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Abstract. We investigated the representation of a wide range of colours in the 
lateral geniculate nucleus (LGN) of macaque monkeys. We took an approach to 
reconstruct a colour space from responses of a population of neurons. We found 
that, in the derived colour space (‘LGN colour space’), red and blue regions 
were compressed whereas purple region was expanded, compared with those in 
a linear cone-opponent colour space. We found that the expanding/compressing 
pattern in the LGN colour space was related to the colour histogram derived 
from a natural image database. Quantitative analysis showed that the response 
functions of the population of the neurons were nearly optimal according to the 
principle of 'minimizing errors in estimation of stimulus colour in the presence 
of response noise'. Our findings support the idea that the colour representation 
at the early neural processing stage is adapted for efficient coding of colour  
information in the natural environment.  
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1   Introduction 

It is well established that signals encoded by three classes of cones (L, M and S) are 
combined at the retina to generate cone-opponent signals, which are then conveyed to 
the primary visual cortex via the lateral geniculate nucleus (LGN). The retinal and the 
LGN cone-opponent type of neurons are well modelled as a linear transformation of 
cone signals, L+M, L-M, and S-(L+M) with appropriate weights. In this framework, 
colours can be represented by a three-dimensional space consisting of three orthogo-
nal axes, each of which exclusively represents signal of the L+M, L-M or S-(L+M) 
mechanism [1, 2].  

Although this colour space, which we call ‘linear cone-opponent space’, is useful to 
characterise physiological and psychophysical data in terms of colour mechanisms at 
the level of the retina and the LGN, it is well recognized that this colour space is not 
straightforwardly related to the CIELUV, CIELAB, or Munsell spaces, which are per-
ceptually uniform. This suggests that colour signals are nonlinearly transformed into 
the perceptual colour representation at some neural level. Where does this transforma-
tion occur? Although it is likely that this nonlinear transformation involves computa-
tions at the cortical levels [3, 4], it is also possible that it begins at the subcortical level. 
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Hanazawa et al. [5] investigated response properties of LGN colour-selective neurons 
in a macaque monkey, which is a good animal model of human colour vision, using a 
wide range of colour stimuli including highly saturated colours. They found that more 
than half of the neurons have response nonlinearities. These nonlinearities, most of 
which were compressive nonlinearity operating at the high-contrast range of colours, 
as well as variability of the response tuning among neurons, may explain complex, 
nonlinear characteristics observed at the perceptual level in humans.  

In the present study, we revisited the colour representation in the LGN of the ma-
caque monkey to explore the response nonlinearity at this neural level and its func-
tional role. Here we took an approach to reconstruct a colour space from responses of 
a population of neurons [6, 7]. We found that the derived colour space (‘LGN colour 
space’) was nonlinearly related to the linear cone-opponent colour space. Interest-
ingly, the nonlinearity can partly explain why there are five basic hues in the Munsell 
colour space. This implies that the nonlinearity of the cone-opponent neurons at the 
subcortical level is involved in the transformation of cone signals into the perceptual 
representation. Furthermore, we found that the nonlinear encoding at this neural level 
was nearly optimal to natural colour distributions. These findings give important  
clues for understanding relationships among colour perception, neural responses, and  
natural colour statistics.  

2   Analysis of Colour Representation in LGN 

We analysed the responses of 38 LGN colour-selective neurons to 24 different chro-
maticities recorded from a macaque monkey performing a fixation task (see [5] for 
details). Figure 1a shows chromaticity of the stimuli in scaled and translated version 
of MacLeod-Boynton (MB) chromaticity diagram [1], in which horizontal axis exclu-
sively represents L-M cone-opponent signals and vertical axis represents S-(L+M) 
cone-opponent signals in a linear fashion. Here we call this space (and its linear trans-
formation) ‘linear cone-opponent space’. The stimulus was a stationary square of 
uniform colour and covering the entire receptive field on a dark grey background 
(2.5cd/m2, CIE x=0.310, y=0.317). The luminance of the stimuli was held constant at 
20cd/m2 or 7cd/m2. The stimuli were presented at least five times each for 500ms in a 
pseudo-random order. The visual response was defined as the mean discharge rate 
during the stimulus presentation minus the baseline activity (200-0ms before stimulus 
presentation). The neurons were classified into three types based on the peak colour 
tuning direction in the MB chromaticity diagram; 19 L-M type neurons, 14 M-L type 
neurons, and 5 S-(L+M) type neurons. There was no (L+M)-S type of neuron. 

2.1   Reconstruction of Colour Space from Neural Data 

We applied classical multi-dimensional scaling (MDS) to the neural data to derive a 
uniform colour space, in which distances corresponded to pooled response differences 
of 38 LGN neurons. The pooled response difference between a pair of colours (‘neu-
ral distance’) was defined as Euclidian distance between 38-dimensional neural re-
sponse vectors. The responses of each type of neurons were weighted by an inverse of 
the number of neurons assuming that there are equal numbers of these different types  
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Fig. 1. (a) Colours used for the analysis plotted in the linear cone-opponent space (scaled and 
transformed MB chromaticity diagram. (b) Two-dimensional colour space reconstructed from 
responses of LGN neurons using a multi-dimensional scaling (LGN colour space). The two 
axes in the LGN colour space were aligned with those in the linear cone-opponent space. 

of neurons in the LGN. For comparison with the linear cone-opponent space, the 
MDS-derived space was aligned to the linear cone-opponent space using a procrustes 
transformation (translation, reflection, orthogonal rotation, and scaling). Since the 
relative scale of the two axes of the linear cone-opponent space is unknown, we  
adjusted this relative scale so as to produce the best correspondence between the 
transformed MDS-derived space and the linear cone-opponent space. 

Figure 1b shows the MDS-derived two-dimensional space, which well accounted 
for the neural distance data. Correlation coefficient between the distance in this space 
and the neural distance was quite high (0.998). Here we call the derived space ‘LGN 
colour space’. In this LGN colour space, saturated blue and red regions were com-
pressed compared with the linear cone-opponent space. This clearly shows that cone 
signals are nonlinearly transformed at this neural level.  

Interestingly, purple region was relatively expanded in the LGN colour space; pur-
ple colour was located around midpoint between red and blue in the linear cone-
opponent space, whereas it was located near upper right corner in the LGN colour 
space. The distance between purple and white was comparable with that between blue 
and white in the LGN colour space. Thus, purple is one of salient colours at the LGN 
level. This is an interesting characteristic because purple is one of basic hues in the 
Munsell colour space (red, green, yellow, blue and purple, which are equally spaced 
in the space). This suggests that the nonlinear transformations into the perceptual 
colour representation may begin at this neural level. 

2.2   Model of LGN Colour Space 

How is the LGN colour space related to the linear cone-opponent space? We hypothe-
sized that (1) the LGN colour space is comprised of independent cone-opponent L-M 
axis and S-(L+M) axis, but (2) there are simple compressive nonlinearity (saturation) 
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Fig. 2. (a) Population average of the neural responses along the two axes (open circle) and the 
modelled response functions (continuous line). For the L-M axis, responses of the M-L types of 
neurons were averaged with those of the L-M type of neurons after inverting the sign. (b) A 
two-dimensional space reconstructed by the model. 

along each of the two axes. Next, we examined how this simple model can account 
for the LGN colour space.  

Figure 2a shows response functions along the two axes and the two-dimensional 
colour space reconstructed by the model. The response function of each axis was 
modelled by the sigmoid functions (hyperbolic tangent functions) [5]. The modelled 
two-dimensional colour space could replicate the pattern of the LGN colour space 
(fig. 2b), although there were still distortions that could not be explained by the 
model. The distances in the modelled LGN colour space was more highly correlated 
with the neural distances than those in the linear space. Thus the pattern in the LGN 
colour space is at least partly explained by considering simple saturation of the two 
axes responses, although other complex nonlinearity may be involved as well.  

3   Relationships between LGN Colour Representation and Natural 
Colour Distributions 

What role does the nonlinearity plays? One hypothesis is that the nonlinear transfor-
mation is related to an optimal encoding of colours in the natural environment. Com-
putational studies have suggested that the colour mechanisms at the retina and the 
LGN levels are adapted to transmit colour information in the natural environment 
through optic nerve fibre with limited capacity [8, 9]. The compressive nonlinearity of  
the response functions can also be interpreted computationally in terms of an optimal 
encoding of natural inputs [10, 11]. To test this hypothesis, we examined how the 
LGN colour representation is related to natural colour distributions. 

3.1   Analysis of Natural Colour Distributions 

Histogram of natural colours were evaluated by using 327 natural scene images from 
McGill calibrated colour image database [12], which is a collection of calibrated  
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Fig. 3. (a). Example of natural images. (b) Histogram of natural colours evaluated using the 
natural image database. Colour density is shown by pseude-colour scale in the linear cone-
opponent space (left) and in the LGN colour space (right). Marginal distributions are also 
shown along each axis. 

natural images including plants, landscape and so on (fig. 3a). The images were pre-
processed taking light adaptation at photoreceptor level into account. We applied von 
Kries scaling to the LMS cone excitations for each image [13]; this adjusts the gains 
of LMS cone excitations independently so that mean luminance and chromaticity over 
entire scene is constant (unit luminance of illuminant C). Then we computed two-
dimensional colour histograms in the linear cone-opponent space as well as in the 
LGN colour space using all images.  

Figure 3b shows derived colour histograms plotted in the linear cone-opponent 
space and the LGN colour space. Natural colours were highly concentrated around the 
white point in the linear cone-opponent space (fig. 3b left), whereas they were more 
flatly distributed in the LGN colour space (fig. 3b right). Importantly, the compressed 
region in the LGN colour space (saturated blue and red) corresponded to the low-
density regions in the linear cone-opponent space. This trend supports the hypothesis 
that the compressive nonlinearity is related to natural colour distributions. 

3.2   Are the Response Functions Optimal for Natural Colour Distributions? 

To examine whether the LGN colour representation is optimised for natural colour 
distributions more quantitatively, we asked whether the response characteristics of the 
LGN neurons are optimal in terms of optimisation theories. Assuming that the two 
axes in the LGN colour space are orthogonal, we analysed the response function 
along each axis based on two theories. One is the ‘Pleistochrome’ theory constructed 
by von der Twer and MacLeod [11]. According to this theory, the optimal response 
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function g(x), is derived from the probability density function of the input, p(x), by 
eq. 1. This function minimizes the error of estimation of input signal (e.g., chroma-
ticity) from the output (response) in the presence of output noise. Another more popu-
lar theory is the ‘Infomax’ developed by Laughlin [10] and recently used by Long et 
al. [14] for investigating relationships between colour perception and natural colour 
statistics. According to this theory, the optimal response function is derived by the 
cumulative probability density function (eq. 2). In both cases, the optimal response 
functions are derived if the input distributions are given.  
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Figure 4 shows the response functions optimal to the distributions of the L-M and S-
(L+M) cone-opponent signals predicted from the two theories. The functions pre-
dicted from the ‘Pleistochrome’ theory fitted well to the neural response data for both 
axes. These are also close to the response function of the LGN colour space model 
(fig.2a). On the other hand, the functions predicted from the ‘Infomax’ were steeper 
than the neural response functions. These suggest that the colour mechanisms at the 
LGN level are nearly optimal to natural colour distributions, according to the princi-
ple of minimizing the error for estimating colour from the responses.  

Contrary to our results, von der Twer and MacLeod [11] did not find evidence that 
the chromatic response functions of the LGN neurons were optimal to natural colour 
statistics. The discrepancy between their results and ours may be due to differences in 
the image database used for evaluating natural colour distributions. They used images 
collected by Ruderman et al. [15], which included only limited classes of natural 
scenes. The colours in these images are more heavily concentrated around the white 
 

 

Fig. 4. (a) Comparisons between the response functions of the LGN neurons (open circle) and 
the optimal response functions predicted from the ‘Pleistochrome’ theory (continuous line, A) 
and the ‘Infomax’ theory (dotted line, B) along L-M axis (left) and S-(L+M) axis (right). Upper 
panels show natural colour distributions along each axis. (b) A two-dimensional space com-
posed of optimal response functions predicted from the ‘Pleistochrome’ theory. 
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point than those in the database that we used. Thus, the density of highly saturated 
colours should be underestimated if that database was used. 

Note also that we computed colour distributions after applying von Kries adaptation. 
Without von Kries adaptation, the colour distribution becomes flatter and the optimal 
response functions for those distributions will become more linear than the neural 
response functions. This means that receptor gain control, as well as compressive 
nonlinearity, has an important role in efficient coding of colours. 

4   Conclusion 

We reconstructed a colour space from responses of a population of LGN neurons. We 
found that the derived colour space (‘LGN colour space’) was considerably ex-
panded/compressed compared with those in the linear cone-opponent colour space. 
Interestingly, the expanding/compressing pattern may partly explain emergence of 
five basic hues in colour appearance. This suggests that nonlinear transformations into 
the perceptual colour representation may begin at this early neural processing stage. 
Furthermore, we found that the expanding/compressing pattern in the LGN colour 
space can be explained simple compressive nonlinearity of the cone-opponent type of 
neurons. Such nonlinear response characteristics were nearly optimal to natural colour 
distributions according to the principle of 'minimizing errors in estimation of stimulus 
colour in the presence of response noise'. This supports the idea that the colour repre-
sentation at the early neural processing stage is adapted for efficient coding of colour 
information in the natural environment.  
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