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Abstract. Colour transfer algorithms aim to apply a colour palette,
mood or style from one image to another, operating either in a three-
dimensional colour space, or splitting the problem into three simpler
one-dimensional problems. The latter class of algorithms simply treats
each of the three dimensions independently, whether justified or not.
Although they rarely introduce spatial artefacts, the quality of the re-
sults depends on how the problem was split into three sub-problems, i.e.
which colour space was chosen. Generally, the assumption is made that a
decorrelated colour space would perform best, as decorrelation makes the
three colour channels semi-independent (decorrelation is a weaker prop-
erty than independence). However, such spaces are only decorrelated for
well-chosen image ensembles. For individual images, this property may
not hold. In this work, the connection between the natural statistics of
colour images and the ability of existing colour transfer algorithms to
produce plausible results is investigated. This work aims to provide a
better understanding of the performance of different colour spaces in the
context of colour transfer.
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1 Introduction

Colour is one of the main image attributes used in art, photography and visuali-
sation for relaying information, or for conveying a specific mood. Tools available
to alter and manipulate the colour content of images tend to require extensive
user input or simply do not offer sufficient control over the result. This leaves
many such tools out of reach of untrained users. Considering such users, colour
transfer forms a class of techniques that allow the colour palette of an image
to be altered using a second image as a reference. The task is then to select
a reference image whose colours are preferred. Subsequently the algorithm will
modify the original image such that it acquires the palette of that reference.

In essence this operation can be seen as a function that, given two images,
produces a third that has maintained the semantic content of the one while
acquiring the colours of the second. This of course can be achieved in many
different ways, using different descriptors for the image content, or operating
in different colour spaces, leading to an extensive collection of colour transfer
techniques.
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This set of techniques can be broadly categorised into two classes, namely those
that treat colour transfer as a 3D problem, and those that decompose the problem
into a set of three 1D problems. The latter class is the focus of this paper, and relies
on an important insight from the area of natural image statistics.

Natural image statistics is the study of statistical regularities in images, and
usually aims to help understand how the human visual system operates. The
argument is that human vision has evolved in the presence of a natural environ-
ment, and is therefore in some sense specialised to observe and interpret natural
images. Such images are normally taken to be those that occur in nature, and
for instance do not contain man-made structures.

In the context of human vision, Ruderman et al tested this hypothesis. They
converted a set of spectral natural images to LMS cones space, a colour space
that resembles the responses of the L, M and S cones in the human retina (the
letters stand for Long, Medium and Short wavelength, respectively, indicating
the peak sensitivity of each cone type). This image ensemble was then subjected
to Principal Component Analysis (PCA), showing that the three principal com-
ponents obtained closely correspond to the opponent colour channels found in
the human visual system, in particular in the retina [23]. As PCA yields compo-
nents that are maximally decorrelated, we can infer that the human retina aims
to decorrelate its input. While formally PCA only decorrelates, it was found that
transforming natural images according to this colour space, termed Lαβ, yields
channels that are close to independent.

By producing a decorrelated image signal, and for natural images largely inde-
pendent signal, the efficiency of transmitting information through the optic nerve
is increased, especially considering that the optic nerve constitutes a bottleneck
in terms of transmission bandwidth. On the other hand, it is now possible to
use this knowledge for computational tasks. The observation is that if the three
colour channels of an image can be made independent, then image processing
can take place in each of the three channels independently [19].

This has led to an early colour transfer algorithm which essentially matches
means and standard deviations between a pair of images [19]. It can be shown
that the choice of colour space is important, i.e. that decorrelation matters. An
example is given in Figure 1, where the RGB colour space does not lead to an
effective transfer of the colour palette, while the Lαβ space produces a much
more plausible result.

Although Lαβ has been adopted as the space of choice for several colour trans-
fer algorithms [19,5,25,34,11,33,26,12,35,32,30], related spaces such as CIELAB
are also used [4,28,18]. Other colour spaces implicated in colour transfer are CIE
LCh∗ [14], Y CbCr [9], Yuv [10,27], as well as colour appearance models [13]. On
the other hand, several authors suggest to compute a dedicated colour space for
each transfer, based on PCA [8,1,7,31,2].

We argue that the choice of colour space is important, especially for the class
of algorithms that decompose the problem into a set of three 1D problems. To
test this hypothesis, we present a pilot study for which we collected a small set
of images, and divided them into four distinct image sets, containing natural
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Fig. 1. Decorrelation properties of colour spaces. The top row shows pixel values for
pairs of channels in an RGB colour space, taken from the image at the top left. The
bottom row shows the same pixels plotted in pairs of channels from the Lαβ space
instead. Values in channel in RGB spaces tend to be good predictors of other channels,
resulting in an almost diagonal distribution.

scenes, manmade scenes, indoor scenes and night-time scenes. We first measure
how well different colour spaces decorrelate each category, predicting how well
we expect these spaces to perform for each image category. We then apply the
colour transfer algorithm to pairs of images within each image category in each
colour space to assess our predictions. We hope the insights presented in this
paper provide a useful background for future developments in colour transfer.

2 Previous Work

One of the earliest colour transfer algorithms matches means and standard de-
viations in the Lαβ colour space that is decorrelated for natural images [19,20].
To achieve a more complete transfer, histogram matching can be used to trans-
fer the distributions of images [14,32]. Some argue that a post-processing step
to preserve gradient magnitudes is desirable [32]. A more refined approach sits
in-between Reinhard’s original technique and full histogram matching, allowing
histograms to be partially matched in a controllable manner [17,18].

Recognising that no single colour space may suit all occasions, some authors
propose to apply Principal Components Analysis to individual images, creating
a dedicated colour space for each transfer [8,1,7,31,2]. To a greater degree this
can also be achieved by means of Independent Components Analysis [6].

Most of these methods treat the three colour channels independently, mean-
ing that the choice of colour space as well as the choice of source and target
images determine the visual quality of the transfer. Alternatively, it is possible
to carry out the colour transfer in 3D colour space, for instance by transferring
probability distributions from one image to another [15,16], or by employing
Gaussian Mixture Models [24,33,30]. A further technique aims to minimise arte-
facts by limiting transfers to remain within colour naming categories [4]. Some
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techniques allow stroke-based user input to define target colours [10] or to define
corresponding regions [28,3].

3 Method

An important aspect both in colour processing in the human visual system and in
many colour transfer algorithms is the decorrelation of the input. This can only
be assessed relative to a set of images. In this section we discuss the data sets
that we captured, the colour spaces that we test, as well as the colour transfer
algorithm employed. Sections 4 and 5 then present our results, followed by a
discussion in Section 6.

3.1 Image Ensembles

To analyse the ability of existing colour spaces to decorrelate different scene
categories as well as to evaluate the different colour spaces resulting from these
scene categories we analyse several image databases. For this work, we focus
both on different scene categories:

– ND - Natural Day: contains 95 day-time images shot outdoors in natural
locations, without manmade structures. A variety of landscapes and weather
conditions are included.

– MD - Manmade Day: contains 100 day-time images shot outdoors in
manmade locations. These include urban landscapes as well as constructions
and monuments from different eras.

– IN - Indoors: contains 100 images shot in indoors locations, such as rooms,
offices or shops. In many scenes, artificial and natural light sources may be
visible, including windows.

– MN - Night: contains 52 images shot at dusk or night, in urban locations.
Many contain light sources visible within the scene such as street lights.

For the purpose of creating PCA-based colour spaces for each category, we use all
the images in each category. When assessing the plausibility of colour transfer,
we use a random subset of 6 images from each category (11 from the natural
day ensemble).

3.2 Colour Spaces

A set of candidate spaces was selected based on the colour spaces seen in use in
colour transfer research. The chosen colour spaces are Lαβ, CIELAB (using both
D65 and E illuminants), Yxy, Yuv, Yu’v’, XYZ, RGB and HSV [22]. We have
also computed a dedicated colour space for each of the image ensembles using
PCA. Although most colour spaces are well known, the Lαβ space is perhaps
least known, and is therefore described in more detail here.

To transform the images to Lαβ space, the input sRGB values are first
converted to the device independent XY Z space:
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⎡
⎣

X
Y
Z

⎤
⎦ =

⎡
⎣

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

⎤
⎦

⎡
⎣

R
G
B

⎤
⎦ (1)

After the RGB to XYZ conversion, values are further converted to the LMS cone
space to prepare them for the final transform into the Lαβ space:

⎡
⎣

L
M
S

⎤
⎦ =

⎡
⎣

0.3897 0.6890 −0.0787
−0.2298 1.1834 0.0464

0.0000 0.0000 1.0000

⎤
⎦

⎡
⎣

X
Y
Z

⎤
⎦ (2)

Following Ruderman et al. [23], the LMS values are logarithmically compressed
to reduce skew in the data before applying the linear transform to Lαβ:

⎡
⎣

L
α
β

⎤
⎦ = diag

(
1√
3

1√
6

1√
2

) ⎡
⎣

1 1 1
1 1 −2
1 −1 0

⎤
⎦

⎡
⎣

log L
log M
log S

⎤
⎦ (3)

This colour space is characterised by a luminance channel L and two opponent
colour channels α and β, which encode yellow-blue and red-green chromaticities.
The space is derived from Principal Components Analysis of natural images, and
is therefore expected to be a good candidate for colour transfer algorithms, a
hypothesis tested in this paper.

3.3 Ensemble-Based Colour Spaces

For each of our image ensembles we compute dedicated colour spaces following a
process similar to the one described in [23]. More specifically, the following steps
result in a 3x3 matrix conversion matrix, converting between LMS cone space
and a space which is decorrelated with respect to a specific image ensemble. Each
of the rows of the matrix correspond to a principal component and therefore an
axis of the ensemble-specific colour space.

A square patch of 128 × 128 pixels is selected from each of the images in an
ensemble. These patches are then converted to LMS cone space. The patches are
logarithmically compressed, and the data in each channel is mean centred, simu-
lating a simplified Von Kries adaptation step [29]. Finally Principal Component
Analysis (PCA) is performed on the N × 3 matrix which results from concate-
nating the scanlines of all image patches. This produces a set of 3 components
(eigenvectors) sorted according to their respective eigenvalues. For each of our
four image ensembles, this leads to a colour space which in the PCA sense would
be more decorrelated than any of the standard colour spaces.

3.4 Colour Transfer

In its simplest form, the algorithm proposed by Reinhard et al. [19,21] shifts
and scales the pixel values of the source image to match the mean and standard
deviation of the target:

Lo =
σt,l

σs,l
(Ls − μs) + μt (4)
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Fig. 2. An example pair of source and target images as well as their resulting output
after using the colour transfer technique by Reinhard et al. [19] are shown in the top
row. The corresponding histograms are shown at the bottom for the three channels of
the Lαβ colour space.

Here, the subscripts s, t and o correspond to the source, target and output images
and μ and σ are their respective means and standard deviations. Equation 4
describes the distribution transfer between source and target for the luminance
channel only. The same process is repeated for the two opponent channels of the
Lαβ space to complete the colour transfer. Figure 2 shows an example pair of
source and target images as well as their corresponding histograms before and
after transferring the colours between them. Rather than employ the Lαβ space,
in the following experiments we operate this procedure in a variety of different
spaces to assess their viability.

4 Correlation Analysis

To analyse the extent to which a colour space decorrelates its colour channels for
a specific image ensemble, we use a procedure based on measuring the covariance
between channels. First, each of our image sets is converted to the different spaces
that we wish to compare. Following these conversions, the centre patch of 128
× 128 pixels is selected from each image, arranged to form an N × 3 vector.
From this vector a 3-by-3 covariance matrix can be computed, containing the
covariance between pairs of channels in the off-diagonal elements and the channel
variance on the diagonal elements.

To make the covariance values comparable between colour spaces, we nor-
malise the data used to compute the covariances. This is not straightforward as
each colour space has different ranges and possibly different ratios between its
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Table 1. The volumes of different colour spaces, approximated by a cuboid

Colour Space Volume Colour Space Volume

Lαβ 6.4480 YUV’ 0.1318
CIELab (E) 6.0447e+03 HSV 0.8333
CIELab (D65) 8.8841e+03 XYZ 1.0351
Yxy 0.2646 RGB 1.0000
YUV 0.0879

channels. Simply normalising the data by its maximum – whether per channel
or per set – is not sufficient as this would potentially change the relations be-
tween the three channels of each space and would not necessarily ensure that
the results are comparable.

For our analysis, we choose to normalise the different colour spaces according
to their volume. Each space is defined by 3 axes, with different ranges and ratios
between them. To approximate the volume of each colour space, the maximum
and minimum achievable values for each channel are determined. In some colour
spaces, such as RGB, these are well defined. In cases such as CIELAB however,
values may not be explicitly constrained. Instead, we constrain the input to
our analysis such that the initial RGB values are normalised between 0 and
1. Using a simple 3-channel image containing all permutations of 0 and 1, we
can determine the minimum and maximum values that can be achieved in each
channel for each of the colour spaces that we are examining. These values are
then used to compute the volumes of the spaces, shown in Table 1. Since the RGB
input is normalised, the RGB space already has unit volume. The normalisation
procedure then consists of scaling the image values by the cube root of the colour
space’s volume, which is sufficient to allow comparisons between them.

4.1 Standard Colour Spaces

Tables 2 and 3 show the resulting covariance matrices for each colour space and
for each of our image ensembles.

From these covariance matrices, we take the off-axis elements and average
their absolute values, leading to an average covariance for each colour space. We
then use these numbers to rank each colour space, leading to the orderings shown
in Table 4. The first colour space is thus the most effective at decomposing the
specified category of images to decorrelated components.

The first observation is that for all image ensembles CIELAB with illuminant
E decorrelates the data more effectively than all other colour spaces. Especially
for day-time images, both natural and artificial, this space decorrelates signif-
icantly better than the second best colour spaces. Surprisingly, CIELAB with
illuminant D65 does not decorrelate well. On the other hand, we see that RGB
and XYZ are significantly worse than all other colour spaces. Finally, we note
that the ranking is mostly consistent across image ensembles. We expect that this
measure of correlation is indicative for the performance of these colour spaces in
colour transfer tasks.
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Table 2. Covariance matrices for the Natural and Manmade Day ensembles

Natural Day

0.0462 -0.0059 -0.0002
-0.0059 0.0025 0.0001Lαβ
-0.0002 0.0001 0.0000

0.0062 -0.0016 -0.0002
-0.0016 0.0009 -0.0002CIELab (E)
-0.0002 -0.0002 0.0013

0.0048 -0.0030 -0.0107
-0.0030 0.0022 0.0061CIELab (D65)
-0.0107 0.0061 0.0287

0.0616 -0.0027 -0.0041
-0.0027 0.0010 0.0008Yxy
-0.0041 0.0008 0.0016

0.1286 -0.0007 -0.0030
-0.0007 0.0005 0.0001YUV
-0.0030 0.0001 0.0004

0.0981 -0.0005 -0.0035
-0.0005 0.0004 0.0001YUV’
-0.0035 0.0001 0.0006

0.0075 -0.0019 0.0019
-0.0019 0.0264 -0.0146HSV
0.0019 -0.0146 0.0303

0.0221 0.0234 0.0240
0.0234 0.0248 0.0253XYZ
0.0240 0.0253 0.0276

0.0269 0.0254 0.0232
0.0254 0.0258 0.0236RGB
0.0232 0.0236 0.0238

Manmade Day

0.0611 -0.0051 -0.0004
-0.0051 0.0027 0.0002Lαβ
-0.0004 0.0002 0.0000

0.0057 -0.0016 0.0003
-0.0016 0.0009 0.0002CIELab (E)
0.0003 0.0002 0.0018

0.0044 -0.0028 -0.0099
-0.0028 0.0021 0.0065CIELab (D65)
-0.0099 0.0065 0.0278

0.0567 -0.0031 -0.0025
-0.0031 0.0015 0.0010Yxy
-0.0025 0.0010 0.0013

0.1183 -0.0024 -0.0021
-0.0024 0.0007 0.0002YUV
-0.0021 0.0002 0.0004

0.0903 -0.0018 -0.0024
-0.0018 0.0006 0.0002YUV’
-0.0024 0.0002 0.0007

0.0142 -0.0029 0.0018
-0.0029 0.0262 -0.0077HSV
0.0018 -0.0077 0.0311

0.0201 0.0214 0.0207
0.0214 0.0228 0.0223XYZ
0.0207 0.0223 0.0241

0.0260 0.0234 0.0190
0.0234 0.0239 0.0209RGB
0.0190 0.0209 0.0208

4.2 Ensemble-Specific Colour Spaces

We compute dedicated colour spaces for each of the four image ensembles. For
comparison, we note that the Lαβ colour space, derived from 12 spectral im-
ages of natural environments, takes the form of 3 approximately orthonormal
principal axes [23]:

L = (log L + log M + log S)/
√

3 (5a)

α = (log L + log M − 2 logS)/
√

6 (5b)

β = (log L + log M)/
√

2 (5c)

For comparison, the precise components for this colour space are replicated in
Table 5. We find that these axes closely approximate the actual components
resulting from our principal component analysis, which are shown with their
corresponding eigenvalues λ in Table 6.



Colour Spaces for Colour Transfer 9

Table 3. Covariance matrices for the Indoors and Night ensembles

Indoors

0.1153 -0.0081 -0.0005
-0.0081 0.0052 0.0003Lαβ
-0.0005 0.0003 0.0001

0.0088 -0.0024 0.0018
-0.0024 0.0016 -0.0005CIELab (E)
0.0018 -0.0005 0.0028

0.0068 -0.0043 -0.0126
-0.0043 0.0033 0.0080CIELab (D65)
-0.0126 0.0080 0.0323

0.0865 -0.0040 -0.0036
-0.0040 0.0025 0.0016Yxy
-0.0036 0.0016 0.0025

0.1803 -0.0028 -0.0028
-0.0028 0.0014 0.0003YUV
-0.0028 0.0003 0.0008

0.1376 -0.0022 -0.0032
-0.0022 0.0010 0.0004YUV’
-0.0032 0.0004 0.0013

0.0145 0.0039 0.0023
0.0039 0.0422 -0.0095HSV
0.0023 -0.0095 0.0494

0.0306 0.0326 0.0287
0.0326 0.0348 0.0307XYZ
0.0287 0.0307 0.0303

0.0424 0.0371 0.0275
0.0371 0.0363 0.0281RGB
0.0275 0.0281 0.0254

Manmade Night

0.0688 -0.0045 -0.0008
-0.0045 0.0054 0.0004Lαβ
-0.0008 0.0004 0.0001

0.0058 -0.0016 0.0019
-0.0016 0.0018 -0.0005CIELab (E)
0.0019 -0.0005 0.0045

0.0045 -0.0029 -0.0067
-0.0029 0.0027 0.0043CIELab (D65)
-0.0067 0.0043 0.0223

0.0575 -0.0036 0.0001
-0.0036 0.0029 0.0010Yxy
0.0001 0.0010 0.0018

0.1200 -0.0052 -0.0006
-0.0052 0.0024 0.0003YUV
-0.0006 0.0003 0.0005

0.0915 -0.0039 -0.0007
-0.0039 0.0018 0.0003YUV’
-0.0007 0.0003 0.0009

0.0263 0.0009 0.0051
0.0009 0.0282 -0.0021HSV
0.0051 -0.0021 0.0388

0.0205 0.0216 0.0175
0.0216 0.0232 0.0188XYZ
0.0175 0.0188 0.0204

0.0324 0.0248 0.0153
0.0248 0.0242 0.0170RGB
0.0153 0.0170 0.0177

Table 4. Colour space rankings according to average covariance (× 10−3). E and D65
indicate the CIELAB colour space using illuminants E and D65 respectively.

Natural Day Manmade Day Indoors Night

Rank Space Corr. Space Corr. Space Corr. Space Corr.

1 E 0.7 E 0.7 E 1.6 E 1.4
2 Yuv 1.3 Yu’v’ 1.5 Yu’v’ 1.9 Yxy 1.6
3 Yu’v’ 1.4 Yuv 1.6 Yuv 2.0 Yu’v’ 1.7
4 Lαβ 2.1 Lαβ 1.9 Lαβ 3.0 Lαβ 1.9
5 Yxy 2.6 Yxy 2.2 Yxy 3.1 Yuv 2.0
6 HSV 6.1 HSV 4.1 HSV 5.2 HSV 2.7
7 D65 6.6 D65 6.4 D65 8.3 D65 4.6
8 RGB 24.1 RGB 21.1 XYZ 30.6 RGB 19.0
9 XYZ 24.2 XYZ 21.4 RGB 30.9 XYZ 19.3
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Table 5. The three component axes of the Lαβ colour space and their corresponding
standard deviations [23]

Vector L M S σ
1√
3
L 1.004 1.005 0.991 0.353

1√
6
α 1.014 0.968 -2.009 0.0732

1√
2
β 0.993 -1.007 0.016 0.00745

Table 6. The three axes and their corresponding standard deviations for each of the
image ensembles

Manmade Day Natural Day

Vector L M S σ Vector L M S σ
1√
3
L�

MD 0.9619 0.9749 1.0603 0.9174 1√
3
L�

ND 0.9449 0.9510 1.0966 0.8354
1√
6
α�

MD 1.2488 0.8600 -1.9238 0.1241 1√
6
α�

ND 1.2116 0.9771 -1.8914 0.1032
1√
2
β�

MD 0.9291 -1.0582 0.1301 0.0178 1√
2
β�

ND 0.9568 -1.0386 0.0763 0.0159

Manmade Night Manmade Indoors

Vector L M S σ Vector L M S σ
1√
3
L�

MN 0.9871 1.0012 1.0115 0.9928 1√
3
L�

IN 0.9796 0.9854 1.0341 1.2813
1√
6
α�

MN 1.2466 0.7585 -1.9674 0.1432 1√
6
α�

IN 1.2310 0.8236 -1.9510 0.1567
1√
2
β�

MN 0.9123 -1.0677 0.1664 0.0230 1√
2
β�

IN 0.9247 -1.0614 0.1354 0.0220

To simplify comparisons between the dedicated colour spaces computed
through our analysis and Lαβ , we will refer to the resulting axes as L�

ens, α�
ens

and β�
ens in decreasing eigenvalue order, with ens ∈ {ND, MD, IN, MN}. The

component with the largest eigenvalue for the Manmade Day set for instance
will be referred to as L�

MD. The resulting spaces are listed in Table 6.
The relations between the colour channels resulting from this analysis are

similar to the ones in the Lαβ colour space. Specifically, the first channel in all
cases, L�, is approximately equal to L + M + S, effectively encoding luminance
information. The second channel, α�, is close to L+M−2S, encoding information
along a blueish-yellowish axis, while finally the third channel, β�, is close to
L−M , encoding information along a reddish-greenish axis. Unsurprisingly, each
of these colour spaces is therefore approximately an opponent space.

Nonetheless, there are individual differences between the various scene cate-
gories that merit further exploration. First, the colour spaces resulting from the
natural ensemble (ND) have a larger L contribution in the α� channel compared
to the α channel in Lαβ. Second, the L contribution in the same channel is even
larger for the MD ensemble, with values for M being smaller to their equivalent
in Lαβ. In fact, this trend continues in the Indoors and Night datasets. As we
explore less ‘natural’ image classes, the α� channel becomes increasingly skewed,
containing a larger contribution from L and a smaller contribution from M. Ef-
fectively, the yellow-blue axis in Lαβ space becomes more akin to an orange-blue
axis.
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Fig. 3. Percentage of successful colour transfers for each colour space for each of the
ensembles, as well as averaged over all four image ensembles. E and D65 refer to
CIELAB with illuminants E and D65 respectively.

Further, as we move to less natural sets, a second trend appears. In the third
channel, β�, the S component contributes more than in typical opponent spaces,
essentially replacing the red-green axis in Lαβ with an axis resembling purple-
green. Although still significantly smaller compared to the L and M contribu-
tions, this cannot be discounted.

5 Colour Transfer

To understand whether these results can be used to inform the utility of colour
spaces in the area of colour transfer, we have taken a subset of six images from
each of the four image ensembles. Each combination of pairs was used to transfer
colours from one image to the other. In this pilot experiment, we have counted
the number of images for each colour space and image ensemble that we deem
to be plausible results. This approach will only allow us to draw informal con-
clusions, as a definite result would require both more images as well as a full
psychophysical experiment. However, we think that this informal experiment is
useful as it may show a trend, and may steer a future validation study.

Figure 3 shows the percentage of successful colour transfers for each of the
image ensembles, as well as averaged for all images in all ensembles. These per-
centages were computed by first running the colour transfer algorithm for all
combinations of images within each ensemble (36 for the three manmade ensem-
bles and 121 for the natural day ensemble). Both authors have independently ob-
served each combination, assessing whether the colour transfer could be deemed
successful. The criteria were deliberately kept informal, rejecting all cases where
the palette was not transferred sufficiently, and all cases which have created ob-
vious gamut problems. The results shown in the figure are averaged over the two
sets generated by each author.
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Fig. 4. Percentage of successful colour transfers for each ensemble-specific colour space
for each of the ensembles, as well as averaged over all four image ensembles. We also
show results for per-image PCA, carried out in the colour space derived from the source
image (PCA1) and the target image (PCA2).

We see that both CIELAB variants as well as the Lαβ space tend to perform
well, in particular for the indoors ensemble. A peculiar observation is that colour
transfer for natural images appears to be a more difficult problem than for any
of the other ensembles. This, however, may be attributed to the relatively small
number of images involved in this experiment.

Further, the three spaces that have luminance-chrominance channel (Yxy, Yuv
and Yu’v’) as well as HSV do not perform well. This is predominantly due to
the fact that the colour transfer algorithm produces out-of-gamut values that
lead to visible artefacts. The RGB and XYZ spaces do not typically produce
artefacts, but the transfer of colour tends to be too subtle.

Next, we analyse the ensemble-specific colour spaces that were created by
computing PCA on each of our ensembles. By design, this means that colour
transfer should be most effective when applied to images with their corresponding
ensemble colour space. However, Figure 4 shows that this is not the case. Instead,
it appears that the manmade day and indoor datasets have given rise to colour
spaces that are effective for transfers in all four image ensembles. A further
surprising result is that the natural day colour space is less effective than any of
the other three colour spaces.

We have also tested whether ensemble statistics are fine-grained enough, or
whether it would be advantageous to compute a separate colour space for each
colour transfer. To this end, we have run PCA on the source images only, con-
verting both source and target image to the resulting colour space, and applied
the colour transfer algorithm in that space (PCA1). Conversely, we have done
the same, instead running PCA on the target image (PCA2). The results are
shown in Figure 4. We note that deriving a colour space from the target image
is significantly more successful than doing the same on the source image. In fact,
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this leads to a higher success rate than for any of the ensemble-specific colour
spaces.

Comparing Figures 3 and 4 we note that the four most successful colour
spaces are CIELAB (E) with a 77% overall success rate, followed by PCA2 (75%
success), CIELAB (D65; 73% success) and Lαβ (71%) success. After that the
ensemble-specific colour spaces perform reasonably well (67% - 70%). All other
colour spaces do not perform acceptably well on our datasets.

Although one may argue that decorrelating individual images would be the
most fine-grained approach to colour transfer, we find that similarly excellent
results can be obtained by simply choosing the CIELAB space. Thus, it does
not appear to be necessary to expend computational resources to deriving either
category-based colour spaces or image-specific colour spaces for the purpose of
colour transfer.

Finally, we ask whether these results are predicted by the covariance measures
that we computed in the preceding section. Comparing Table 4 with Figure 3, it
is clear that the average absolute covariance is a reasonable indicator of whether
a colour space is suitable for colour transfer tasks. However, this measure does
not take into account gamut issues that may arrise. Such problems are more
prevalent in some colour spaces than others. In particular, the Yxy, Yuv, Yu’v’
and HSV spaces lead to many out-of-gamut pixels, and therefore perform worse
than may be expected on the grounds of their covariance statistics.

6 Conclusions

On the basis of four image ensembles we present an assessment of the viability
of different colour spaces in the context of colour transfer. First, we find that
a space’s covariance with respect to each image ensemble is a good measure of
how well such a space is likely to perform for colour transfer.

Second, we ask if one space could be found that is universally suitable. To
this end we compare the performance of colour spaces derived for single images,
those derived for our four image ensembles, and a set of general colour spaces.
Surprisingly, we find that CIELAB, if used with illuminant E as the white point
leads on average to the best performance, yielding a plausible colour transfer in
77% of all cases tested. This is slightly more than could be obtained with per-
image PCA. CIELAB (E) also outperforms all other generic as well as ensemble-
specific colour spaces. We therefore conclude that one space indeed fits all.
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