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Abstract: Colour-kinematics duality is the conjecture of a group theory-like structure for

the kinematic dependence of scattering amplitudes in gauge theory and gravity. This struc-

ture has been verified at tree level in various ways, but similar progress to all multiplicity

has been lacking at loop level, where the power of the duality would be most significant.

Here we explore colour-kinematics duality at one loop using the self-dual sector as a start-

ing point. The duality is shown to exist in pure Yang-Mills theory for two infinite classes of

amplitudes: amplitudes with any number of particles either all of the same helicity or with

one particle helicity opposite the rest. We provide a simple Lagrangian-based argument in

favour of the double copy relation between gauge theory and gravity amplitudes in these

classes, and provide some explicit examples. We further discuss aspects of the duality

which persist after integration, leading to relations among partial amplitudes. Finally, we

describe form factors in the self-dual theory at tree level which also satisfy the duality.
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1 Introduction

Colour-kinematics duality has proven to be an inspirational idea in the study of pertur-

bative gauge theory and gravity. The idea, due to Bern, Carrasco, and Johansson (BCJ),

was first introduced at tree level [1] before being extended to loop amplitudes [2]. In all

cases, the principle objects of study are the kinematic numerators of cubic Feynman-like

diagrams. Colour-kinematics duality states that whenever the natural colour factors of

three cubic diagrams satisfy a Jacobi relation the corresponding numerators can be put in

a dual form in which they satisfy the same Jacobi relation. A separate, but closely related,

idea due to Bern, Carrasco and Johansson relates Yang-Mills amplitudes expressed in a

colour dual form to gravitational amplitudes. This conjecture, known as the double copy

formula, states that gravity amplitudes can be obtained from the cubic diagrams as a dou-

ble copy, i.e. by replacing the colour factors by another copy of the numerators. This can

be thought of as a generalisation of the famous Kawai-Lewellen-Tye (KLT) relations [3]

of tree level string theory which relate closed string amplitudes to a sum over products of

open string amplitudes.

At tree level, much is known about the duality and the associated double copy for-

mula. Various authors have described how to compute numerators obeying the duality

(we shall call such numerators dual numerators for simplicity) for any tree amplitude in

gauge theory [4–7]. Similarly, the double copy formula has been proven at tree level using

recursive arguments [8]. At loop level less is known. As we shall review below, there are
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several impressive examples of the duality at work for low multiplicity, but it still remains

to be understood whether sets of dual numerators can always be found.

The existence of colour-dual numerators implies relations between colour-ordered am-

plitudes at tree level [1], known as the BCJ relations. These relations have been proven

by a variety of different methods [9–12]. In principle, similar relations should also exist at

loop level if colour-dual numerators exist. There have been several cases in which insights

from string theory have been important in studying colour-kinematics duality. The first

proofs of the BCJ relations used string methods [9, 10], and more recently the pure spinor

approach to the superstring has been elegantly used to provide insight into the problem of

finding dual numerators at tree and one-loop level [5, 13].

It is fascinating that colour-kinematics duality hints that there is some kind of algebraic

structure underlying gauge theory numerators. There has been progress in identifying this

structure [14] in a simplified case, namely the self-dual sectors of Yang-Mills theory and of

gravity. In this simpler setting, it is possible to compute numerators by linking together

the structure constants of a certain diffeomorphism algebra. Our work in this paper is, in a

sense, a continuation of the work of [14] by a subset of the present authors. We will examine

to what extent the diffeomorphisms allow us to understand loop amplitudes. Indeed, it

is known [15, 16] that one-loop amplitudes in self-dual Yang-Mills theory are the same as

the all-plus1 one-loop amplitudes of (pure) Yang-Mills theory. Thus, we are easily able to

compute dual numerators for an infinite class of one-loop amplitudes. These amplitudes

are quite special: the fully integrated amplitudes contain no logarithms in four dimensions;

this reflects the fact that cutting any of the one-loop amplitudes in four dimensions leads

to a vanishing product of tree amplitudes. In other words, the all-plus amplitudes are

rational functions, and in fact they are not the only amplitudes in Yang-Mills theory which

are simple rational functions of the external data. The other class are the “one-minus”

amplitudes, in which all particles but one have positive helicity.2 We show below that one

can build on our understanding of the self-dual theory to compute dual numerators for the

one-minus amplitudes. Thus, the main result of our work is the identification of two infinite

classes of amplitudes at one-loop for which colour-kinematics duality does indeed hold.

Given numerators which satisfy colour-kinematics duality, it is natural to use the

double copy to compute gravitational amplitudes. We provide a simple argument in support

of the double copy relating the finite amplitudes under study here, based on the known

light-cone Lagrangians in gauge and gravity theory. In addition, we explicitly check the

relation for the all-plus and one-minus four point amplitudes.

The fact that the families of one-loop amplitudes which we deal with are especially

simple makes them an ideal laboratory for exploring what happens to colour-kinematics

duality after integration. Indeed, it is known that these amplitudes satisfy a set of rela-

tions [17]. We explore whether the integrated amplitude itself can be thought of as being

built from some objects which follow naturally from the kinematic algebra, focussing on

1The all-minus one-loop amplitudes can be obtained from the anti-self-dual theory, and are simple parity

conjugates of the all-plus amplitudes.
2The one-plus amplitudes are parity conjugates of the one-minus amplitudes.
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the simplest case of the all-plus amplitudes. The answer to our question is a qualified yes,

as we shall discuss below.

One of the prime motivations for our interest in self-dual Yang-Mills theory is that

it makes colour-kinematics duality manifest at the level of the action. This implies that

observables calculated in this theory may exhibit the duality. The all-plus amplitudes at

one loop are examples of this. The one leg off-shell tree level current is another, but this is

gauge variant. Motivated by [18] we point out that a certain tree level form factor involv-

ing the trace of the anti-self-dual field strength tensor squared and only positive helicity

on-shell gluons can be calculated within the self-dual Yang-Mills theory in a manifestly

colour-dual manner.

The structure of this paper is as follows. In section 2 we review colour-kinematics

duality in more detail, and discuss the duality in the self-dual sector. We then open

the discussion of one-loop numerators for all-plus and one-minus amplitudes in section 3.

In section 4 we turn to the relations that the integrated all-plus amplitudes satisfy, and

explain in what sense they are related to the duality. We turn to the topic of form factors

in section 5 before discussing our results in section 6.

2 Review and formalism

We open with a short review to set the stage for our work. First, we review BCJ colour-

kinematics duality and the associated double copy formula briefly, to remind the reader of

the concepts which will be of principle importance in this article and also to establish some

notation. Then we move on to review the duality in the context of the self-dual sectors

of Yang-Mills theory and of gravity, and the closely related MHV amplitudes, where it is

possible to understand the group theoretic structure of the kinematic dependence in detail.

2.1 Generalities of colour-kinematics duality

For much of this paper, the objects of central concern will be a set of kinematic numerators.

Each numerator is associated to a certain cubic diagram. The diagrams at L loops consist

of all connected diagrams, with cubic vertices, and the appropriate number of external

lines. Given such a graph, the associated colour factor is trivial to write down: a factor

fabc is associated with each vertex, and the internal lines receive a factor δab. The L-loop

Yang-Mills amplitude can be written as

A(L)
n = iLgn−2+2L

∑
diagrams α

∫ L∏
i=1

dDli
(2π)D

1

Sα

cαnα(li)

Dα(li)
, (2.1)

where the summation runs over the distinct cubic diagrams with L loops. Under the integral

sign are the usual symmetry factors Sα, the colour factors cα, the kinematic numerators nα
which may depend on the loop momenta, and canonical scalar-type Feynman propagators

which we have combined into a denominator Dα.

The colour factors are built out of structure constants of the Lie group underlying the

gauge theory. As such, there are many triplets (α, β, γ) of diagrams such that the Jacobi
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relation holds among the colour factors:

cα + cβ + cγ = 0. (2.2)

Let us call a triplet of diagrams with this property a Jacobi triplet. Colour-kinematics

duality [1, 2] is the assertion that one can always find a valid set of numerators which have

the property that, for all Jacobi triplets (α, β, γ), the numerators satisfy

nα + nβ + nγ = 0. (2.3)

A valid set of numerators, of course, is simply a set of numerators such that the amplitude

in eq. (2.1) is the correct Yang-Mills amplitude. So the challenge is to find such a set of

dual numerators. At tree level, we know [4–7, 19] that such numerators can be found.

Beyond tree level, our information is more sporadic. The four-point amplitude in N = 4

super-Yang-Mills (sYM) has been put into a form with numerators satisfying the duality

up to four loops [2, 20, 21]. The five-point one- and two-loop amplitudes of N = 4 sYM

have also appeared [22] in a manifestly dual form in the literature; see also [23]. The four-

point amplitude has also been shown to admit a colour-kinematics dual form in reduced

supersymmetry theories at one-loop [24]; in the case of pure Yang-Mills, up to two loops

when all helicities are equal [2]. Recently the two-point form factor was obtained in colour-

dual form up to four loops, and the three-point up to two loops [18].

Note that the challenge of finding colour-dual numerators is very closely related to

a freedom in shifting the numerators. This freedom is usually called generalised gauge

invariance. At tree level this freedom states that a set of numerators can be shifted without

changing the amplitude by some amount ∆ if the following holds

nα → n′α = nα + ∆α with
∑
α

cα∆α

Dα
= 0 (2.4)

In addition, if the numerators satisfy the Jacobi identities, then the ∆α should satisfy

the Jacobi relation for each Jacobi triplet. At the integrand level similar formulae can be

written down.

Closely related to the colour-kinematics duality is the double copy conjecture [1, 2].

The double copy expresses the close relationship between gauge theory and gravity — in

some sense, gravity is the square of gauge theory. Given a dual set of numerators, the

double copy conjecture states that a gravity amplitude can be computed as

M(L)
n = iL+1

(κ
2

)n−2+2L ∑
diagrams α

∫ L∏
i=1

dDli
(2π)D

1

Sα

nα(li)ñα(li)

Dα(li)
. (2.5)

Comparing to our expression for a gauge theory amplitude, eq. (2.1), the double copy

formula simply replaces a colour factor in the gauge theory amplitude with another copy

of a kinematic numerator. Note that we have two distinct numerators in the double copy

formula, eq. (2.5), as these numerators need not be computed in the same gauge theory.

For example, the nα could be computed in N = 4 sYM, while the ñα could be computed

– 4 –



J
H
E
P
0
4
(
2
0
1
3
)
1
0
7

in N = 0 sYM (that is, pure Yang-Mills theory). The states being scattered in the

gravitational amplitudeM are the outer product of the states being scattered in the gauge

theory amplitudes. Our example for nα and ñα gives an amplitude of N = 4 supergravity;

see ref. [25] for a complete map between gauge theories and supergravities. It is expected

that only one set of numerators must satisfy colour-kinematics duality, while the other

set can be any valid numerators — for instance, those computed directly by Feynman

diagrams. This has only generically been proven at tree level [8] and checked in various

supergravity examples [24, 26–28].

The double copy formula has been proven at tree level [8]. Beyond tree level, the

formula has been checked in several non-trivial cases. Using the known N = 4 sYM

amplitudes twice, the four-point scattering amplitude in N = 8 supergravity has been

computed up to four loops [2, 20, 21]. Similarly, the five-point N = 8 amplitude has been

constructed via the double copy [22] at one and two loops. In an interesting development,

the N = 8 six-point amplitude has recently been constructed via the double copy at one

loop, without explicitly finding a dual set of numerators [23]. The double copy has also

been explored in the context of orbifold theories [24].

The most powerful aspect of the double copy formula is that, more than a tool, it seems

to be crucial for the ultraviolet behaviour of supergravity theories. Ref. [29] analysed in

detail the consequences for half-maximal supergravity. Very recently, ref. [30] presented a

general argument showing how the precise implementation of the colour-kinematics duality

at loop level is fundamental for the degree of divergence. Evidence for the all-loop validity

of the colour-kinematics duality and the double copy appears in the soft limit [31], in

some high-energy limits [32], and also in the BCFW shifts of gauge theory integrands [30].

Remarkably, extensions of these ideas seem to apply to amplitudes in the ABJM theory [33,

34]. The introduction of higher-dimension operators in Yang-Mills theory has also been

studied [35].

2.2 Colour-kinematics duality in the self-dual sector and MHV amplitudes

The colour-kinematics duality manifests itself naturally in the self-dual sector of gauge

theory, and in the closely related MHV sector, as shown in ref. [14]. We will review here

those results, with a new presentation better adapted to the spinor-helicity formalism,

which will be useful later.

Let us recall the form of the Yang-Mills Lagrangian written in light-cone gauge [36]:

L = tr
{ 1

2
Ā ∂2A− ig

(∂w
∂u
A
)

[A, ∂uĀ]− ig
(∂w̄
∂u
Ā
)

[Ā, ∂uA]− g2[A, ∂uĀ]
1

∂2
u

[Ā, ∂uA]
}
. (2.6)

The convention here is that the field A carries positive helicity, while Ā carries negative

helicity. The indices correspond to the coordinates

u = t− z, v = t+ z, w = x+ iy, w̄ = x− iy, (2.7)

and we defined ∂2 ≡ 2(∂u∂v − ∂w∂w̄). The light-cone condition is Au = 0. The Lagrangian

has three types of vertices: the (+ + −) vertex, the (+ − −) vertex, and the four-point
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vertex (+ +−−). For instance, the momentum space Feynman rule for the (+ +−) vertex

gives

1, +

2, +

3,� = g
p3u

p1up2u
(p1wp2u − p2wp1u) fa1a2a3 . (2.8)

It is more convenient for our purposes to write the Feynman rules for the Lagrangian (2.6)

in terms of the spinor-helicity formalism, for which we now give a concise review; see [37]

for more background. The basis of the formalism is that any on-shell momentum, p2 = 0,

can be expressed in terms of two spinors, λ and λ̃, in the following manner,

pαα̇ ≡ pµσµαα̇ = λαλα̇, (2.9)

where σµ = (12×2, σ
i), the σi representing the Pauli matrices. We can define SL(2)-

invariant inner products of the spinors between two on-shell particles, say i and j,

〈ij〉 = εαβλ(i)
α λ

(j)
β and [ij] = −εα̇β̇λ̃(i)

α̇ λ̃
(j)

β̇
, (2.10)

such that (pi + pj)
2 = 〈ij〉[ji]. This notation can be extended to define

〈i|j|k] = −λ(i)
α ε

αβ p
(j)
βα̇ ε

α̇β̇λ
(k)

β̇
= [k|j|i〉, (2.11)

where p(j) need not be on-shell. For on-shell momenta, we may denote p = |p〉[p| to

facilitate the inner products. The last ingredients that we need for the purposes of this

paper are

〈i|jk|l〉 = −λ(i)
α ε

αβ p
(j)
βα̇ ε

α̇β̇ p
(k)

γβ̇
εγδλ

(l)
δ = −〈l|kj|i〉,

[i|jk|l] = λ
(i)
α̇ ε

α̇β̇ p
(j)

αβ̇
εαβ p

(k)
βγ̇ ε

γ̇δ̇λ
(l)

δ̇
= −[l|kj|i]. (2.12)

These are natural definitions which, in case p(j) and p(k) are on-shell, lead to

〈i|jk|l〉 = 〈ij〉[jk]〈kl〉, [i|jk|l] = [ij]〈jk〉[kl]. (2.13)

With the help of the spinor-helicity formalism, we define the light-cone with a null

vector η = |η〉[η|, such that η ·A = 0. Omitting the coupling constant, the Feynman rules

for the vertices are

(i+, j+, k−) =
kη
iηjη

X(i, j) faiajak , with X(i, j) ≡ 〈η|ij|η〉,

(i−, j−, k+) =
kη
iηjη

X(i, j) faiajak , with X(i, j) ≡ [η|ij|η],

(i+, j+, k−, l−) = i

(
iηkη + jηlη
(iη + lη)2

faialbf bajak +
iηlη + jηkη
(iη + kη)2

faiakbf bajal
)
,

(2.14)
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where we defined iη = 〈η|i|η]. Each propagator contributes as

i

(pi + pj)2
δaiaj , (2.15)

and the polarization factor for each external particle is

e
(+)
i =

[ηi]

〈ηi〉 , e
(−)
i =

〈ηi〉
[ηi]

. (2.16)

Notice that X and X are antisymmetric by virtue of eq. (2.12). They correspond to spinor

products, for instance X(i, j) = −[̂i, ĵ], where the ‘hat’ spinors are defined from a possibly

off-shell momentum as |̂i]α̇ = p
(i)
αα̇ε

αβ|η〉β. The introduction of the spinors |η〉 and |η]

makes the freedom in choosing the light-cone direction manifest. Scattering amplitudes

are invariant for the choice of these spinors. The rule (2.8) for gluons is recovered with the

choice |η〉 ∼ (1, 0)T and 〈η| ∼ (1, 0).

As a first example of this notation and as a consistency check, it is instructive to derive

the three-point MHV amplitude from the above rules,

e
(+)
i e

(+)
j e

(−)
k

kη
iηjη

X(i, j) =
[ηi]

〈ηi〉
[ηj]

〈ηj〉
〈ηk〉
[ηk]

〈ηk〉[kη]

〈ηi〉[iη]〈ηj〉[jη]
〈ηi〉[ij]〈jη〉 =

[ij]3

[jk][ki]
. (2.17)

We can also consider a minimally coupled scalar. The scalar-gluon-scalar vertex is

(is, j
+, ks) =

1

jη
X(i, j), (is, j

−, ks) =
1

jη
X(i, j), (2.18)

so that the three-point partial amplitude (where the scalars may be massive) reads

A3(is, j
+, ks) = e

(+)
j

1

jη
X(i, j) = −X(i, j)

〈ηj〉2 =
〈η|i|j]
〈ηj〉 , A3(is, j

−, ks) =
[η|i|j〉
[ηj]

. (2.19)

The self-dual sector of gauge theory is the restriction of the full Yang-Mills theory

to the vertex (+ + −). Therefore, there are only cubic vertices in the relevant Feynman

diagrams, which is the first step in order to have a manifest colour-kinematics dual form.

The other requirement is that, whenever the colour factors of three diagrams satisfy Jacobi

identities,

faiajbf bakal + fajakbf baial + fakaibf bajal = 0, (2.20)

the kinematic numerators of those diagrams satisfy the same identities. A brief inspection

of the (+ +−) vertex in (2.14) shows that this requirement holds if we have

X(i, j)X(k, l) +X(j, k)X(i, l) +X(k, i)X(j, l) = 0. (2.21)

This is a consequence of the Schouten identity for the spinors defined as |p̂] = p|η〉. As

shown in ref. [14], it can also be seen as the Jacobi identity for the Lie algebra of area-

preserving diffeomorphisms. So the colour-kinematics duality is manifest in the self-dual

sector.

The only tree-level Feynman diagrams in the self-dual sector have external helicities

− + + . . .+. The “one-minus” scattering amplitudes obtained from those diagrams are

– 7 –



J
H
E
P
0
4
(
2
0
1
3
)
1
0
7

known to vanish (except the three-point amplitude for complex momenta). However, MHV

amplitudes, which have helicity structure −−+ . . .+, are closely related. A simple counting

argument3 shows that the Feynman diagrams contributing to MHV amplitudes have only

one vertex which is not of the type (++−). This could be a (−−+) vertex or a four-point

vertex. Using the freedom to choose the null vector η defining the light-cone, it is possible

to eliminate the diagrams with a four-point vertex.

The procedure for MHV amplitudes is as follows. Consider one of the two negative

helicity particles, say particle 1. Then take the limit

|η〉 → |1〉. (2.22)

In this limit, we have e
(−)
1 → 0. However, we also have 1η → 0. What happens in this

limit is that all diagrams which do not have a pole in 1η vanish. An inspection of the

Feynman rules (2.14) shows that such a pole is only possible if particle 1 is attached to a

(− − +) vertex. Therefore, the MHV amplitudes in this gauge contain graphs with only

cubic vertices, one of them of the type (− − +), and all the others of the type (+ + −).

For colour-kinematics duality to be manifest, we need to have Jacobi-like identities. Most

of these will involve only (+ + −) vertices, so the story is the same as for the self-dual

sector. When the identities involve the single (− − +) vertex (that is, when they involve

the external leg 1), we have, instead of (2.21), the requirement

X(1, i)X(j, k) +X(1, j)X(k, i) +X(1, k)X(i, j) = 0. (2.23)

Again, this is just a consequence of the Schouten identity, as we can see by rewriting the

left-hand-side as

[η1]
(
[ĵk̂][̂i|+ [k̂î][ĵ|+ [̂iĵ][k̂|

)
|η] = 0, (2.24)

where we defined the spinors |p̂] = p|1〉.
The simplest example is the tree-level four-point MHV amplitude:

A(0)
4 (1−, 2−, 3+, 4+) = i

〈12〉3
[η1]〈13〉〈14〉

(
[η2][34]fa1a2bf ba3a4

s12
+

[η3][42]fa1a3bf ba4a2

s13

+
[η4][23]fa1a4bf ba2a3

s14

)
, (2.25)

where we chose particle 1 to be the reference, as in (2.22).

3 Manifestly dual integrands at one loop

Now we will use the self-dual sector as a tool for understanding one-loop rational amplitudes

in pure Yang-Mills theory. Let us start by describing the connection between the one-loop

all-plus amplitudes and self-dual gauge theory. We will then show that the one-loop one-

minus amplitudes are also related to self-dual gauge theory, in a manner analogous to MHV

amplitudes at tree-level. We will also argue that the double copy relation to amplitudes in

the so-called N = 0 supergravity is natural in these sectors.

3We will present a similar argument in the next section in the context of one-loop amplitudes.
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Figure 1. An all-plus diagram.

3.1 Self-dual gauge theory and one-loop all-plus amplitudes

It is well known that the all-plus one-loop amplitudes A(1)(1+, 2+, · · · , n+) in Yang-Mills

theory are computed by self-dual Yang-Mills theory [15, 16]. It is instructive to see why

this is. Recall the Yang-Mills Lagrangian in light-cone gauge presented in eq. (2.6). There

are three kinds of vertex: the (+ +−) and (+−−) three-point vertices, and the (+ +−−)

four-point vertex. Now let us consider a one-loop all-plus diagram, as shown in figure 1.

We will show that such a one-loop amplitude contains only the (+ + −) vertex, which is

also the only vertex in the self-dual sector of the theory. To that end, let us suppose there

are n external gluons. Consider any Feynman diagram contributing to the loop amplitude,

which contains n+ vertices with helicities (+ +−), n− vertices with helicities (+−−) and

n4 vertices with helicities (+ + −−). Let there be I internal lines. As usual, the number

of loops L is related to the number of vertices and internal lines by

L = I − (n+ + n− + n4) + 1. (3.1)

For our application, we are interested in the case L = 1, so that the number of internal

lines is simply the total number of vertices:

I = n+ + n− + n4. (3.2)

Next, we count the number of plus and minus signs on the vertices. These lines must either

be external lines, or must join to propagators. Therefore, we find

n+ I = 2n+ + n− + 2n4, (3.3)

I = n+ + 2n− + 2n4, (3.4)

for plus and minus signs, respectively. From these equations it follows easily that

n− + n4 = 0, (3.5)

so that n− = 0 and n4 = 0. Thus, the one-loop amplitudes only include the (++−) vertex,

and can therefore be computed by restricting to the self-dual theory.

We saw in the previous section what the Feynman rules in self-dual gauge theory are.

There is a single type of vertex, (+ +−), and the precise rule for that vertex was given in
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the first line of (2.14). Using the Feynman rules, we can write numerators for any diagram.

For instance, a four-point box diagram has the kinematic numerator4

n1|2|3|4 =
2

〈η1〉2〈η2〉2〈η3〉2〈η4〉2X(l, 1)X(l + 1, 2)X(l + 1 + 2, 3)X(l − 4, 4), (3.6)

associated to the colour factor

c1|2|3|4 = f b1a1b2f b2a2b3f b3a3b4f b4a4b1 . (3.7)

For any all-plus diagram, the factors which dress X in the vertices — see rule (2.14) —

combine with the polarisation vectors to produce an overall denominator Πn
i=1〈ηi〉−2. The

interesting part of the numerators are the X factors. We saw in the previous section

that the factors X satisfy Jacobi-like identities, which can be interpreted as Schouten

identities. That statement is independent of whether the arguments of X are on-shell or

not. Therefore, the self-dual Feynman rules give colour-kinematics dual numerators for

all-plus amplitudes in a straighforward manner. For instance,

n1|2|3|4 − n2|1|3|4 =
2

〈η1〉2〈η2〉2〈η3〉2〈η4〉2X(1, 2)X(l, 1 + 2)X(l + 1 + 2, 3)X(l − 4, 4)

= n12|3|4, (3.8)

where n12|3|4 is the numerator of a triangle diagram with a massive corner, associated to

the colour factor

c1|2|3|4 − c2|1|3|4 = fa1a2b2f b1b2b3f b3a3b4f b4a4b1 = c12|3|4. (3.9)

In the same manner that boxes are associated to triangles, triangles are associated

to bubbles through Jacobi identities. However, while bubbles are included in the rep-

resentation of the integrand respecting the colour-kinematics duality, they vanish after

integration. To see this, notice that the numerators of the bubbles depend on the loop

momentum through

X(l, p)X(l + p,−p) = −X(l, p)2 = −(2pX · l)2, where pXαα̇ = |η〉α(p|η〉)α̇. (3.10)

The only tensor structures which can appear after the integration of lµlν over the prop-

agators are gµν and pµpν . Since pX is null and pX · p = 0, it is clear that the integral

vanishes. (A similar argument shows that the gravity bubbles obtained through the double

copy formula also vanish.)

Let us also make a comment about dimensional regularisation. We are interested in

having the loop momenta L in D = 4− 2ε dimensions. However, the loop momentum l in

the factors X(l, i) above is only the four-dimensional part of L. This procedure corresponds

to the use of the four-dimensional helicity scheme [38]. The (−2ε)-dimensional part of L

drops out from the numerator, but the propagators require the full D-dimensional loop

momentum. For instance, the propagator factors associated to the numerator (3.6) are

1

D1|2|3|4
=

1

L2(L+ p1)2(L+ p1 + p2)2(L− p4)2
. (3.11)

4The factor of 2 comes from summing over the two helicity possibilities of the gluon running in the loop.
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The entire one-loop amplitude, for multiplicity n, is determined by the numerator of

the n-gon integral, the other numerators being obtained from Jacobi identities. The n-gon

numerator for the all-plus amplitude is

n1|2|3|···|n = 2 (−1)n
n∏
i=1

1

〈ηi〉2 X
(
l +

i−1∑
j=1

i, i

)
. (3.12)

3.2 One-loop one-minus amplitudes

We have seen how to make the colour-kinematics duality manifest for all-plus amplitudes.

Now we will see that there is a similar procedure for one-minus amplitudes. The relation

between these two classes of amplitudes is analogous to the one between the self-dual sector

and MHV amplitudes at tree level, reviewed earlier. Fortunately, the method used there

will also be effective at one loop.

It is easy to modify the counting argument presented above for all-plus amplitudes so

that it applies to one-minus amplitudes. If there are n external particles, exactly one of

which has negative helicity, the result is

n− + n4 = 1. (3.13)

Therefore, if one can choose a gauge so that n− = 1, the diagrams include only one vertex

which is not of the self-dual type, and that vertex comes from the anti-self-dual sector, that

is, a (+−−) vertex. This is exactly the same situation as for tree-level MHV amplitudes [14].

As in that case, numerators satisfying Jacobi-like identities can be found by considering

a reference particle with negative helicity. Let us say that the unique negative helicity

particle is particle 1. Then we make the light-cone choice

|η〉 → |1〉. (3.14)

The resulting n-gon numerator, which determines the whole amplitude, is given by

n1−|2|3|···|n = 2 (−1)n
1

[η1]2
X(l, 1)

n∏
i=2

1

〈ηi〉2 X
(
l +

i−1∑
j=1

i, i

)
. (3.15)

The relation to the all-plus expression (3.12) is clear. The associated Jacobi-like identities

follow precisely in the same manner as eqs. (2.23) and (2.24).

We have thus succeeded in writing down rules to construct numerators satisfying the

colour-kinematics duality for the one-minus amplitudes, for any number of external legs.

Let us remark that these numerators (both all-plus and one-minus) can be obtained

using a scalar running in the loop, with the vertices (2.18). This is a consequence of the

supersymmetric Ward identities for rational amplitudes [39].

3.3 Double copy

Having found a representation of one-loop gauge theory amplitudes satisfying the colour-

kinematics duality, we can use the double copy formula (2.5) to obtain one-loop gravity
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amplitudes. Two questions arise: we need to identify the specific theory of gravity resulting

from the double copy; and we also need to verify that the procedure gives the correct

amplitudes of that gravity theory.

On the first point, the gravity theory resulting from the “squaring” of pure Yang-Mills

theory is the so-called N = 0 supergravity, consisting of Einstein gravity, a dilaton and a

two-form field (which can be dualised into an axion in four dimensions). So the product of

two scalar states (two helicities) in gauge theory gives four scalar states in gravity.

On the second point, consider the all-plus amplitudes first. All vertices in gauge theory

that contribute to this amplitude are of the self-dual type, as we saw above. The double

copy construction immediately yields a candidate gravity integrand for the helicity equal

gravity amplitudes from this. In fact, precisely this expression follows directly from the self-

dual gravity Lagrangian as derived from [40]. Note that all the scalars appear minimally

coupled in this action. Moreover, the purely gravity part of this action can be obtained

by truncating the light-cone gravity action as written in e.g. in refs. [41–43] to fields which

contain one field of one helicity type: only three point vertices in this gauge are of this type.

This gravity Lagrangian can be extended to the supersymmetric Lagrangian presented [40].

Truncating to N = 0 then shows that all scalars are minimally coupled.

The double copy also implies that, when going away from self-dual gravity to include

one particle of opposite helicity, only one other type of vertex is needed. This is supported

by a counting argument for vertices, which closely follows the argument detailed above for

gauge theory. In fact, it is precisely the same argument, with the difference that there is

an infinite sequence of vertices in the gravity light-cone Lagrangian [41–43]. Instead of n4,

we consider nσ+σ− , which is the number of vertices with more than three-points involving

σ+ plus-helicity particles and σ− minus-helicity particles; such vertices always possess at

least two particles of each helicity, so σ± ≥ 2. Then, the counterparts of (3.2)–(3.4) are

I = n+ + n− +
∑
σ+,σ−

nσ+σ− , (3.16)

n− ε+ I = 2n+ + n− +
∑
σ+,σ−

σ+ nσ+σ− , (3.17)

ε+ I = n+ + 2n− +
∑
σ+,σ−

σ− nσ+σ− , (3.18)

where ε = 0 for all-plus diagrams and ε = 1 for one-minus diagrams. We conclude that

n− +
∑
σ+,σ−

(σ− − 1)nσ+σ− = ε. (3.19)

In the case of all-plus amplitudes, this argument shows that there can be no other vertices

than the self-dual type, just as the double copy yields. In the case of one-minus amplitudes,

there must be one more vertex, either of anti-self-dual type (n− = 1) or a higher-point

vertex with two negative helicity particles (nσ+2 = 1). The double copy indicates that we

can choose n− = 1 by specifying a gauge as in gauge theory: |η〉 → |1〉, where 1 is the

single negative helicity particle. For this to be possible, it is required that no higher-point
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gravity vertex of the type (σ+, 2) leads to poles in 〈η1〉. Under this assumption, which is true

through at least five points [43], the gravity counting argument agrees with the double copy.

Note that the difference between self-dual N = 0 and pure self-dual gravity are mi-

nor. For the rational amplitudes they only differ by a factor of 2: Let us recall that the

supersymmetric Ward identities imply that we can replace gravitons and other massless

particles running in the loop with massless scalars [39], see also [44]. As a consequence, we

have that

M(1),any states
n (1±, 2+, . . . , n+) = NsM(1),one scalar

n (1±, 2+, . . . , n+), (3.20)

where Ns is the number of states running in the loop (bosonic minus fermionic). For pure

gravity, there are two helicities, so Ns = 2. For N = 0 supergravity, we have Ns = 4. In

the self-dual sector of gravity it can be seen from [40] that the scalars in N = 0 SUGRA are

minimally coupled. Comparing the explicit expression for the one-loop integrand with a

scalar running to a loop with a graviton running shows the two expressions are equivalent.

Hence in this theory there is a Ns factor diagram-by-diagram.

In conclusion, we have presented a Lagrangian based proof that in the helicity-equal

sector at one loop the double copy conjecture is true. In the one-helicity unequal sector at

one loop this was proven to five points, while it is plausible it holds to all multiplicity.

3.4 Examples

To illustrate the general arguments we presented above, we will now explicitly describe

some simple examples. In particular, we will consider four-point gravity amplitudes to

verify the double copy procedure. As a first step, we will calculate three-point one-leg-off-

shell currents in gauge theory and gravity.

The higher-point amplitudes obtained in the same way will obviously satisfy kinematic

consistency conditions, i.e. as they are rational they will not have any four-dimensional cuts

and applying (a number of) collinear limits they will reduce to the four-point result.

(+ + +) one-loop current

A useful warmup for the (++++) one-loop gravity example is to calculate the (+ + +)

one-loop Yang-Mills current, and then the corresponding one-loop graviton current. The

latter will be calculated from the YM expression by the double copy construction, using

(+ + −) vertices as a building block. We will closely follow the procedure explained by

Brandhuber, Spence and Travaglini in [45] to calculate the (++++) one-loop amplitude

in non-supersymmetric YM.

The (+ + +) one-loop YM current is depicted in figure 2. We have already shown that

bubble diagrams do not contribute. Using the (+ +−)-vertex and the polarization factors

for particles 1 and 2, (2.14)–(2.16), the diagram is written as

J
(1)
3 =

∫
dDL

(2π)D
〈η|l1|1]〈η|l2|2]X(l3, 3)

〈η1〉〈η2〉3η
· 1

L2
1L

2
2L

2
3

, (3.21)

with L2
1 = L2, L2

2 = (L− p2)2, and L2
3 = (L+ p1)2. The integral is evaluated in D = 4− 2ε

dimensions. As noted above, the scheme employed here is such that the vertices live in
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2+

l

Figure 2. The one-loop (+ + +) current of Yang-Mills theory. Leg 3 is off-shell.

four dimensions, whereas the propagators live in D dimensions. The loop momentum L is

decomposed into (orthogonal) four- and (−2ε)-dimensional parts as

L = l + l−2ε with L2 = l2 + l2−2ε = l2 − µ2, (3.22)

where the (−2ε)-dimensional part corresponds to a mass µ2 of a scalar running in the loop.

The quantity
〈η|l1|1]〈η|l2|2]

〈η1〉〈η2〉 (3.23)

appearing in the integrand can be simplified further, and the dependence on the (−2ε)-

dimensional subspace can be extracted. To do so, write it as

〈η|l112l1|η〉
〈η1〉〈η2〉〈12〉 = −l21

[12]

〈12〉 −
2(l1 · p1)〈η|1 l1|η〉
〈η1〉〈η2〉〈12〉 − 2(l1 · p2)〈η|l1 2|η〉

〈η1〉〈η2〉〈12〉 , (3.24)

where the definition of the Clifford algebra has been used on l1/ 1/ and 2/ l1/ on the left hand

side. The scalar products can be expressed as the difference of propagators

2(l1 · p1) = l23 − l21 = L2
3 − L2

1 and 2(l1 · p2) = L2
1 − L2

2, (3.25)

and l21 = L2
1 + µ2 by (3.22). Finally, one obtains

〈η|l1|1]〈η|l2|2]

〈η1〉〈η2〉 = −µ2 [12]

〈12〉+
Q

〈12〉 ; Q = L2
1

〈η|l3(1 + 2)|η〉
〈η1〉〈η2〉 +L2

2

〈η|l1|1]

〈η2〉 +L2
3

〈η|l1|2]

〈η1〉 . (3.26)

The one-loop current becomes

J
(1)
3 (+ + +) =

∫
dDL

(2π)D

(
− µ2 [12]

〈12〉 +
Q

〈12〉
)X(l3, 3)

3η
· 1

L2
1L

2
2L

2
3

. (3.27)

Upon standard one-loop integration of this expression, one finds that only the part pro-

portional to µ2 survives, and that it can be related to an integral in D+ 2 dimensions [46].

Eventually, the result is

J
(1)
3 (+ + +) =

i

(4π)2−ε ·
Γ(1 + ε)Γ(1− ε)2

Γ(4− 2ε)(−p2
3)ε
· [12]2

〈12〉 ·
〈η1〉〈η2〉

3η
. (3.28)

Next consider gravity. We have shown before that the colour-kinematics duality is

manifest in gauge theory, so we can just apply the double copy by squaring the numerator

(that is, the integrand excluding the propagators) in equation (3.21). Again, one does not
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need to consider bubble topologies, which vanish upon integration. So the three-graviton

all-plus one-loop current is given by

J (1)
3 (+ + +) =

∫
dDL

(2π)D

(〈η|l1|1]〈η|l2|2]X(l3, 3)

〈η1〉〈η2〉3η

)2
· 1

L2
1L

2
2L

2
3

, (3.29)

which will become, using (3.26),

J (1)
3 (+ + +) =

∫
dDL

(2π)D

(
− µ2 [12]

〈12〉 +
Q

〈12〉
)2X(l3, 3)2

32
η

· 1

L2
1L

2
2L

2
3

. (3.30)

Expanding out the integrand gives terms proportional to µ4, µ2, and µ0. It can be shown

easily that only the µ4 term survives after integration, i.e. the integral simplifies to

J (1)
3 (+ + +) =

∫
dDL

(2π)D
µ4 [12]2

〈12〉2
X(l3, 3)2

32
η

· 1

L2
1L

2
2L

2
3

. (3.31)

Rewriting this integral as a higher-dimensional integral gives

J (1)
3 (+ + +) = (−ε)(1− ε)(4π)2

∫
dD+4L

(2π)D+4

[12]2

〈12〉2
X(l3, 3)2

32
η

· 1

L2
1L

2
2L

2
3

=
i

(4π)2−ε ·
2Γ(1 + ε)Γ(2− ε)2

Γ(7− 2ε)(−p2
3)−1+ε

·
(

[12]2

〈12〉 ·
〈η1〉〈η2〉

3η

)2

.

(3.32)

Up to a factor of (p2
3)−1 and numerical coefficients, the gravity current turns out to be

the square of the Yang-Mills current (3.28). Note that we have not cared for possible

different internal helicity configurations in the example above since it was meant to sketch

the general procedure of how the double copy construction works. We will comment on how

to properly take internal helicities into account in the next section when we also consider

box topologies. Using the arguments to be presented below it will become clear that the

gauge theory current actually has to be multiplied by a factor of 2 and the gravity one by

a factor of 4.

(++++) one-loop amplitude

In this subsection, the four-point all-plus one-loop gravity amplitude M(1)
4 will be calcu-

lated using the BCJ double copy construction. To do so, we first write the corresponding

full colour-dressed YM amplitude in BCJ form, which is pictorially given by

A
(1)
4 (+ + + +) =

∫
dDL

(2π)D

1

2 3

4

l +(1243) + (1324)+ +(1324) + (1423) + (2314) + (2413) + (3412)l

1

2 3

4

(3.33)

Here again bubble integrals have been ignored, as they will integrate to zero in the YM case

and also after squaring. Note that one has to be aware of a subtlety here. There are two

possible internal helicity configurations for the integrand of each topology. This corresponds
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to the BCJ numerators corresponding to a sum of two terms that each individually are

dual, i.e. for the boxes one roughly has

Box ∼ f box nbox

D(lbox)
= f box

(nBa + nBb )

D(lbox)
(3.34)

where na and nb are the numerators for the two possible internal configurations. For the

triangles one has a relative minus sign because of Bose symmetry, i.e.

Tri = f tri
ntri

D(ltri)
= f tri

(nTa − nTb )

D(ltri)
. (3.35)

Consequently in the double copy construction one has to square these numerators. But

since they are related by

nBa = nBb nTa = −nTb , (3.36)

as can be easily shown using the properties of the X vertices, one finds after squaring

boxes + triangles = 4
( (nBa )2

D(lbox)
+

(nTa )2

D(ltri)

)
. (3.37)

This simply means that one can do the doubly copy construction considering only one

internal helicity configuration and multiply the result by a factor of four. This is essentially

equation (3.20), i.e. this factor corresponds to the bosonic degrees of freedom running in

the loop of extended supergravity. As discussed above they are the two graviton states,

a dilation, and an antisymmetric two-form. As the numerators satisfy kinematic Jacobi

relations by construction, they can immediately be squared, i.e. the (+ + −) vertices will

be squared. Having done this consider, consider first the box terms, e.g. for example the

ordering 1234. This part of the gravity amplitude is

Box(1234) = L1

2+
3+

4+
1+

=

∫
dDL

(2π)D

(〈η|l1|1]

〈η1〉
〈η|l2|2]

〈η2〉
〈η|l3|3]

〈η3〉
〈η|l4|4]

〈η4〉
)2
· 1

L2
1L

2
2L

2
3L

2
4

,

(3.38)

with L2
1 = L2, L2

2 = (L−p2)2, L2
3 = (L−p2−p3)2, and L2

4 = (L+p1)2. Similarly to (3.26),

one can rewrite the terms of the integrand as

〈η|l1|1]〈η|l2|2]

〈η1〉〈η2〉 = −µ2 [12]

〈12〉 +
Q

〈12〉 ; Q = L2
1

〈η|l3(1 + 2)|η〉
〈η1〉〈η2〉 + L2

2

〈η|l1|1]

〈η2〉 + L2
3

〈η|l1|2]

〈η1〉 ,

〈η|l3|3]〈η|l4|4]

〈η3〉〈η4〉 = −µ2 [34]

〈34〉 +
Q̃

〈34〉 ; Q̃ = L2
3

〈η|l2(3 + 4)|η〉
〈η3〉〈η4〉 + L2

2

〈η|l3|4]

〈η3〉 + L2
4

〈η|l3|3]

〈η4〉 ,

(3.39)

so that the integral becomes

Box(1234) =

∫
dDL

(2π)D

(
− µ2 [12]

〈12〉 +
Q

〈12〉
)2(
− µ2 [34]

〈34〉 +
Q̃

〈34〉
)2
· 1

L2
1L

2
2L

2
3L

2
4

. (3.40)
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Focus on the µ8-part of this expression. It will now be shown that this piece is proportional

to the gravity result. The µ8-part is given by

Box(1234)|µ8 =

∫
dDL

(2π)D
µ8 [12]2[34]2

〈12〉2〈34〉2 ·
1

L2
1L

2
2L

2
3L

2
4

=
[12]2[34]2

〈12〉2〈34〉2 I
1234
D=4−2ε[µ

8] (3.41)

where I1234
D=4−2ε[µ

8] = (−ε)(1−ε)(2−ε)(3−ε)(4π)4I1234
D=12−2ε[1] is a scalar integral in D = 12−

2ε dimensions [46]. Similar computations can be done for the other two box configurations,

and one finds

Box|µ8 =
[12]2[34]2

〈12〉2〈34〉2
(
I1234
D=4−2ε[µ

8] + I1243
D=4−2ε[µ

8] + I1324
D=4−2ε[µ

8]
)
, (3.42)

which is the one-loop four-point all-plus gravity amplitude as computed by Bern et al [47]

up to a factor of four. However, the factor of four follows from the discussion at the

beginning of this section (3.36) so that the µ8 piece does actually give the correct all-plus

gravity amplitude for N = 0 supergravity.

In order to check that our computation gives the correct result, it must be verified that

the µ6, µ4, µ2, and µ0 terms of the box integral (3.40) and the triangle integrals cancel, i.e

Box|µ6 + Box|µ4 + Box|µ2 + Box|µ0 + Triangles
?
= 0 (3.43)

The box terms can be extracted from (3.40). The triangle diagram contributions are

obtained by putting together a (+ +−) tree-level current and the one-loop current (3.32).

After a bit of algebra, one finds

Tri(1234) =

3+

L1

1+

2+

4+

=
i

(4π)2−e
2Γ(1 + ε)Γ(2− ε)2

Γ(7− 2ε)(−s12)ε
〈η|34|η〉4

〈12〉2〈34〉2∏4
i=1〈ηi〉2

.

(3.44)

The other triangle configurations are obtained by permutation of the external legs. Finally,

after evaluating all these integrals, we checked numerically (up to and including O(ε2) in

dimensional regularization) that the terms in (3.43) indeed add up to zero.

In summary, we have calculated the one-loop (++++) N = 0 supergravity amplitude

M(1)
4 using the BCJ double copy construction, and reproduced the well-known expression

(taking into account the factor of four discussed above)

M(1)
4 (+ + + +) = 4 Box|µ8 = 4

[12]2[34]2

〈12〉2〈34〉2
(
I1234
D=4−2ε[µ

8] + I1243
D=4−2ε[µ

8] + I1324
D=4−2ε[µ

8]
)
.

(3.45)

(−+ +) one-loop current

As another interesting example of numerators satisfying the colour-kinematics duality, the

one-minus one-loop gravity three-current and four-point amplitude will be calculated. To

– 17 –



J
H
E
P
0
4
(
2
0
1
3
)
1
0
7

3+

1−

2+

l

Figure 3. The one-loop (−+ +) current of Yang-Mills theory. Leg 3 is off-shell.

do so, one can reuse most parts of the machinery from the previous computation. To make

the colour-kinematics duality manifest, we implement the gauge choice introduced earlier

|η〉 = |1〉, (3.46)

where particle 1 has negative helicity particle. This choice eliminates four-point vertices

and forces particle 1 to couple to a (−−+) vertex.

We begin with the (−+ +) one-loop current as it is a building block for the one minus

four-point amplitude. Using the rules (2.14)–(2.16), including the polarization factors for

the on-shell particles 1 and 2, and taking into account the choice for |η〉, one arrives at

J
(1)
3 (−+ +) =

∫
dDL

(2π)D

( [η|l1|1〉〈1|l2|2]X(l3, 3)

[η1]〈12〉3η

)
· 1

L2
1L

2
2L

2
3

. (3.47)

The numerator depends on the loop momenta through

[η|l1|1〉〈1|l2|2]X(l3, 3) = 4ζ1µζ2νζ3σ l
µ
1 l
ν
2 l
σ
3 = 4〈12〉ζ1µζ2νζ2σ l

µ
1 l
ν
1 l
σ
1 , (3.48)

where ζ1 = |1〉[η| = η, ζ2 = |1〉[2| and ζ3 = |1〉(〈1|3) = 〈12〉ζ2. The tensorial structures

appearing after the integration of lµ1 l
ν
1 l
σ
1 over the propagators can only be of six types:

gµνpσ1 , gµνpσ2 , pµ1p
ν
1p
σ
1 , pµ1p

ν
1p
σ
2 , pµ1p

ν
2p
σ
2 and pµ2p

ν
2p
σ
2 (recall that p3 = −p1 − p2). Now, the

vectors ζi are null and mutually orthogonal. Moreover, ζi ·p1 = 0 and ζ2 ·p2 = 0. Therefore,

there is no other possibility than

J
(1)
3 (−+ +) = 0. (3.49)

So this current does not play a role in gauge theory amplitudes.

Similarly, for the corresponding gravity current obtained through the double copy

formula, we get

J (1)
3 (−+ +) = 0. (3.50)

(−+ ++) one-loop amplitude

In this subsection, the four-point one-minus one-loop gravity amplitudeM(1)
4 will be calcu-

lated using the BCJ double copy construction. Again, we first write the one-minus one-loop

YM amplitude in a BCJ form which is pictorially given by the same expansion as in the

all-plus case (3.33), except for diagrams where particle 1− is attached to the corner of a

triangle. We checked above that the latter diagrams vanish after integration. Additionally,
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bubbles integrate to zero so will be ignored as before. The gravity box diagram is given by

squaring the corresponding gauge theory numerators, namely

Box(−+ ++) =

∫
dDL

(2π)D

(
[η|l1|1〉

[η1]

〈1|l2|2]

〈12〉
〈1|l3|3]

〈13〉
〈1|l4|4]

〈14〉

)2

· 1

L2
1L

2
2L

2
3L

2
4

. (3.51)

The first two factors can be rewritten using [η|l1|1〉 = 2l1 · η and l2|2] = l1|2], whereas the

last two can be rewritten as in the all-plus case, using (3.26). One finds

Box(−+ ++) =

∫
dDL

(2π)D

((
2l1 · η〈1|l1|η]

[η1]〈12〉
)(
− µ2 [34]

〈34〉 +
Q̃

〈34〉

))2

· 1

L2
1L

2
2L

2
3L

2
4

, (3.52)

with Q̃ defined in (3.39). Note that the highest power in µ2 appearing for this helicity

configuration is two, in contrast to four in the all-plus case.

The triangle diagrams contributing can be constructed from (3.32) by multiplying it

with the appropriate gravity (−−+) vertex, i.e. the square of the second vertex in (2.14).

One finds

Tri(−+ ++) =

3+

L1

1−

2+

4+

=
i

(4π)2−ε
2Γ(1 + ε)Γ(2− ε)2

Γ(7− 2ε) (−s12) ε
〈1|34|1〉4[2η]2

〈34〉2〈12〉2〈13〉2〈14〉2.[1η]2

(3.53)

Adding up the contributions from boxes and triangles, evaluating the integrals numer-

ically, and finally taking into account (3.36) we find nice agreement with the literature

result [44]

M(1)
4 (−+ ++) = 4

(st
u

)2( [24]2

[12]〈23〉〈34〉[41]

)2(s2 + st+ t2

5760

)
(3.54)

in the limit ε→ 0. In other words, we have also constructed the (−+ ++) one-loop N = 0

gravity amplitude using the double copy formula.

4 Colour-kinematics duality after integration

We have seen that the self-dual kinematic algebra leads to natural BCJ numerators for

two families of one-loop amplitudes in pure Yang-Mills theory: the all-plus amplitudes and

one-minus amplitudes. These amplitudes are special because they have vanishing four-

dimensional cuts, and are therefore purely rational. Badger [48] presented a method to

evaluate rational terms using D-dimensional cuts. Using this procedure, we will show that

the appearance of the kinematic algebra at the level of the integrated amplitude explains

certain linear relations among partial amplitudes found by Bjerrum-Bohr et al [17]. These

relations have been proven in [49, 50]. The goal here is to look for residual algebraic

structure from the colour-kinematics duality after integration.

It was shown in [17, 49, 50] that one-loop all-plus partial amplitudes satisfy a set of

linear relations which resemble the tree-level Kleiss Kuijf relations. An example, at five
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points, is

0 = A
(1)
5;1(1, 4, 3, 5, 2) +A

(1)
5;1(1, 5, 3, 4, 2) +A

(1)
5;1(1, 2, 3, 4, 5)

+A
(1)
5;1(1, 2, 3, 5, 4) +A

(1)
5;1(1, 5, 3, 2, 4) +A

(1)
5;1(1, 4, 3, 2, 5) , (4.1)

where the subscript 1 denotes that these partial amplitudes are planar (correspond to a

single colour trace). It was noted that these relations could be explained by a structure

of “vertices” with certain symmetry properties. At n-points, each diagram contributing to

the amplitude would possess a single completely-symmetric four-point “vertex” Dq1q2q3q4 ,

and n − 4 completely-antisymmetric three-point “vertices” Fq1q2q3 . For instance, at five

points,5

A
(1)
5;1(1, 2, 3, 4, 5) −→ Fk1k2(−q) i

s12
Dqk3k4k5 + Fk5k1(−q) i

s51
Dqk2k3k4 + Fk4k5(−q) i

s45
Dqk1k2k3

+Fk3k4(−q) i

s34
Dqk5k1k2 + Fk2k3(−q) i

s23
Dqk4k5k1 . (4.2)

Identity (4.1) follows directly from this symmetry or antisymmetry of the vertices. The

same happens for higher n, where one would always have four “currents” made from F ’s

(and propagators) meeting at a “vertex” D.

Let us see how this structure follows naturally from the kinematic algebra, and from

the fact that we are considering rational amplitudes, that is, amplitudes with vanishing

four-dimensional cuts. Using the method of D-dimensional cuts of [48], an all-plus am-

plitude is given by a sum over cut boxes. Consider the box represented in figure 4, with

external momenta Kr, r = 1, 2, 3, 4. It corresponds to a diagram where the D-dimensional

momenta Lr running in the loop are on-shell. Let us decompose each loop momenta into

a four-dimensional part lr and an extra-dimensional part l−2ε, satisfying l2−2ε = −µ2 (the

same for all Lr by momentum conservation, since the Kr are four-dimensional). The cut

conditions are

l2 = (l +K1)2 = (l +K1 +K2)2 = (l −K4)2 = µ2 . (4.3)

The cut conditions have two solutions, l±, which depend on µ. Each diagram gets a con-

tribution from the two solutions, but we only pick up the coefficient of the leading power

in µ, which is µ4.

We define

C(i+ 1, . . . , j|j + 1, . . . , k|k + 1, . . . , l|l + 1, . . . , i) =
1

2

∑
l±

A1A2A3A4

∣∣∣
µ4
. (4.4)

The Ar are the four subamplitudes of adjacent external gluons with a very massive scalar

running in the loop. For instance, labelling the external gluons that go intoK1 as i+1, . . . , j,

we have

A1 = A(l; i+ 1, . . . , j;−l +K1) , (4.5)

5The propagators and the sign of the momentum connecting F and D were not included in [17]. Their

introduction is natural, however, if we look for a representation of the “vertices”.
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L1
K1

K2

K4

K3

Figure 4. A box cut of an n point amplitude.

where K1 = ki+1 + . . .+ kj . The full partial amplitude is given by

(4π)2A
(1)
n;1(1, 2, . . . , n) =

− 1

24

n∑
i=1

i−3∑
j=i+1

i−2∑
k=j+1

i−1∑
l=k+1

C(i+ 1, . . . , j|j + 1, . . . , k|k + 1, . . . , l|l + 1, . . . , i) , (4.6)

using the notation kn+i ≡ ki. Recall that in section 3.4, we explicitly confirmed this

prescription in the particular case of the four-point amplitude, since we have shown that

only the coefficient of µ4 contributed.

We can simplify the prescription of [48], given in (4.4), by noting that we can de-

termine explicitly the leading µ behaviour of the solutions l±. Let us rewrite the cut

conditions (4.3) as

l2 = µ2 , 2l ·K1 +K2
1 = 2l · (K1 +K2) + (K1 +K2)2 = −2l ·K4 +K2

4 = 0 . (4.7)

We have one quadratic equation and three linear ones, so it is clear that there are only two

solutions. We can use the external momenta to form a basis,

lλ = α1K
λ
1 + α2K

λ
2 + α3K

λ
3 + αω ω

λ, ωλ = ελνρσK1νK2ρK3σ , (4.8)

where εµνρσ is the Levi-Civita symbol. Now, in the linear equations of (4.7), l only appears

contracted with momenta Kr. Therefore, the coefficient αω does not appear in these equa-

tions, and they give a solution for α1, α2 and α3 which is independent of µ. The coefficient

αω can then be determined using the quadratic equation, l2 = µ2, giving

l± = ±µ l̄ +O(µ0) , (4.9)

where

l̄λ =
ωλ

(ω · ω)1/2
. (4.10)

For each subamplitude in (4.4), we only take the leading coefficient proportional to µ.

Moreover, each subamplitude is sensitive to the sign ± in (4.9), but not the product of the

four subamplitudes. Therefore, we can substitute (4.4) by

C(i+ 1, . . . , j|j + 1, . . . , k|k + 1, . . . , l|l + 1, . . . , i) = Ā1 Ā2 Ā3 Ā4 , (4.11)
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where we defined

Ār = Ar(l = l̄)|µ . (4.12)

The subscript means that we take only the contribution linear in µ. The subamplitudes

Ār are just multiplied together, and the loop momentum running in the loop is the same

in every subamplitude, so we conclude that each box is completely symmetric for the

permutation of its corner subamplitudes. This will be crucial in the following.

Let us start with the four-point case. We have

(4π)2A
(1)
4;1(1, 2, 3, 4) = −1

6
C(1|2|3|4) −→ Dk1k2k3k4 . (4.13)

We want to identify the amplitude itself with Dk1k2k3k4 (possibly up to factors) since it

is symmetric for the permutation of the external legs. Indeed, each subamplitude Ār
(associated with the external momentum kr) is given by

Ār =
e

(+)
r

rη
X(l̄, r) = − 1

〈ηr〉2X(l̄, r) . (4.14)

Notice that each subamplitude is independently invariant for the choice of the reference

spinor |η〉. That is to say, we could choose a different spinor |ηr〉 for each subamplitude;

the vertex factor Xr will then depend on that choice,

Xr(i, j) = 〈ηr|ij|ηr〉 . (4.15)

We can now write

Dk1k2k3k41|2|3|4 =
X1(l̄, 1)

〈η11〉2
X2(l̄, 2)

〈η22〉2
X3(l̄, 3)

〈η33〉2
X4(l̄, 4)

〈η44〉2 , (4.16)

so that

C(1|2|3|4) = Dk1k2k3k41|2|3|4 . (4.17)

The definition (4.16) can be directly extended to higher points,

DK1K2K3K4

i+1,...,j|j+1,...,k|k+1,...,l|l+1,...,i =
X1(l̄, K1)

α
(i+1,...,j)
1

X2(l̄, K2)

α
(j+1,...,k)
2

X3(l̄, K3)

α
(k+1,...,l)
3

X4(l̄, K4)

α
(l+1,...,i)
4

, (4.18)

where the momenta Kr are the overall momenta entering each of the four subamplitudes,

and where the external factors are given by

α(i+1,...,j)
r =

j∏
s=i+1

(
−〈ηrs〉2

)
. (4.19)

Let us now consider the five-point case,

(4π)2A
(1)
5;1(1, 2, 3, 4, 5) = −1

6

(
C(12|3|4|5) + C(51|2|3|4)

+ C(45|1|2|3) + C(34|5|1|2) + C(23|4|5|1)

)
. (4.20)
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1

2

= 1

2

+ 1

2

Figure 5. This subamplitude is part of the pentagon contribution to the box cut.

Based on (4.2), we would like to make the identification

C(12|3|4|5) −→ Fk1k2(−q) i

s12
Dqk3k4k5 . (4.21)

Using the prescription (4.11), we have that the associated subamplitudes Ā2, Ā3 and Ā4 are

given as in (4.14), with the appropriate external momentum. However, the subamplitude

Ā1 has two external gluons, and is given by

Ā1 =
i

〈η11〉2〈η12〉2
(
X1(1, 2)X1(l̄, 1 + 2)

s12
+
X1(l̄, 1)X1(l̄ + 1, 2)

2l̄ · k1

) ∣∣∣∣∣
µ

. (4.22)

The second term in this expression leads a pentagon-like structure in C(12|3|4|5), since all

five external gluons connect directly with the massive scalar in the loop; see figure 5. The

identification (4.21) is clearer in a gauge where that term vanishes, so that we can factorize

the contributions from the “vertices” F and D. One such gauge is

|η1〉 → l̄|1〉 , (4.23)

so that X1(l̄, 1) = 0. We can now make the identifications

DK1k3k4k5
12|3|4|5 = −X1(l̄, 1 + 2)

〈η11〉2〈η12〉2
X2(l̄, 3)

〈η23〉2
X3(l̄, 4)

〈η34〉2
X4(l̄, 5)

〈η45〉2 , (4.24)

Fk1k2(−K1)
1 = X1(1, 2) , K1 = k1 + k2 , (4.25)

so that

C(12|3|4|5) = Fk1k2(−K1)
1

i

s12
DK1k3k4k5

12|3|4|5 . (4.26)

Using the kinematic structure constants, we obtained a representation of the five-point

amplitude which makes manifest the “vertex” structure in (4.2). There are several gauge

choices involved, as each term in (4.2) — or, equivalently, each box contribution C in (4.20)

— requires a different gauge choice.

The same pattern repeats at higher points. For any subamplitude Ār of a contribution

C to the amplitude, one can choose a reference spinor |ηr〉 which eliminates all diagrams in

the subamplitude which are not box-like (such as the pentagon-like example above). Notice

that a subamplitude is invariant for the scaling of |ηr〉, so that we can choose |ηr〉 = (1 x).

The terms to be eliminated only depend on |ηr〉 in the numerator, and through Xr, so that
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we have a polynomial equation for the gauge parameter x.6 Once all subamplitudes are

written in an appropriate gauge, the factor Xr(l̄, Kr) can be absorbed into the four-point

“vertex” D, together with the external particle factors, while all the other Xr correspond

to “vertices” F .

Let us point out that there is an analogous structure described recently in superstring

amplitudes [13]. At one loop, in the field theory limit, open superstring amplitudes are

related to the tree-level F 4 contribution at order α′2. This contribution is in turn related

to the all-plus one-loop amplitudes under study here, as first discussed in [51, 52].

Ref. [17] also analysed relations between one-loop one-minus amplitudes, and it would

be interesting to investigate that case along the lines followed here. The method for com-

puting rational terms presented in [48] can also be applied, but it requires the inclusion of

triangles and bubbles.

5 A series of colour-dual form factors

In this section it is shown that the form factor of the anti-self-dual Lagrangian with all-plus

helicity gluons,

〈tr(F 2
−)(x)|+ + . . .+〉 (5.1)

admits an explicitly colour dual perturbation theory at tree level. This follows by calculat-

ing this form factor using the self-dual Yang-Mills theory. As a side product our calculation

shows that this particular theory admits an infinite series of observables of which the form

factor in equation (5.1) is an example.

The first step is to Fourier transform the operator in the form factor in equation (5.1)

to momentum space. Its momentum is denoted q. Before starting any calculation it should

be noted this particular form factor has a known expression at tree level from its relation

to effective Higgs-gluon couplings, see [53],

〈tr(F 2
−)(x)|+ + . . .+〉 =

(q2)2

〈12〉〈23〉 . . . 〈n1〉 (5.2)

where colour-ordered gluons are labelled 1 through n. This form can be understood from

the collinear factorization properties of like-helicity gluons and the symmetry properties.

The argument that the above form factor has an explicitly colour-dual representation

follows from embedding the form factor calculation into the self-dual Yang-Mills theory.

The starting point for this is the Chalmers and Siegel action for full Yang-Mills theory [16],

S =

∫
d4xtr

(
BF+ − 1

2
B2

)
(5.3)

Integrating out the field B yields the usual Yang-Mills theory (up to a topological term).

Dropping the B2 term gives self-dual Yang-Mills theory, which will be done from now on.

The field equation for B in this case sets F+ to vanish. To fix conventions set

F+

α̇β̇
= Fαα̇ββ̇ε

αβ (5.4)

6We have explicitly checked that non-singular solutions exist up to seven points.
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and

F−αβ = Fαα̇ββ̇ε
α̇β̇ (5.5)

light-cone gauge is given as before by

ηαηα̇A
αα̇ = 0 (5.6)

The spinorial form of the light-cone condition has two natural solutions,

Aαα̇ ∝ ηαAα̇ or Aαα̇ ∝ ηα̇Aα (5.7)

Note that the first make the interaction term in F+ vanish, while the second does the same

for F−. Let us pick the second solution. A complete basis for the spinor space is spanned

by

{ηα, η̃α, ηα̇, η̃α̇} (5.8)

where [η̃η] = 1 = 〈η̃η〉. In terms of these spinors one can decompose the symmetric tensor

Bα̇β̇ as

Bα̇β̇ = Bη̃α̇η̃β̇ +B′
(
ηα̇η̃β̇ + ηβ̇ η̃α̇

)
+B′′ηα̇ηβ̇ (5.9)

Plugging this decomposition into the Lagrangian in the chosen light-cone gauge gives

tr
(
BF+

)
= tr

(
Bη̃α̇η̃β̇F

+,α̇β̇ +B′
(
ηα̇η̃β̇ + ηβ̇ η̃α̇

)
F+,α̇β̇

)
(5.10)

where the last term drops out in this gauge. Furthermore,(
ηα̇η̃β̇ + ηβ̇ η̃α̇

)
F+,α̇β̇ ∝ ηα̇pα̇αAα (5.11)

so that integrating out B′ yields

Aα = ηα̇p
α̇
αA (5.12)

Plugging this back into the action and collecting gives

L = tr
(
BF+

)
= −B�A+Bηα̇ηβ̇(∂αα̇A)(∂αβ̇A) (5.13)

Which is the usual self-dual Yang-Mills theory in light-cone gauge. Important is that

introducing a Jtr(F−)2 current term into the action does not change the derivation. In the

particular gauge under study the operator (F−)2 can be expressed in terms of the fields as

tr(F−)2 = tr
(
ηα̇ηβ̇(∂αα̇∂β,β̇A)(ηδ̇ηγ̇(∂αδ̇∂β,γ̇A)

)
(5.14)

A form factor of this operator and an arbitrary amount of like helicity fields can therefore

be calculated purely in self-dual Yang-Mills theory. As an example, consider

〈tr(F−)2|+ +〉 (5.15)

at tree level. This can simply be calculated by putting the fields on-shell in (5.14). This

gives

〈tr(F−)2|+ +〉 = [12]2 =
(q2)2

〈12〉2 (5.16)
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as it should. This shows this form factor can be computed with an explicitly colour-dual

perturbation theory. This computation can be extended to form-factors with multiple

insertions of the field strength tensor, generalizing (5.1). For instance, one could consider

〈
(
tr(F 2

−)(x)
) (

tr(F 2
−)(x)

)
|+ + . . .+〉 (5.17)

In the self-dual sector, this form factor is structurally simply the product of two of the

MHV form factors. The only complication is the fact that this is a multi-trace object, so

color-ordering has to be defined with respect to two traces. Generalizing to more inserted

operators of this type is straightforward.

6 Discussion and conclusions

Above we have obtained the first series of examples of colour-dual numerators at any loop

level to all multiplicity. These series follow by extension of the observation of [14] that self-

dual Yang-Mills theory obeys colour-kinematics duality at the level of the Lagrangian. Since

this theory generates the integrand of the one-loop helicity-equal amplitudes, this integrand

is obtained in manifestly colour-dual form. Moreover, by exploiting gauge freedom the same

results can be obtained for the one-minus helicity integrand. Interestingly, these two series

of examples comprise all known finite amplitudes in Yang-Mills theory. We have checked

explicitly in the four particle case that the integrands of the gauge theory amplitudes indeed

integrate to the known results. Moreover, we have shown that the expressions obtained

by double copy also integrate to the correct results for four points in the corresponding

gravitational theory. It would be interesting to explore in more detail how colour-kinematics

duality could be used to simplify the form of these integrands. The role of generalised gauge

transformations should receive special attention in this exploration.

It has also been shown above that the integrated expressions for the all-plus amplitudes

have a residual colour-kinematics interpretation. This can be exposed for each separate

massive box coefficients by choosing a special gauge. The structure thus found here has

been used in a conjectural form in [17] to inspire certain relations between one-loop all-

plus amplitudes. By the known fact that these relations extend to massive box coefficients

regardless of helicity [49, 50] it is easy to speculate a similar colour-kinematics interpretation

must exist in this more general case. Investigating this should prove useful.

It would be interesting to obtain an explicitly colour-dual form of the gauge theory

Lagrangian beyond the self-dual truncation, along the lines of [8]. Extending this to the full

gravitational Lagrangian would be the logical next step. Of course, the existence of these

Lagrangians in a general form would prove colour-kinematics duality. Moreover, the duality

would apply to observables calculated in these theories, such as correlation functions and

form factors. In the latter case we have shown that the self-dual Lagrangian can yield

some insight already. As far as we know the observation that this theory has any tree level

gauge-invariant observables beyond a single three point amplitude constitutes a new result.

Perhaps this can yield some inspiration to find proper observables in (0,2) theories in six

dimensions beyond amplitudes [54].

– 26 –
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Our results in non-supersymmetric Yang-Mills and gravity theory at one loop may have

interesting implications for maximally supersymmetric Yang-Mills (N = 4) and supergrav-

ity (N = 8). A conjecture made in [55] relates the integrand of the helicity equal amplitudes

in non-supersymmetric Yang-Mills directly to the integrand of the maximally helicity vio-

lating (MHV) amplitude in N = 4 Yang-Mills. A similar conjecture was made in [47] for

the relation between helicity equal amplitudes in Einstein gravity and N = 8 supergravity.

Taken together with these conjectures, our results suggest that colour-kinematics duality

holds for MHV amplitudes in N = 4 Yang-Mills and that the double copy construction

yields the correct N = 8 supergravity result for this class of amplitudes.
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