of
wavelet scales (grayscale Goldhill)

2D-DWT with CDF 9/7 filters from lossy mode of JPEG 2000. As the wavelet
transform does not change a signal dimension, the overall size of a dictionary in
the image domain remains the same. Thanks to the energy compaction property
of DWT, the atoms found in the wavelet domain in initial iterations have high
amplitudes. Hence, they contribute more to the whole image energy as shown in
Fig. 1. In Fig. 2 we see corresponding values of PSNR. The dictionary applied
for wavelet subbands is capable of giving a few orders of magnitude sparser rep-
resentation than the same dictionary applied in the image domain. Moreover at
initial steps of MP there are usually more atoms found in lower frequencies what
gives a potential for more efficient coding. The dictionaries we use in this study
for colour and grayscale coding were trained using Basis Picking method from
[12] on colour and grayscale (i. e. luminance only) Goldhill image respectively.
Both dictionaries contain 16 1D bases of maximal footprint 9.

4 Quantisation and Coding

4.1 Quantisation

For data compression applications MP decomposition has to be encoded into a
bit-stream. The values an = 〈Rfn, gγn〉 have to be quantised (e. g. rounded) to
the values An. Quantisation is performed inside the MP loop [14] with the aim
of correcting the introduced quantisation error during later iterations. For the
MP decomposition given by Eq. 1 the Parseval-like equality is satisfied [11]:

||f ||2 =
N∑

n=1

a2
n + ||RfN+1||2. (6)

Eq. 6 is a direct consequence of the update step from Alg. 1. If we replace an by
An in the update step to reflect in-loop quantisation then, for real values, Eq. 6
will change to:
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||f ||2 =
N∑

n=1

An(2an − An) + ||RfN+1||2. (7)

To preserve convergence of the algorithm the energy of residual Rfn has to
keep decreasing [11]. Therefore we may use any quantisation method for which
An(2an − An) > 0 which is equivalent to an, An having the same sign and their
absolute values to follow Eq. 8 [15].

0 < |An| < 2|an|. (8)

Our grayscale implementation utilises Precision Limit Quantisation (PLQ) [13].
The original idea of PLQ is to keep only the most significant bit of an and some
refinement bits governed by the parameter PL. Then the value |an| is quantised
to: |An| = r2k, where k indicates bitplane and r refinement. The value of the
parameter PL is taken to be PL = 2, as advised in [19], which in our case means
that r ∈ {1.25, 1.75}.

The colour codec uses PLQ and Uniform Quantisation. The amplitude with
maximal value over the three colour channels (amax

n ) is quantised using PLQ and
serves as a base for grouping atoms. The atoms with the same quantised absolute
value of maximal amplitude (|Amax

n |) compose one group. We record the channel
cn for which the maximal value occurred. The remaining two amplitudes for the
other two colours are quantised using dead-zone uniform scalar quantisation with
L bins [7]. The value of L has been experimentally chosen to be as low as L = 2 in
order to maximally reduce the number of bits required. The two numbers d1

n and
d2

n, sent to the encoder, represent either dead-zone or the quantised amplitude
with its sign.

4.2 Atom Encoding

After MP decomposition and quantisation, the data to be encoded form a matrix
in which rows represent atoms. There are 8 columns containing the following
variables for colour coding:

1 : sn, sign of the maximal amplitude, sn ∈ {−1, 1},
2 − 3 : d1

n, d2
n, quantised amplitude differences, d∗n ∈ {1, 2, . . . , 2L + 1},

4 : cn, maximum amplitude colour channel, cn ∈ {1, 2, 3},
5 : wn, sub-band index, wn ∈ {1, 2, . . . , 3S + 1},
6 : λn, 2D dictionary entry, λn ∈ {1, 2, . . . , 256},

7 − 8 : xn, yn, atom location inside the sub-band wn, xn ∈ {1, . . . , Wxn}, yn ∈
{1, . . . , Wyn}.

For grayscale coding there are only 5 columns: sn,wn,λn,xn and yn from which
only 3 are being reordered. Data from columns 1-6 (or 1-3 for grayscale) are
encoded group by group using Alg. 3 based on Run Length Encoding (RLE). The
rows are ordered in a lexicographical order recommended for databases indexes
[8]. Encoding inside each group is done calling recursively column by column
the Alg. 3. The coding performance depends on the column order (see Sec. 5).
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Algorithm 3. One stage of encoding.
input: {vs}s=1,2,...,n with s < s′ ⇒ vs ≤ vs′

s = 1
while s < n do

if there are 2 times more symbols than alphabet entries remaining then
encode all zero lengths (if any) and one non-zero run length l
s = s + l

else
encode symbol vs directly
s = s + 1

end if
end while

Therefore a fixed permutation of columns π is applied prior to the sorting. For
each stage of encoding the input of Alg. 3 is the sorted sequence {vs} from
an alphabet of the size determined by the column number. At each iteration a
decision is made whether to encode the symbol vs directly or to signal its run
length. RLE is used when the run length of 2 or more symbols is expected. An
expected run length is indicated by the ratio of the remaining symbols count to
the size of the alphabet they can come from. The atom locations (the last two
columns) are always encoded as the two raw values xn and yn from the ranges
1 . . .Wxn and 1 . . .Wyn respectively, where Wxn ×Wyn is a dimension of the sub-
band wn. All the symbols are sent to the arithmetic coder [17] that uses models
which assume uniform distributions for each column. Arithmetic coding allows,
knowing the probability distribution of data, to achieve compression ratio close
to a theoretical bound given by the Shannon’s entropy [17]. Uniform distribution
has the highest entropy among the discrete distributions. Therefore the results
shown here can serve as the upper bound for the sizes of encoded streams. 1

5 Coding Performance

As evaluation metric we use PSNR. For colour images it is averaged over RGB
channels:

PSNR = 10 log10

(
3 · 2552

MSEr + MSEg + MSEb

)
, (9)

where MSEr, MSEg, MSEb are mean squared errors calculated for R, G and
B channels respectively. Although PSNR is known to correlate poorly with hu-
man visual perception, especially in the case of colour images, it measures the
mathematical properties of the algorithms used. Comparisons with JPEG 2000
are done using the same wavelet filters and the same number of scales S = 5.
For fair comparison of colour codecs an option of JPEG 2000 which minimises
mean squared error (i. e no_weights switch for Kakadu implementation [16])
was used.
1 More details about implementation of the whole coding system and its evaluation

can be found in [10].



Colour Image Coding with Matching Pursuit 313

Table 1. Number of bits required for 6000 grayscale atoms for different column orders

image the best order the worst order sub-optimal (πg)
2 · worst−best

worst+best(2,3,1)
Barbara, 720 × 576 105699 (2,1,3) 115314 (1,3,2) 106577 8.70%
Goldhill, 720 × 576 102978 (2,3,1) 111453 (3,1,2) 102978 7.90%

Lena, 512 × 512 102321 (2,3,1) 110012 (3,1,2) 102321 7.24%
Lighthouse, 768 × 512 104441 (2,1,3) 112076 (1,3,2) 104905 7.05%

Parrots, 768 × 512 107218 (2,3,1) 113520 (3,1,2) 107218 5.71%
Peppers, 512 × 512 102222 (2,3,1) 108971 (3,1,2) 102222 6.39%

Table 2. Number of bits required for 6000 colour atoms for different column orders

image the best order the worst order sub-optimal (πc) 2 · worst−best
worst+best(5,2,3,4,6,1)

Barbara, 720 × 576 126937 (5,2,3,4,6,1) 148111 (6,1,4,5,3,2) 126937 15.40%
Goldhill, 720 × 576 124938 (5,3,2,4,6,1) 142009 (1,6,4,5,3,2) 124971 12.79%

Lena, 512 × 512 127077 (5,3,2,4,6,1) 142753 (6,1,4,5,2,3) 127113 11.62%
Lighthouse, 768 × 512 121129 (5,2,3,4,6,1) 147995 (1,6,4,5,3,2) 121129 19.97%

Parrots, 768 × 512 130512 (5,3,2,6,1,4) 145187 (6,4,1,5,3,2) 130739 10.65%
Peppers, 512 × 512 128686 (5,3,2,4,6,1) 138515 (6,1,4,5,2,3) 128803 7.36%

At first, a set of experiments for standard test images of different sizes has
been done to find an optimal column order to apply Alg. 3. Each permutation was
tried for 6 grayscale (see Tab. 1) and colour images (see Tab. 2). The differences
in the size of a bit-stream for the different column orders are significant. For
grayscale, where there are only 6 possible column permutations, the differences
between maximum and minimum bit-stream sizes are less than 10% (Tab. 1).
However, for colour, where we have 720 orders, the differences can be up to 20%
(Tab. 2). In the proposed coding scheme the best or close to the best performance
is achieved when atoms are sorted by wavelet scale first. Atom indexes and signs
of the amplitudes are the last sorting criteria for both grayscale and colour. The
column permutations that perform close to optimal for all tested images are:
πg = (2, 3, 1) for grayscale and πc = (5, 2, 3, 4, 6, 1) for colours.

R-D performance plots are shown in Fig. 4 including PSNR results for a de-
fault mode of Kakadu. Fig. 3 presents a visual comparison example. In general
both grayscale and colour codecs are comparable to JPEG 2000, often outper-
forming the latter at low bit rates. However for many standard test images like
Parrots (Fig. 4c and 4f) or Lighthouse a coding performance is still significantly
worse. On average (see Tab. 3) MP performs better than the standard at 0.1 bpp
but for the higher rates the average performance is worse. We believe that mod-
elling the distributions of wavelet scale indexes and run lengths for arithmetic
coding could give a significant improvement. For example, as mentioned in Sec. 3,
in initial iterations the atoms are more likely to be found in low frequencies.
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(a) Original image (b) MP, 6086 atoms, 29.95 dB

(c) J2K, default, 29.60 dB (d) J2K, no-weights, 29.93 dB

Fig. 3. Visual comparison at 0.30 bpp against JPEG 2000 for Goldhill, 720 × 576

Table 3. Coding performance comparisons against JPEG 2000 at fixed bit-rates

0.1 bpp 0.3 bpp 0.5 bpp
grayscale image J2K MP-Gray J2K MP-Gray J2K MP-Gray

Barbara, 720 × 576 25.21 26.02 30.21 30.44 33.35 33.09
Goldhill, 720 × 576 28.90 29.12 32.30 32.38 34.25 34.11

Lena, 512 × 512 29.90 29.83 34.94 34.58 37.32 36.85
Lighthouse, 768 × 512 25.77 25.81 29.57 29.28 32.11 31.49

Parrots, 768 × 512 33.62 33.43 39.04 38.43 41.61 40.95
Peppers, 512 × 512 29.66 29.44 34.16 33.74 35.84 35.46

Average 28.84 28.94 33.37 33.14 35.75 35.33
colour image J2K MP-RGB J2K MP-RGB J2K MP-RGB

Barbara, 720 × 576 23.89 24.23 28.03 28.04 30.33 30.20
Goldhill, 720 × 576 27.24 27.22 29.93 29.95 31.46 31.38

Lena, 512 × 512 27.68 27.64 31.31 31.25 32.97 32.95
Lighthouse, 768 × 512 25.18 25.00 28.68 28.18 30.95 30.19

Parrots, 768 × 512 30.72 30.40 35.92 35.23 38.54 37.73
Peppers, 512 × 512 25.57 25.80 29.61 29.68 31.17 31.24

Average 26.71 26.72 30.58 30.39 32.57 32.28
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(a) Grayscale Lena, 512 ×
512

(b) Grayscale Barbara,
720 × 576

(c) Grayscale Parrots, 768×
512

(d) Colour Lena, 512 × 512 (e) Colour Barbara, 720 ×
576

(f) Colour Parrots, 768 ×
512

Fig. 4. R-D performance comparisons between the proposed MP coding and Kakadu
implementation of the JPEG 2000 standard (y-axis: PSNR [dB], x-axis: bit-rate [bpp])

Our current C++ implementation encodes 8000 colour atoms (this corre-
sponds to a bit-rate of 0.40 bpp for Goldhill image) under Linux on PC with
Intel Core 2 Duo in less than 0.2 s which is negligible comparing to finding these
atoms by MP algorithm that takes around 80 seconds for the dictionary used in
this work and images of dimension 720 × 576.

6 Conclusions

We have presented a novel approach of decomposing and encoding images
that has shown comparable R-D performance to the current coding standard
JPEG 2000 at low bit rates. Our idea of encoding atoms is especially promis-
ing for colour images. MP is performed after the discrete wavelet transform to
reduce complexity and improve sparsity [19]. MP decomposition of an image is
represented as a matrix of rows. These rows are sorted in lexicographical order
after permutation of columns and encoded using run length and then arithmetic
coding with simple data model that assumes equal probabilities of each type of
symbol (each column). The optimal column orders were found for both grayscale
and colour data. The open questions that are currently under our investigation
include: more sophisticated data modelling for coding and finding the optimal
dictionary.



316 R. Maciol, Y. Yuan, and I.T. Nabney

Acknowledgement. Ryszard Maciol would like to thank Aston University for
funding the studentship and support that made this work possible.

References

1. Bergeaud, F., Mallat, S.: Matching pursuit of images. In: Proc. International Con-
ference on Image Processing, vol. 1, pp. 53–56 (1995)

2. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG 2000 still image compres-
sion standard. IEEE Signal Processing Magazine 18(5), 36–58 (2001)

3. Czerepinski, P., Davies, C., Canagarajah, N., Bull, D.: Matching pursuits video
coding: Dictionaries and fast implementation. IEEE Transactions on Circuits and
Systems for Video Technology 10(7), 1103–1115 (2000)

4. Figueras i Ventura, R.M., Vandergheynst, P., Frossard, P.: Low-rate and flexible
image coding with redundant representations. IEEE Transactions on Image Pro-
cessing 15(3), 726–739 (2006)

5. Figueras i Ventura, R.M., Vandergheynst, P., Frossard, P., Cavallaro, A.: Color
image scalable coding with matching pursuit. In: Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing, vol. 3, pp. 53–56 (2004)

6. Gershikov, E., Lavi-Burlak, E., Porat, M.: Correlation-based approach to color
image compression. Image Communications 22(9), 719–733 (2007)

7. Gray, A.M., Gersho, R.: Vector Quantization and Signal Compression, 5th edn.
Kluwer Academic Publishers, Dordrecht (1992)

8. Lemire, D., Kaser, O.: Reordering columns for smaller indexes. Information Sci-
ences 181(12), 2550–2570 (2011)

9. Lutoborski, A., Temlyakov, V.M.: Vector greedy algorithms. Journal of Complex-
ity 19(4), 458–473 (2003)

10. Maciol, R., Yuan, Y., Nabney, I.T.: Grayscale and colour image codec based on
matching pursuit in the spatio-frequency domain. Tech. rep., Aston University,
http://eprints.aston.ac.uk/15194/ (2011)

11. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing 41(12), 3397–3415 (1993)

12. Monro, D.M.: Basis picking for matching pursuits image coding. In: Proc. Interna-
tional Conference on Image Processing, vol. 4, pp. 2495–2498 (2004)

13. Monro, D.M., Poh, W.: Improved coding of atoms in matching pursuits. In: Proc.
International Conference on Image Processing, vol. 3, pp. 759–762 (2003)

14. Neff, R., Zakhor, A.: Very low bit-rate video coding based on matching pursuits.
IEEE Transactions on Circuits and Systems for Video Technology 7(1), 158–171
(1997)

15. Neff, R., Zakhor, A.: Modulus quantization for matching-pursuit video coding.
IEEE Transactions on Circuits and Systems for Video Technology 10(6), 895–912
(2000)

16. Taubman, D.: Kakadu JPEG 2000 implementation,
http://www.kakadusoftware.com/

http://eprints.aston.ac.uk/15194/
http://www.kakadusoftware.com/


Colour Image Coding with Matching Pursuit 317

17. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.
Communications of the ACM 30(6), 520–540 (1987)

18. Yuan, Y., Monro, D.M.: 3D wavelet video coding with replicated matching pursuits.
In: Proc. IEEE International Conference on Image Processing, vol. 1, pp. 69–72
(2005)

19. Yuan, Y., Monro, D.M.: Improved matching pursuits image coding. In: Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp.
201–204 (2005)

20. Yuan, Y., Evans, A.N., Monro, D.M.: Low complexity separable matching pursuits
[video coding applications]. In: Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 3, pp. 725–728 (2004)


	Colour Image Coding with Matching Pursuit in the Spatio-frequency Domain
	Introduction
	Colour Image Coding
	Matching Pursuit
	Multi-channel Matching Pursuit

	Implementation of Matching Pursuit
	Matching Pursuit in Transform Domain
	Quantisation and Coding
	Quantisation
	Atom Encoding

	Coding Performance
	Conclusions
	References


