
Int J Softw Tools Technol Transfer (2007) 9:213–254

DOI 10.1007/s10009-007-0038-x

SPECIAL SECTION CPN 04/05

Coloured Petri Nets and CPN Tools for modelling and validation
of concurrent systems

Kurt Jensen · Lars Michael Kristensen · Lisa Wells

Published online: 13 March 2007
© Springer-Verlag 2007

Abstract Coloured Petri Nets (CPNs) is a language

for the modelling and validation of systems in which

concurrency, communication, and synchronisation play

a major role. Coloured Petri Nets is a discrete-event

modelling language combining Petri nets with the func-

tional programming language Standard ML. Petri nets

provide the foundation of the graphical notation and

the basic primitives for modelling concurrency, commu-

nication, and synchronisation. Standard ML provides

the primitives for the definition of data types, describing

data manipulation, and for creating compact and pa-

rameterisable models. A CPN model of a system is an

executable model representing the states of the system

and the events (transitions) that can cause the system

to change state. The CPN language makes it possible to

organise a model as a set of modules, and it includes a

time concept for representing the time taken to execute

events in the modelled system. CPN Tools is an indus-

trial-strength computer tool for constructing and anal-

ysing CPN models. Using CPN Tools, it is possible to

investigate the behaviour of the modelled system using

simulation, to verify properties by means of state space

methods and model checking, and to conduct simula-

tion-based performance analysis. User interaction with

CPN Tools is based on direct manipulation of the graph-

ical representation of the CPN model using interaction

techniques, such as tool palettes and marking menus. A

K. Jensen · L. M. Kristensen · L. Wells (B)
Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, 8200 Aarhus N, Denmark
e-mail: wells@daimi.au.dk

K. Jensen
e-mail: kjensen@daimi.au.dk

L. M. Kristensen
e-mail: lmkristensen@daimi.au.dk

license for CPN Tools can be obtained free of charge,

also for commercial use.

Keywords Coloured Petri Nets · Discrete-event

systems · Behavioural modelling · Validation ·

Simulation · Verification · State space methods · Model

checking · Performance analysis · Visualisation

1 Introduction

Systems engineering is a comprehensive discipline

involving a multitude of activities such as requirements

engineering, design and specification, implementation,

testing, and deployment. The development of distrib-

uted systems is particularly challenging. A major reason

is that these systems possess concurrency and non-

determinism which means that the execution of such sys-

tems may proceed in many different ways. It is extremely

easy for the human designer to miss some important

interaction patterns when designing such a system, lead-

ing to gaps or malfunctions in the system design. To cope

with the complexity of modern concurrent systems, it is

therefore crucial to provide methods that enable debug-

ging and testing of central parts of the system design

prior to implementation and deployment.

One way to approach the challenge of developing

concurrent systems is to build an executable model of

the system. Constructing a model and simulating it usu-

ally leads to significant new insights into the design and

operation of the system considered and often results in

a simpler and more streamlined design. Furthermore,

constructing an executable model usually leads to a

more complete specification facilitating a systematic

214 K. Jensen et al.

investigation of scenarios which can significantly decr-

ease the number of design errors.

Coloured Petri Nets (CP-nets or CPNs) [16,17,19,23]

is a graphical language for constructing models of con-

current systems and analysing their properties. CP-nets

is a discrete-event modelling language combining Petri

nets [33] and the functional programming language CPN

ML which is based on Standard ML [36,37]. The CPN

modelling language is a general purpose modelling lan-

guage, i.e., it is not focused on modelling a specific class

of systems, but aimed towards a very broad class of sys-

tems that can be characterised as concurrent systems.

Typical application domains of CP-nets are communi-

cation protocols [6], data networks [5], distributed algo-

rithms [34], and embedded systems [1,41]. CP-nets are,

however, also applicable more generally for modelling

systems where concurrency and communication are key

characteristics. Examples of these are business process

and workflow modelling [39], manufacturing systems

[11], and agent systems [31]. Examples of industrial

applications of CP-nets within different domains are

available via [12]. An introduction to the practical use

of CP-nets is also given in [19,24].

A CPN model of a system describes the states of the

system and the events (transitions) that can cause the

system to change state. By making simulations of the

CPN model, it is possible to investigate different sce-

narios and explore the behaviours of the system. Very

often, the goal of simulation is to debug and investi-

gate the system design. CP-nets can be simulated inter-

actively or automatically. An interactive simulation is

similar to single-step debugging. It provides a way to

“walk through” a CPN model, investigating different

scenarios in detail and checking whether the model

works as expected. During an interactive simulation,

the modeller is in charge and determines the next step

by selecting between the enabled events in the current

state. It is possible to observe the effects of the indi-

vidual steps directly on the graphical representation of

the CPN model. Automatic simulation is similar to pro-

gram execution. The purpose is to simulate the model

as fast as possible and it is typically used for testing and

performance analysis. For testing purposes, the model-

ler typically sets up appropriate breakpoints and stop

criteria. For performance analysis the model is instru-

mented with data collectors to collect data concerning

the performance of the system.

Time plays a significant role in a wide range of concur-

rent systems. The correct functioning of some systems

crucially depends on the time taken by certain activi-

ties, and different design decisions may have a signifi-

cant impact on the performance of a system. CP-nets

include a time concept that makes it possible to capture

the time taken to execute activities in the system. The

time concept also means that CP-nets can be applied

for simulation-based performance analysis, investigat-

ing performance measures such as delays, throughput,

and queue lengths in the system, and for modelling and

validation of real-time systems.

CPN models can be structured into a set of modules

to handle large specifications. The modules interact with

each other through a set of well-defined interfaces, in a

similar way as in programming languages. The module

concept of CP-nets is based on a hierarchical structuring

mechanism, allowing a module to have submodules and

allowing a set of modules to be composed to form a new

module.

Visualisation is a technique that uses high-level graph-

ics to animate the behaviour of CPN models, and it is

closely related to simulation of CPN models. An impor-

tant application of visualisation is that it allows for the

presentation of design ideas and analysis results using

application domain concepts. This is particularly impor-

tant in discussions with people and colleagues unfamiliar

with CP-nets. Several means exist for adding domain-

specific graphics on top of a CPN model. This can be

used to abstractly visualise the execution of the CPN

model in the context of the application domain. One

example of this is to use message sequence charts [15]

(or sequence diagrams [29]) to visualise the exchange of

messages in the execution of a communication protocol.

CPN models are formal—in the sense that the CPN

modelling language has a mathematical definition of

its syntax and semantics. This means that they can be

used to verify system properties, i.e., prove that certain

desired properties are fulfilled or that certain undesired

properties are guaranteed to be absent. Verification of

system properties is supported by a set of state space

methods. The basic idea underlying state spaces is to

compute all reachable states and state changes of the

CPN model and represent these as a directed graph

where nodes represent states and arcs represent occur-

ring events. State spaces can be constructed fully auto-

matically. From a constructed state space it is possible to

answer a large set of verification questions concerning

the behaviour of the system such as absence of dead-

locks, the possibility of always being able to reach a

given state, and the guaranteed delivery of a given ser-

vice. The state space methods of CP-nets can also be

applied to timed CP-nets. Hence, it is also possible to

verify the functional correctness of systems modelled

by means of timed CP-nets.

It should be stressed that for the practical use of

CP-nets and their supporting computer tools, it suf-

fices to have an intuitive understanding of the syntax

and semantics of the CPN modelling language. This is

Coloured Petri Nets and CPN Tools 215

analogous to ordinary programming languages such as

JAVA that are successfully applied by programmers who

are usually not familiar with the formal definitions of the

languages. This underpins the important property that

CP-nets can be taught and learned without studying the

associated formal definitions.

The practical application of CPN modelling and anal-

ysis relies heavily on the existence of computer tools

supporting the creation and manipulation of models.

CPN Tools [10] is a tool suite for editing, simulation,

state space analysis, and performance analysis of CPN

models. The user of CPN Tools works directly on the

graphical representation of the CPN model. The graph-

ical user interface (GUI) of CPN Tools has no conven-

tional menu bars and pull-down menus, but is based on

interaction techniques such as tool palettes and marking

menus. A license for CPN Tools can be obtained free of

charge via the CPN Tools web pages [10]. CPN Tools is

currently licensed to more than 4,000 users in more than

115 different countries and is available for MS Windows

and Linux.

Reader’s guide

This paper gives a brief introduction to the CPN mod-

elling language and illustrates how construction, simu-

lation, state space analysis, performance analysis, and

visualisation are supported by CPN Tools. Section 2

introduces the concepts of the CPN modelling language.

Section 3 illustrates how construction of CPN models is

supported by CPN Tools, and Sect. 4 shows how simu-

lation is supported. Section 5 gives a brief introduction

to state space methods and explains how they are sup-

ported in CPN Tools. Section 6 introduces the basic ideas

of simulation-based performance analysis and explains

how it is supported by CPN Tools. Section 7 illustrates

how domain-specific visualisation is supported by CPN

Tools. Finally, Section 8 concludes the paper and pro-

vides references to further material on the CPN model-

ling language, practical examples, and use of CPN Tools.

It is not necessary to read the entire paper or to be

familiar with Standard ML to get started using CP-nets

and CPN Tools. To learn the basics it is sufficient to read

the following: the introduction to the concepts of non-

hierarchical CP-nets (Sects. 2.1–2.3), the introduction

to CPN Tools and the tools for constructing non-hier-

archical models (Sects. 3.1, 3.2, 3.4, and 3.5), and the

description of simulating CP-nets (Sect. 4).

The remaining sections of the paper present more

advanced topics. Hierarchical CP-nets are introduced in

Sect. 2.4, and tools for constructing hierarchical models

are presented in Sect. 3.3. Readers interested in perfor-

mance analysis should read the introduction to timed

CP-nets (Sect. 2.5), and Sect. 6 on performance analysis.

State space analysis and visualisation are described in

Sects. 5 and 7, respectively.

A basic introduction to CPN ML and many exam-

ples of how to use CPN ML can be found in the help

pages for CPN Tools (which can also be found online via

[10]). It is not necessary to have a good understanding

of Standard ML to use the basic features of the perfor-

mance, state space, and visualisation facilities. However,

to make effective use of the more advanced features of

these facilities, it is necessary to understand Standard

ML. Again, the help pages provide a number of exam-

ples and descriptions of how Standard ML is used to

support advanced analysis techniques.

2 The CPN modelling language

In this section, we introduce the CPN modelling lan-

guage by means of a small running example modelling

a communication protocol. We use a simple protocol

since it is easy to explain and understand, and because

it involves concurrency, non-determinism, communica-

tion, and synchronisation which are key characteristics

of concurrent systems. The protocol itself is unsophisti-

cated, but yet complex enough to illustrate the constructs

of the CPN modelling language. No prior knowledge of

protocols is required.

The simple protocol consists of a sender transferring

a number of data packets to a receiver. Communication

takes place on an unreliable network, i.e., packets may

be lost and overtaking is possible. The protocol uses

sequence numbers, acknowledgements, and retransmis-

sions to ensure that the data packets are delivered exactly

once and in the correct order at the receiving end. The

protocol uses a stop-and-wait strategy, i.e., the same data

packet is transmitted until a corresponding acknowl-

edgement is received. The data packets consist of a

sequence number and the data (payload) to be transmit-

ted. An acknowledgement consists of a sequence num-

ber specifying the number of the data packet expected

next by the receiver.

2.1 Net structure, declarations, and inscriptions

A CPN model is usually created as a graphical drawing,

and Fig. 1 shows the basic CPN model of the protocol.

The left part models the sender, the middle part models

the network, and the right part models the receiver. The

CPN model contains eight places (drawn as ellipses or

circles), five transitions (drawn as rectangular boxes), a

number of directed arcs connecting places and transi-

tions, and finally some textual inscriptions next to the

places, transitions, and arcs. The inscriptions are written

216 K. Jensen et al.

Fig. 1 Basic CPN model of the simple protocol in the initial marking M0

in the CPN ML programming language which is an

extension of the Standard ML language. Places and tran-

sitions are called nodes. Together with the directed arcs

they constitute the net structure. An arc always connects

a place to a transition or a transition to a place. It is

illegal to have an arc between two nodes of the same

kind, i.e., between two transitions or two places.

The state of the modelled system is represented by

the places. Each place can be marked with one or more

tokens, and each token has a data value attached to it.

This data value is called the token colour. It is the num-

ber of tokens and the token colours on the individual

places which together represent the state of the system.

This is called a marking of the CPN model, while the

tokens on a specific place constitute the marking of that

place. By convention, we write the names of the places

inside the ellipses. The names have no formal mean-

ing—but they have huge practical importance for the

readability of a CPN model (just like the use of mne-

monic names in traditional programming). The state of

the sender is modelled by the two places PacketsToSend

and NextSend. The state of the receiver is modelled

by the two places DataReceived and NextRec, and the

state of the network is modelled by the places A, B, C,

and D.

Next to each place, there is an inscription which deter-

mines the set of token colours (data values) that the

tokens on the place are allowed to have. The set of pos-

sible token colours is specified by means of a type (as

known from programming languages), and it is called the

colour set of the place. By convention the colour set is

written below the place. The places NextSend, NextRec,

C, and D have the colour set NO. In CPN Tools, colour

sets are defined using the CPN ML keyword colset,

and the colour setNO is defined to be equal to the integer

type int:

colset NO = int;

This means that tokens residing on the four places

NextSend, NextRec, C, and D will have an integer as

their token colour. The colour set NO is used to model

the sequence numbers in the protocol. The place Data

Received has the colour set DATA defined to be the set

of all text stringsstring. The colour setDATA is used to

model the payload of data packets. The remaining three

places have the colour set NOxDATA which is defined to

be the product of the types NO and DATA. This type

contains all two-tuples (pairs) where the first element is

an integer and the second element is a text string. Tuples

are written using parentheses (and) around a comma-

separated list. The colour set NOxDATA is used to model

the data packets which contain a sequence number and

some data. The colour sets are defined as:

colset DATA = string;

colset NOxDATA = product NO * DATA;

Next to each place, we find another inscription which

determines the initial marking of the place. The initial

marking inscription of a place is by convention writ-

ten above the place. For example, the inscription at the

upper right side of the place NextSend specifies that

the initial marking of this place consists of one token

with the colour (value) 1. This indicates that we want

data packet number 1 to be the first data packet to

be sent. Analogously, the place NextRec has an initial

marking consisting of a single token with the colour 1.

Coloured Petri Nets and CPN Tools 217

This indicates that the receiver is initially expecting

the data packet with sequence number 1. The place

DataReceived has an initial marking which consists of

one token with colour"" (which is the empty text string).

This indicates that the receiver has initially received no

data. The inscription AllPackets at the upper left side

of place PacketsToSend is a constant defined as:

val AllPackets = 1‘(1,"COL") ++ 1‘(2,"OUR") ++

1‘(3,"ED ") ++ 1‘(4,"PET") ++

1‘(5,"RI ") ++ 1‘(6,"NET");

which specifies that the initial marking of this place con-
sists of six tokens with the data values:

(1,"COL"),(2,"OUR"),(3,"ED "),(4,"PET"),

(5,"RI "),(6,"NET").

The ++ and ‘ are operators that allow for the con-

struction of a multi-set consisting of token colours. A

multi-set is similar to a set, except that values can appear

more than once. The infix operator ‘ takes a non-

negative integer as left argument specifying the num-

ber of appearances of the element provided as the right

argument. The ++ takes two multi-sets as arguments

and returns their union (sum). The initial marking of

PacketsToSend consists of six tokens representing the

data packets which we want to transmit. The absence of

an inscription specifying the initial marking means that

the place initially contains no tokens. This is the case for

the places A, B, C, and D.

The current marking of each place is indicated next

to the place. The number of tokens on the place in the

current marking is shown in the small circle, while the

detailed token colours are indicated in the box posi-

tioned next to the small circle. Initially, the current mark-

ing is equal to the initial marking, denoted M0. As

explained earlier, the initial marking has six tokens on

Packets ToSend and one token on each of the places

NextSend, NextRec, and DataReceived.

The five transitions (drawn as rectangles) represent

the events that can take place in the system. As with

places, we write the names of the transitions inside the

rectangles. The transition names also have no formal

meaning but they are very important for the readabil-

ity of the model. When a transition occurs, it removes

tokens from its input places (those places that have an arc

leading to the transition) and it adds tokens to its output

places (those places that have an arc coming from the

transition). The colours of the tokens that are removed

from input places and added to output places when a

transition occurs are determined by means of the arc

expressions which are the textual inscriptions positioned

next to the individual arcs. A transition and a place may

also be connected by double-headed arcs. A double-

headed arc is shorthand for two directed arcs in oppo-

site directions between a place and a transition which

both have the same arc expression. This implies that

the place is both an input place and an output place

for the transition. The transition SendPacket and the

places PacketsToSend and NextSend are connected by

double-headed arcs.

The arc expressions are written in the CPN ML pro-

gramming language and are built from typed variables,

constants, operators, and functions. When all variables

in an expression are bound to values (of the correct type)

the expression can be evaluated. An arc expression eval-

uates to a multi-set of token colours. As an example,

consider the two arc expressions: n and (n,d) on the

three arcs connected to the transition SendPacket. They

contain the variables n and d declared as:

var n : NO;

var d : DATA;

This means that n must be bound to a value of type NO

(i.e., an integer), while d must be bound to a value of

type DATA (i.e., a text string). We may, e.g., consider the

binding:

〈n=3, d="CPN"〉

which binds n to 3 and d to "CPN". For this binding the

arc expressions evaluate to the following values, where

→ should be read as “evaluates to”:

n → 1‘3

(n,d) → 1‘(3,"CPN")

Arc expressions evaluate to a multi-set of token col-

ours, and this means that there may be zero, exactly one

token, or more than one token removed from an input

place or added to an output place. If an arc expression

evaluates to exactly one token, then the 1‘ can be omit-

ted from the expression by convention. For example,

arc expressions n and (n,d) are shorthand for 1‘n and

1‘(n,d).

2.2 Enabling and occurrence of transitions

Next let us consider the occurrence of events in a CPN

model. The arc expressions on the input arcs of a transi-

tion together with the tokens on the input places deter-

mine whether the transition is enabled, i.e., is able to

occur in a given marking. For a transition to be enabled

it must be possible to find a binding of the variables

that appear in the surrounding arc expressions of the

transition such that the arc expression of each input arc

evaluates to a multi-set of token colours that is present

on the corresponding input place. When the transition

218 K. Jensen et al.

occurs with a given binding, it removes from each input

place the multi-set of token colours to which the corre-

sponding input arc expression evaluates. Analogously, it

adds to each output place the multi-set of token colours

to which the expression on the corresponding output arc

evaluates.

Let us now consider transition SendPacket. In Fig. 1

transition SendPacket has a thick border line, while the

other four transitions do not. In CPN Tools, this indi-

cates that SendPacket is the only transition that has an

enabled binding in the initial marking M0. The other

transitions are disabled, i.e., they cannot occur. When

this transition occurs, it removes a token from each of

the input places NextSend and PacketsToSend. The arc

expressions of the two double-headed arcs are n and

(n,d).

The initial marking of place NextSend contains a sin-

gle token with colour 1. This means that the variable n

must be bound to 1. Otherwise the expression on the arc

from NextSend would evaluate to a token colour which

is not present at NextSend implying that the transition

is disabled for that binding. Now let us consider the arc

expression (n,d) on the arc from PacketsToSend. We

have already bound n to 1, and now we are looking for

a binding of d such that the arc expression (n,d) will

evaluate to one of the six token colours that are present

on PacketsToSend. Obviously, the only possibility is to

bind d to the string "COL". Hence, we conclude that the

binding:

〈n=1, d="COL"〉

is the only enabled binding for SendPacket (in the ini-

tial marking). An occurrence of SendPacket with this

binding removes the token with colour 1 from the input

place NextSend and removes the token with colour

(1,"COL") from the input place PacketsToSend. Since

SendPacket is connected to PacketsToSend and Next-

Send by means of double-headed arcs, the occurrence

of SendPacket with this binding will also add a token

with colour (1,"COL") to PacketsToSend and add a

token with colour1 to NextSend. This means that tokens

removed from the places PacketsToSend and NextSend

according to the result of evaluating the arc expression,

are immediately replaced by new tokens with the same

token colours. Thus the markings of these places do

not change when the transition occurs. This allows the

packet to be retransmitted (to recover from loss). The

occurrence of SendPacket also adds a new token with

colour (1,"COL") to the output place A. Intuitively,

this represents that the first data packet (1,"COL")

has been sent to the network. Figure 2 shows a fragment

of the CPN model in the new marking M1. We show only

a fragment of the CPN model since the occurrence of a

Fig. 2 Marking M1 reached when SendPacket occurs in M0

transition changes only the markings of the places that

are connected to the transition via an arc.

Consider the marking M1 and the transition Trans-

mitPacket which has three variables n, d, and success.

The variable success is a Boolean variable declared

as:

var success : BOOL;

which appears on the output arc. The colour set BOOL

is defined to be the set of Boolean values ({true,

false}) bool:

colset BOOL = bool;

In marking M1, place A has a single token with colour

(1,"COL"). The variable success is only found on

an output arc from TransmitPacket, and this means that

the variable can be bound to an arbitrary value from its

colour set (which is BOOL). Based on the arc expression

(n,d) on the input arc from A, it is straightforward to

conclude that transition TransmitPacket is enabled with

two different bindings in M1:

b+ = 〈n=1, d="COL", success=true〉

b− = 〈n=1, d="COL", success=false〉

The first of these bindings b+ represents successful trans-

mission over the network. If it occurs in M1 the following

happens:

– The data packet (1,"COL") is removed from input

place A.

– A new token representing the same data packet is

added to the output place B (in the if-then-else

expression the condition success evaluates to

truewhile 1‘(n,d) evaluates to 1‘(1,"COL")).

Figure 3 shows part of the marking M+
2 which is the

result of an occurrence of the binding b+ in M1.

The second binding b− represents an unsuccessful

transmission, i.e., that the data packet is lost by the net-

work. If it occurs in M1 the following happens:

Coloured Petri Nets and CPN Tools 219

Fig. 3 Marking M+
2 —successful transmission in M1

– The data packet (1,"COL") is removed from input

place A.

– No token is added to the output place B (in the

if-then-else expression the conditionsuccess

evaluates to false while the predefined constant

empty evaluates to the empty multi-set).

An occurrence of the binding b− in M1 leads back to the

initial marking M0 shown in Fig. 1.

Let us now consider the reception of data packets

in marking M+
2 . The token on place NextRec represents

the sequence number of the data packet that the receiver

expects to receive next. The variable k is bound to the

value of this sequence number. The variable data has

type DATA (i.e., text string):

var data : DATA;

The variable datawill be bound to the text string in the

token colour of the token on place DataReceived. This

text string contains the data from all of the data packets

that have been received by the receiver.

When a data packet is present at place B there are

two different possibilities. Either n=k evaluates to true

which means that the data packet being received is the

one that the receiver expects, orn=k evaluates tofalse

which means that it is not the data packet expected. If

the data packet on place B is the expected data packet

(i.e., n=k), the following happens:

– The data packet is removed from place B.

– The data in the data packet is concatenated to the

end of the data which the receiver has already

received (the operator ˆ is the concatenation opera-

tor for text strings).

– The token colour on place NextRec changes from k

to k+1, which means that the receiver now waits for

the next data packet.

Fig. 4 Marking M3 reached when ReceivePacket occurs

– An acknowledgement is put on place C. The ack-

nowledgement contains the sequence number of the

data packet that the receiver is expecting next.

The occurrence of the transition ReceivePacket in

the marking M+
2 from Fig. 3 corresponds to the reception

of the expected data packet. Figure 4 shows the marking

M3 reached when ReceivePacket occurs in M+
2 .

If the data packet on B is not the expected data packet

(i.e., n�=k), the following happens:

– The data packet is removed from place B.

– The data in the data packet is ignored (the marking

of DataReceived does not change).

– The token colour on place NextRec does not change,

which means that the receiver is waiting for the same

data packet as before.

– An acknowledgement is put on place C. The ack-

nowledgement contains the sequence number of the

data packet that the receiver is expecting next.

Transition TransmitAck has a behaviour which is sim-

ilar to the behaviour of TransmitPacket. It removes

acknowledgements from place C and adds them to place

D in case of a successful transmission. Let M4 be

the marking reached from M3 by the occurrence of

TransmitAck with the binding 〈n=2, success=true〉.

Let us now consider the reception of acknowledge-

ments. When the transition ReceiveAck occurs, it

removes an acknowledgement from place D and updates

the token on NextSend to contain the sequence number

specified in the acknowledgement. The sender is now

able to send the next packet, according to the stop-and-

wait strategy.

220 K. Jensen et al.

Suppose that the transition ReceiveAck occurs with

the binding 〈n=2, k=1〉 in marking M4. This will lead

to a marking M5 which represents a state where the

sender is ready to send data packet number 2 (since the

first data packet is now known to have been successfully

received). This marking is similar to the initial marking,

but the tokens on places NextSend and NextRec have

colour 2 (instead of 1), and the token on DataReceived

has colour "COL" (instead of "").

Above, we have described the sending, transmission,

and reception of data packet number 1 and the cor-

responding acknowledgement. In the CPN model this

corresponds to the occurrence of five transitions with

enabled bindings. A pair consisting of a transition and

a binding for the variables of the transition is called a

binding element. Below we have listed the five occurring

binding elements:

(SendPacket,〈n=1, d="COL"〉)

(TransmitPacket, 〈n=1, d="COL", success=true〉)

(ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)

(TransmitAck, 〈n=2, success=true〉)

(ReceiveAck, 〈n=2, k=1〉)

Transitions are also allowed to have a guard, which is

a Boolean expression. When a guard is present it must

evaluate to true for the binding to be enabled, other-

wise the binding is disabled and cannot occur. Hence, a

guard puts an additional constraint on the enabling of

bindings for the transition. An example of a guard will

be given in Sect. 6.1.

2.3 Steps, concurrency and conflict

Now let us consider the behaviour of the CPN model

in further detail. We have seen that a single binding

element is enabled in the initial marking:

(SendPacket, 〈n=1, d="COL"〉)

When it occurs, it leads to the marking M1 that is shown

in Fig. 2. In marking M1 three different binding elements

are enabled:

SP = (SendPacket,〈n=1, d="COL"〉)

TP+ = (TransmitPacket,

〈n=1, d="COL", success=true〉)

TP− = (TransmitPacket,

〈n=1, d="COL", success=false〉)

The first binding element represents a retransmission

of data packet number 1. The second binding element

represents a successful transmission of data packet num-

ber 1 over the network, while the third binding element

represents the loss of the data packet by the network.

The last two binding elements, TP+ and TP−, are in

conflict with each other. Both of them are enabled, but

only one of them can occur since each of them needs a

token from place A, and there is only one such token

in M1. However, the binding elements SP and TP+ can

occur concurrently (i.e., in parallel). To occur, SP needs a

token from place PacketsToSend and a token on Next-

Send, while TP+ needs a token from place A. In other

words, both binding elements can get the tokens they

need without competition/interference with the other

binding element. A multi-set of binding elements is con-

currently enabled in a given marking if there are enough

tokens on the input places of the transitions in question

to simultaneously satisfy the demands of all of the bind-

ing elements. By a similar argument, we see that SP and

TP− are concurrently enabled.

A step in general consists of a (non-empty and finite)

multi-set of concurrently enabled binding elements. A

step may consist of a single binding element. We do not

consider the empty multi-set of binding elements to be

a legal step since it would have no effect and always be

enabled. The effect of the occurrence of a set of concur-

rently enabled binding elements is the sum of the effects

caused by the occurrence of the individual binding ele-

ments. This means that the marking reached will be the

same as the one which will be reached if we let the set of

binding elements occur sequentially (i.e., one after each

other in some arbitrary order).

Now let us assume that the first and second of the

three enabled binding elements in marking M1 occur

concurrently with each other, i.e., that we have the fol-

lowing step (written as a multi-set of binding elements):

1‘(SendPacket,〈n=1, d="COL"〉) ++

1‘(TransmitPacket, 〈n=1, d="COL", success=true〉)

We then reach the marking M2 which is partly shown

in Fig. 5. In marking M2 we have four enabled binding

elements:

SP = (SendPacket, 〈n=1, d="COL"〉)

TP+ = (TransmitPacket,

〈n=1, d="COL", success=true〉)

TP− = (TransmitPacket,

〈n=1, d="COL", success=false〉)

RP = (ReceivePacket,

〈n=1, d="COL", k=1, data=""〉)

As before, we have a conflict between TP+ and TP−,

while all the other binding elements are concurrently

enabled since there are enough input tokens to simulta-

neously satisfy the demands of each binding element.

An execution of a CPN model is, in general, described

by means of an occurrence sequence, which specifies

the steps that occur and the intermediate markings that

Coloured Petri Nets and CPN Tools 221

Fig. 5 Marking M2 reached when SendPacket and Transmit-
Packet occur in M1

are reached. A marking that is reachable via an occur-

rence sequence starting in the initial marking is called a

reachable marking. The existence of a reachable mark-

ing with more than one enabled binding element makes

the CPN model non-deterministic. This means that there

exist different occurrence sequences containing differ-

ent sequences of steps and leading to different reach-

able markings. It is important to stress that it is only

the choice between the enabled steps which is non-

deterministic. The individual steps themselves are deter-

ministic in the sense that once an enabled step has been

selected in a given marking, the marking resulting from

its occurrence is uniquely determined (unless random

functions are used, as we will illustrate in Sect. 6).

Figure 6 shows an intermediate marking M∗ reached

after the occurrence of a sequence of steps of the CPN

model. In the marking M∗ place A has two tokens

with colour (1,"COL") and one token with colour

(2,"OUR"). In this situation, TransmitPacket is enabled

in bindings corresponding to transmission of data packet

1 and data packet 2. In a CPN model there are no

requirements on the order in which tokens are removed

from places. This means that in M∗ it is possible to let the

binding of TransmitPacket corresponding to a success-

ful transmission of data packet 2 occur, and in this way

let the data packet with sequence number 2 on place A

overtake the two data packets with sequence number 1.

Since there are two tokens with colour (1,"COL") it

also means that TP+ and TP− can occur concurrently

because there is a token on A for each of the two bind-

ing elements. It also means that TP+ can occur concur-

rently with itself , and the same is true for TP−. Thus it

is possible to transmit multiple packets on the network

concurrently.

The transition SendPacket is enabled in M∗ in a bind-

ing corresponding to a retransmission of data packet 2

even if data packet 2 is still in transit. The retransmission

is possible because the transmission of data packet 2 is

too slow and hence could be out-raced by the second

occurrence of SendPacket (i.e., the retransmission of

packet number 2). This means that we have described a

time-related behaviour without the explicit use of time.

What is important at the chosen abstraction level is not

when a retransmission may occur, but the simple fact

that it is possible that such a retransmission can occur.

We will discuss the execution of CPN models in more

detail in Sect. 4 when presenting how simulation is sup-

ported by CPN Tools.

2.4 Modules

We now show how a CPN model can be organised as a

set of hierarchically related modules—in a similar way

as programs are constructed from modules. To illustrate

k

if n=k
then k+1
else k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`2

11`2

3

2`(1,"COL")++
1`(2,"OUR")

1 1`2

11`"COL"

1

1`(1,"COL")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 6 Intermediate marking M∗ reached after an occurrence sequence starting in M0

222 K. Jensen et al.

nk

Data(n,d)

Ack(n)

(n,d)

n

Receive
Ack

Send
Packet

A Out

PACKET

D In

PACKET

NextSend

1`1

NO

Packets
To Send

I/O

AllPackets

NOxDATA

I/O

In

Out

Fig. 7 Module for the sender

the use of modules, we revisit the CPN model of the

protocol from Fig. 1 and develop a hierarchical CPN

model for the protocol example. A straightforward idea

is to create a module for the sender, a module for the

network, and a module for the receiver. Furthermore,

if we take a closer look at the network part of the

model in Fig. 1, we notice that it contains two transi-

tions TransmitPacket and TransmitAck that have a very

similar behaviour. Hence, it would be natural to use the

same module to represent the behaviour of Transmit-

Packet and Transmit-Ack. However, the involved token

colours are slightly different. The TransmitPacket tran-

sition deals with data packets, represented by tokens of

type NOxDATA, while the TransmitAck transition deals

with acknowledgements, represented by tokens of type

NO. This means that we cannot immediately use the same

module to represent the behaviour of TransmitPacket

and TransmitAck. To overcome this problem, we use the

union colour set PACKET defined as follows:

colset PACKET = union Data : NOxDATA +

Ack : NO;

The colour set PACKET is a union, and it uses two con-

structors Data and Ack to tell whether a data value

of this colour set represents a data packet (such as

Data(1,"COL")) or an acknowledgement packet

(such as Ack(2)).

Figure 7 shows the Sender module, which contains

two transitions and four places. Place D is an input port,

place A is an output port, while place PacketsToSend

if n=k
then Ack(k+1)
else Ack(k)

Data(n,d)

if n=k
then data^d
else data

k

data

if n=k
then k+1
else k

Receive
 Packet

COut

PACKET

BIn

PACKET

Data
Received

I/O

1`""

DATA

NextRec

1`1

NO

In

Out

I/O

Fig. 8 Module for the receiver

is an input/output port. This means that places A, D,

PacketsToSend constitute the interface through which

the Sender module exchanges tokens with its environ-

ment (i.e., the other modules). The Sender module will

import tokens via the input port D and it will export

tokens via the output port A. An input/output port is

a port through which the module can both import and

export tokens. In CPN Tools, port places can be recog-

nised by the rectangular port-type tags positioned next

to them specifying whether the port place is an input,

output, or input/output port. The place NextSend is an

internal place, which is only relevant to the Sender mod-

ule itself. The Sender module is identical to the sender

part of Fig. 1 except that the colour set of the places A

and D are now PACKET and that we use the constructors

Data and Ack in the arc expressions on the surrounding

arcs of these places.

Figure 8 shows the Receiver module. It has an input

port B, an output port C, an input/output port DataRe-

ceived, and an internal place NextRec.

Figure 9 shows the Network module. The Network

module has two input ports, A and C, together with

two output ports, B and D. The Network module has

no internal places. The Network module has two sub-

stitution transitions (drawn as rectangular boxes with

double lines), TransmitData and TransmitAck. The basic

Transmit
Ack

Transmit

Transmit
Data

Transmit

C In

PACKET

DOut

PACKET

B Out

PACKET

AIn

PACKET

In Out

In

Transmit

Transmit

Out

Fig. 9 Module for network

Coloured Petri Nets and CPN Tools 223

if success
then 1`p
else emptyp

Transmit OUT Out

PACKET

INIn

PACKET

In Out

Fig. 10 Module for packet transmission

idea in hierarchical models is to associate a module with

each substitution transition. When a module is associ-

ated with a substitution transition it is said to be a sub-

module. In CPN Tools, substitution transitions can be

recognised by the double boxes and rectangular sub-

module tags positioned next to them. The tag contains

the name of the submodule related to the substitution

transition. Intuitively, this means that the submodule

presents a more detailed view of the behaviour repre-

sented by the substitution transition—in a similar way

as the implementation of a procedure provides a more

detailed view of the effect of a procedure call. In Fig. 9,

both substitution transitions have the Transmit module

as their associated submodule.

The Transmit module is shown in Fig. 10. The transi-

tion Transmit of the Transmit module transmits packets

of type PACKET, i.e., both data packets and acknowl-

edgements. The variable p is a variable of the colour set

PACKET.

To tie the modules together, we use the Protocol mod-

ule shown in Fig. 11. It represents a more abstract view of

the (entire) protocol system. The substitution transition

Sender has the Sender module from Fig. 7 as its associ-

ated submodule, Network has the Network module from

Fig. 9 as its associated submodule, and Receiver has the

Receiver module from Fig. 8 as its associated submod-

ule. In the Protocol module, we can see that the Sender,

Network, and Receiver modules exchange tokens with

each other, via the places A, B, C, and D—but we can-

not see the details of what the Sender, Network and

Receiver modules do. In Fig. 11 each substitution tran-

sition has the same name as its submodule, but this is

not required.

The input places of substitution transitions are called

input sockets, while the output places are called output

sockets. This means that in the Protocol module A is an

output socket for the substitution transition Sender, and

an input socket for the substitution transition Network.

Place PacketsToSend is an input/output socket for the

substitution transition Sender.

The socket places of a substitution transition con-

stitute the interface of the substitution transition. To

obtain a complete hierarchical model, we need to tell

how the interface of each submodule is related to the

interface of its substitution transition. This is done by

means of a port assignment, which maps the port places

of the submodule to the socket places of the substitu-

tion transition. Input ports are assigned to input sockets,

output ports to output sockets, and input/output ports

to input/output sockets. For the substitution transitions

and associated submodules in Fig. 11, each port has the

same name as the socket to which it is assigned, but this

is not required.

When a port is assigned to a socket, the two places

constitute two different views of a single place. This

means that the port and socket place always share the

same marking and hence conceptually become the same

compound place. Figures 12 and 13 show the marking of

the Sender and Network modules after an occurrence

of the SendPacket transition in the initial marking.

When transition SendPacket occurs, it adds a token

to the output port A in the Sender module (see Fig. 12).

This port place is assigned to the output socket A of the

substitution transition Sender in the Protocol module

(see Fig. 11). Hence, the new token will also appear at

place A in the Protocol module. This place is also an

Network

Network

Receiver

Receiver

Sender

Sender

Packets
To Send

NOxDATA

C

PACKET

D

PACKET

A

PACKET

Data
Received

1`""

DATA

B

PACKET

Sender ReceiverNetwork

AllPackets

Fig. 11 Protocol module—top-level module of the hierarchical protocol model

224 K. Jensen et al.

Fig. 12 Marking of Sender module—after occurrence of
SendPacket

Fig. 13 Marking of Network module—after occurrence of
SendPacket

input socket for the substitution transition Network and

has the port place A in the Network module (see Fig. 13)

assigned to it. Hence, we conclude that the new token

also becomes available at the port place A of the Network

module. In other words the three places A (in the Proto-

col, Sender, and Network modules) are three different

views of a single compound place—through which the

modules can interchange tokens with each other. Similar

remarks can be made about the places B, C, and D. The

place D appears in the Protocol, Sender, and Network

modules, while B and C appear in the Protocol, Network,

and Receiver modules.

Above we have seen that two related port and socket

places constitute different views of a single compound

place, and that this means that they always have the same

marking. Obviously, this implies that they also need to

have identical colour sets and identical initial markings.

It should be noted that substitution transitions do not

have guards, and arcs connected to substitution transi-

tions do not have arc expressions. It does not make sense

to talk about the enabling and occurrence of a substitu-

tion transition. Instead the substitution transition repre-

sents the compound behaviour of its submodule.

In the hierarchical model presented above there are

three levels of abstraction. The highest abstraction level

is the Protocol module, while the lowest abstraction level

is the Sender, Transmit, and Receiver modules, and the

Network module is in between. In general, there can be

an arbitrary number of abstraction levels. CPN models

of larger systems typically have up to ten abstraction

levels.

The Transmit module is used as submodule of the

TransmitData and TransmitAck substitution transitions

in the Network module. This means that there will be

two separate instances of the Transmit module—one

instance for each of the two substitution transitions.

For the instance of the Transmit module which is a sub-

module of the substitution transition TransmitData, we

assign the port place IN to the socket place A, while we

assign the port place OUT to the socket place B. For the

instance of the Transmit module which is a submodule

of the substitution transition TransmitAck, we assign the

port place IN to the socket place C, while we assign the

port place OUT to the socket place D.

Each instance of a module has its own marking. This

means that the marking of the instance of the Trans-

mit module corresponding to the TransmitData substi-

tution transition is independent of the marking of the

instance of the Transmit module corresponding to the

TransmitAck substitution transition. The marking of each

instance of a port place matches the tokens present on

the corresponding socket place of the associated substi-

tution transition. CPN tools automatically instantiates

the appropriate number of instances of each module and

associates these instances with substitution transitions.

Above we have seen how modules can exchange

tokens via port and socket places. It is also possible for

modules to exchange tokens via fusion sets. Fusion sets

allow a number of places (which may belong to different

modules) to be glued together into one compound place

across the hierarchical structure of the model.

2.5 Modelling of time

We now describe how timing information can be added

to CPN models. This will allow us to evaluate how effi-

ciently a system performs its operations, and it also

allows us to model and validate real-time systems, i.e.,

systems where the correctness of the system relies on the

proper timing of the events. With a timed CPN model

we may calculate performance measures, such as max-

imum queue lengths, mean waiting times, and through-

put. This will be illustrated in Sect. 6. We may also, e.g.,

verify whether a real-time system meets the required

deadlines. We present the time concept of CP-nets using

the non-hierarchical variant of the simple protocol. The

Coloured Petri Nets and CPN Tools 225

Fig. 14 Timed CPN model for the protocol in the initial marking M0

timing constructs apply also to hierarchical CPN mod-

els, and CPN Tools supports simulation and analysis of

timed hierarchical CP-nets.

Now let us look at Fig. 14 which contains a timed CPN

model for the simple protocol. It is easy to see that the

CPN model is very closely related to the untimed CPN

model in Fig. 1.

The main difference between timed and untimed CPN

models is that the tokens in a timed CPN model—

in addition to the token colour—can carry a second

value called a time stamp. This means that the mark-

ing of a place where the tokens carry a time stamp is

now a timed multi-set specifying the elements in the

multi-set together with their number of appearances and

their time stamps. Furthermore, the CPN model has a

global clock representing model time. The distribution

of tokens on the places together with their time stamps

and the value of the global clock is called a timed mark-

ing. In a hierarchical timed CPN model there is a single

global clock that is shared among all the modules.

In general, a time stamp can be a non-negative inte-

ger or real. In the current implementation of CPN Tools,

only non-negative integers are supported. The time

stamp tells us the time at which the token is ready to

be used, i.e., the time at which it can be removed from

the place by an occurring transition. The tokens on a

place will carry a time stamp if the colour set of the

place is timed. A colour set is declared to be timed using

the CPN ML keyword timed. Figure 15 shows the col-

our set declarations for the timed model. It can be seen

that all colour sets, except BOOL are defined to be timed

colour sets.

The execution of a timed CPN model is controlled

by the global clock, and it works in a similar way as

Fig. 15 Colour sets for the timed CPN model in Fig. 14

the event queue found in most simulation engines for

discrete-event simulation. The model remains at a given

model time as long as there are binding elements that are

colour enabled (i.e., have the needed input tokens) and

are ready for execution (i.e., the required tokens have

time stamps which are less than or equal to the current

value of the global clock). Hence, in a timed CPN model

an enabled binding element must be both colour enabled

and ready in order to be able to occur. When there is no

longer such a binding element to be executed, the clock

is advanced to the earliest model time at which bind-

ing elements can be executed. Each marking exists in a

closed interval of model time (which may be a point, i.e.,

a single moment of time). As for untimed CPN models,

we may have conflicts and concurrency between binding

elements (and binding elements may be concurrent to

themselves)—but only if the binding elements are ready

to be executed at the same time.

Consider now the initial marking of the timed CPN

model for the protocol shown in Fig. 14. The colours of

the tokens are the same as in the initial marking of the

untimed CPN model of the protocol, but now the tokens

carry time stamps. As an example, the initial marking of

the place PacketsToSend is:

1‘(1,"COL")@0 +++

1‘(2,"OUR")@0 +++

226 K. Jensen et al.

1‘(3,"ED ")@0 +++

1‘(4,"PET")@0 +++

1‘(5,"RI ")@0 +++

1‘(6,"NET")@0

The time stamp of tokens are written after the @ sym-

bol which is pronounced as “at”. In this case, all tokens

carry the time stamp 0. The +++ operator takes two

timed multi-sets as arguments and returns their union.

All other tokens in the initial marking also carry the

time stamp 0. The value of the global clock in the initial

marking is also 0. The initial marking of all places are

specified as an (untimed) multi-set. CPN Tools will auto-

matically attach the time stamp 0 if the initial marking

inscription of a place with a timed colour set does not

explicitly specify the time stamps of the tokens.

Consider the transition SendPacket and the binding

〈n=1, d="COL"〉 in Fig. 14. To occur, this binding needs

the presence of a token with colour1 on place NextSend

and the presence of a token with colour (1,"COL") on

place PacketsToSend. This is determined by the input

arc expressions by means of the enabling rule explained

in Sect. 2.2. We see that the two tokens that are needed

by SendPacket exist on the input places and that both

of them carry the time stamp 0, which means that they

can be used at time 0. Hence, the transition can occur at

time 0. When the transition occurs, it removes the two

tokens from the input places and adds a token to each of

the three output places. The colours of these tokens are

determined by the output arc expressions by means of

the occurrence rule explained in Sect. 2.2. However, it

is now also necessary to calculate the time stamps to be

given to the three output tokens. This is done by using

time delay inscriptions attached to the transition and/or

to the individual output arcs. Time delays inscribed on

the transition apply to all output tokens created by that

transition, while time delays inscribed on an output arc

only apply to tokens created at that arc. In Fig. 14 we

have attached a time delay inscription @+9 to the Send-

Packet transition, and a time delay inscription @+Wait

to the outgoing arc to PacketsToSend, where Wait is a

constant defined as:

val Wait = 100;

The arc expressions on the output arcs to the places

A and NextSend have no separate time delays. The time

stamp given to the tokens created on an output arc is

the value of the global clock plus the result of evaluat-

ing the time delay inscription of the transition plus the

result of evaluating the time delay inscription of the arc.

Hence, we conclude that the tokens added to the places

NextSend and A get the time stamp:

0 + 9 + 0 = 9 (1)

(n,d)

n

if success
then 1`(n,d)
else emptyTransmit

Packet

@+Delay()

Send
Packet

@+9

A

NOxDATA

NextSend

1`1

NO

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d) (n,d)@+Wait

(n,d)
1

1`(1,"COL")@9

1 1`1@9

6

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 16 Marking M1 reached when SendPacket occurs at time 0
in M0

The first 0 is the time at which the transition occurs as

given by the global clock, 9 is the time delay inscribed on

the transition, and the second 0 is the time delay on the

output arc (since there is no time delay on the output

arc). Intuitively this models that the execution of the

send packet operation has a duration of 9 time units.

The arc expression on the output arc to place Packets-

ToSend has a separate time delay: @+Wait. This means

that the token added to PacketsToSend gets the time

stamp:

0 + 9 + 100 = 109 (2)

The 0 is the time at which the transition occurs, 9 is

the time delay inscribed on the transition, while 100 is

time delay inscribed on the output arc. Intuitively, this

represents the fact that we do not want to resend data

packet number 1 until time 109, i.e., until 100 time units

after the end of the previous send operation. This is

achieved by giving the token for data packet number

1 the time stamp 109—thus making it unavailable until

that moment of time. However, it should be noticed that

data packet number 2 still has time stamp 0. Hence, it

will be immediately possible to transmit this data packet,

if an acknowledgement arrives before time 109. When

SendPacket occurs at time 0, we reach the marking M1

which is partially shown in Fig. 16.

In marking M1 there are three binding elements that

have the needed tokens on their input places:

SP = (SendPacket, 〈n=1, d="COL"〉)

TP+ = (TransmitPacket,

〈n=1, d="COL", success=true〉)

TP− = (TransmitPacket,

〈n=1, d="COL", success=false〉)

SP can occur at time 109 (since it needs a token with

time stamp 109 and a token with time stamp 9). How-

ever, TP+ and TP− can occur already at time 9 (because

they need a token with time stamp 9). Since TP+ and

Coloured Petri Nets and CPN Tools 227

if n=k
then k+1
else k

k

data

if n=k
then k+1
else k

(n,d)

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
 Packet

@+17

Transmit
Packet

@+Delay()

NextRec

1`1

NO

C

NO

A

NOxDATA

Data
Received

1`""

DATA

B

NOxDATA

11`1@0

11`""@0

1

1`(1,"COL")@47

Fig. 17 Marking M2 reached when TransmitPacket occurs at time
9 in M1

TP− are the first binding elements that are ready to

occur, one of these will be chosen (the two binding ele-

ments are in conflict with each other) and it will occur as

soon as possible, i.e., at time 9. Let us assume that TP+

is chosen to occur. It will remove the token from place A

and add a token to place B. The time stamp of this token

will be the sum of the time at which the transition occurs

(9) and the value obtained by evaluating the time delay

expression @+Delay() inscribed on the transition. The

function Delay takes a unit (()) as argument and is

defined as follows:

fun Delay() = discrete(25,75);

The function discrete is a predefined function pro-

viding a discrete uniform distribution over the closed

interval specified by its arguments. This means that a

callDelay() returns an integer from the interval [25,75]

and that all numbers in the interval have the same prob-

ability of being chosen. Intuitively, this represents that

the time needed to transmit a packet over the network

may vary between 25 and 75 time units, e.g., due to

the load on the network. Let us assume that Delay()

evaluates to 38. Then we reach the marking M2 which

is partially shown in Fig. 17. The above illustrates how

random functions can be used to give time stamps to

tokens.

In marking M2 there are two binding elements that

have the needed tokens on their input places:

SP = (SendPacket, 〈n=1, d="COL"〉)
RP = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)

As before, SP can occur at time 109. However, RP

can occur already at time 47 (because it needs a token

with time stamp 47 and two tokens with time stamp 0).

if n=k
then k+1
else k

k

data

if n=k
then k+1
else k

if n=k
then data^d
else data

(n,d)

Receive
 Packet

@+17

NextRec

1`1

NO

C

NO

Data
Received

1`""

DATA

B

NOxDATA

11`2@64

11`2@64

11`"COL"@64

Fig. 18 Marking M3 reached when ReceivePacket occurs at time
47 in M2

Hence RP will be chosen and we will reach the marking

M3 which is partially shown in Fig. 18.

In marking M3 there are three binding elements that

have the needed tokens on their input places:

SP = (SendPacket, 〈n=1, d="COL"〉)

TA+ = (TransmitAck, 〈n=2, success=true〉)

TA− = (TransmitAck, 〈n=2, success=false〉)

SP can occur at time 109. However, TA+ and TA−

can occur already at time 64 (because they need a token

with time stamp 64). Hence TA+ or TA− will be chosen.

The transmission and reception of an acknowledgement

are similar as in the untimed CPN model and hence we

will not explain them in further detail.

In the timed CPN model considered above, all tokens

carry a time stamp since all colour sets of the places were

declared to be timed. However, this is generally not the

case. The modeller is allowed to specify whether each

individual type (colour set) is timed or not. The tokens of

timed colour sets carry time stamps while the tokens of

untimed colour sets do not. Tokens without time stamps

are always ready to participate in occurrences of binding

elements.

Consider the token on place NextSend. If the token

carries a time stamp, it is not possible for transitions

SendPacket and ReceiveAck to occur at the same model

time. This is due to the fact that when one of these tran-

sitions occurs, the time stamp of the token is increased,

which eliminates the possibility that the other transition

can occur at the same model time. This could represent a

sender that uses a single thread for sending data packets

and receiving acknowledgements. On the other hand, if

the token on NextSend did not carry a time stamp, then

these two transitions could occur at the same model

228 K. Jensen et al.

time. This could be used to model a sender with sepa-

rate threads for sending and receiving.

It should be noted that the possible occurrence

sequences of a timed CPN model always form a sub-

set of the occurrence sequences for the underlying un-

timed CPN model, i.e., the model in which we remove

all time delay inscriptions (and all time stamps). This

means that the time delay inscriptions merely enforce a

set of additional constraints on the execution of the CPN

model—forcing colour-enabled binding elements to be

chosen when they are ready. Turning an untimed CPN

model into a timed model cannot create new behaviour

in the form of new occurrence sequences. As a conse-

quence it is often a useful modelling strategy to start by

investigating the functional/logical properties by means

of an untimed CPN model. Then the timing related to

events can be considered afterwards.

The occurrence of a transition is instantaneous, i.e.,

takes no time. However, as shown in the protocol exam-

ple above, it is easy to model that some actions in a

system have a non-zero duration. This is done by giving

the output tokens created by the corresponding tran-

sition time stamps that prevent the tokens from being

used until the time at which the action has finished.

As an example, TransmitPacket cannot occur until 9

time units after the occurrence of SendPacket—this

represents that the action to send a data packet takes

9 time units. An alternative approach would have been

to allow the occurrence of a transition to have a non-

zero duration. We could then remove the input tokens

at the moment where the occurrence begins and add

the output tokens when the occurrence ends. However,

such an approach would make the relationship between

a timed CPN model and its underlying untimed CPN

model much more complex. There would then be a lot of

reachable markings in the timed CPN model which are

unreachable in the untimed CPN model—because they

correspond to situations where one or more transitions

are partway through their occurrence (having removed

tokens from the input places, but not yet having added

tokens to the output places).

3 Construction of CPN models

This section introduces the GUI of CPN Tools and the

tools and features in CPN Tools for constructing CPN

models. There are tools for creating declarations, net

structure, inscriptions, and hierarchical models. Addi-

tional tools are available to improve the readability of

a model, including tools for changing line colours and

widths, and for aligning elements.

Fig. 19 Screenshot of CPN Tools

Coloured Petri Nets and CPN Tools 229

3.1 Overview of the GUI

Figure 19 shows a screenshot of CPN Tools. The rect-

angular area to the left is the index. It includes the Tool

box which contains many of the tools that are available

for manipulating the declarations and modules that con-

stitute the CPN model. The Tool box includes tools for

creating and cloning (i.e., copying) the basic elements of

CPN models. Additionally, it contains a wide selection

of tools for manipulating the graphical layout and the

appearance of the objects in the CPN model. The lat-

ter set of tools is very important in order to be able to

create readable and graphically appealing CPN models.

The index also contains a model overview for each of the

models that are open. A model overview shows a vari-

ety of information including the name of the model, the

Declarations for the model, the modules of the model,

and the hierarchical structure of the model. The History

for a model shows a list of the operations that have been

performed on the model. This list contains only those

operations that can be undone and redone. Many oper-

ations can be undone, including editing operations, while

others cannot be undone, such as executing simulation

steps.

A small triangle to the left of an entry in the index

indicates either that the entry contains subentries or that

the entry can be expanded to show more information for

the entry. Clicking on a small triangle will open and close

the corresponding index entry. A triangle that points to

the right indicates a closed entry, while a triangle point-

ing downwards indicates an open entry. A subentry in

the index is indented to the right of its parent entry. For

example, in Fig. 19 the Tool box entry has been opened

to show its nine subentries (from Auxiliary to View),

and the declaration for the variable success has been

opened to show the type of the variable.

The remaining part of the screen is the workspace,

which in this case contains five binders (the rectangu-

lar windows) and a circular marking menu. Each binder

holds a number of items which can be accessed by click-

ing the tabs at the top of the binder (only one item is

visible at a time in each binder). There are two kinds

of binders. One kind contains the elements of the CPN

model, i.e., the modules and declarations. The other kind

contains tool palettes which contain the tools which the

user applies to construct and manipulate CPN models. A

tool in a tool palette can be picked up by clicking on the

appropriate tool cell. After picking up a tool, the mouse

cursor will change to show which tool has been picked

up. A tool that has been picked up is applied by clicking

on an appropriate target. In Fig. 19 one binder contains

three modules named Protocol, Sender, and Receiver,

another binder contains a single module named Network

together with the declaration of the colour setNOxDATA,

and a third binder contains the declaration of the con-

stant AllPackets. The two remaining binders contain

four different tool palettes to Create elements, change

their Style, perform simulations (Sim), and construct

state spaces (SS). Some items can be dragged from the

index to the binders, and from one binder to another

binder of the same kind. It is possible to position the

same item in two different binders, e.g., to view a mod-

ule in two different zoom factors.

A circular marking menu has been popped up on

top of the bottom-left binder. Marking menus are con-

textual menus that make it possible to select between

some of the possible operations for a given object. In

this example it shows some of the operations that can

be performed on a port place. Most of the tools that are

available in a marking menu are also available in a tool

palette, and vice versa.

3.2 Construction of model elements

The New Net and Load Net tools are used to create

a new model and load an existing model, respectively.

These tools can be found in the Net tool palette or in

the marking menu for the workspace. When a model is

created or loaded, its model overview will be added to

the index.

The colour sets, variables, and functions that are used

in inscriptions must be defined in Declarations for the

model. The Declarations that belong to a model can be

seen in the index in the model overview. New declara-

tions are added using the New Declaration tool which

can be found in relevant marking menus. Declarations

can be grouped in declaration blocks. In Fig. 19, many

of the declarations for the Protocol.cpn model can be

seen, and the Standard declarations entry is a declara-

tion block that contains a number of default declara-

tions that are included when a new model is created.

Keyboard shortcuts can be used to jump from one dec-

laration to the next and to add a new declaration after

a declaration that is being edited. Declarations can be

viewed and edited in the index and in declaration sheets

in binders.

The tools for creating net structure are found in the

Create palette which is shown in Fig. 20. The available

tools (from left to right and top to bottom) are:

Fig. 20 Tools for creating net
structure in the Create palette

230 K. Jensen et al.

Fig. 21 Tool options in the
index for the Create Place
tool

– Create a transition.

– Create a place.

– Create an arc.

– Create a vertical guideline.

– Delete an element.

– Clone, i.e., copy, an element.

– Change direction of an arc.

– Create a horizontal guideline.

The tools from the Create palette can also be found

in marking menus, with the exception of the tools for

creating guidelines which will be explained below. Each

tool can be applied to certain kinds of targets. For exam-

ple, the tools for creating places and transitions can be

applied to modules in binders, while the tool for creating

an arc must be applied first to a place (transition), and

then to a transition (place).

A number of tools have options that affect the behav-

iour of the tool. These tool options can be changed, and

they are accessible in the index and via tool cells in pal-

ettes. Figure 21 shows the tool options for the Create

Place tool. With these options it is possible to change

the default width and height of new places.

Inscriptions must be added to nodes and arcs. After

creating a new place, transition or arc, text-edit mode

will be entered, and it will be possible to add the first

inscription to the element. Arcs have only one inscrip-

tion, while places and transitions have several kinds of

inscriptions. The TAB key is used to cycle between the

different inscriptions for a node.

There are a number of different tools and features

that can be used to improve the layout, and therefore

the readability, of a model. The tools in the Style pal-

ette are used to change the graphical attributes of model

objects. There are tools for changing line and fill colour,

line widths, and arrowhead size.

Nodes and arc bend points can be aligned using guide-

lines and automatic snap-to-alignment features. Objects

will automatically be snapped to vertical or horizontal

alignment whenever possible. For example, if an arc is

added between two nodes that are almost aligned, then

they will be moved into alignment with each other, or

if a node that is attached to another node via an arc

is moved, then it will be snapped into alignment with

the other node whenever it is moved close enough into

alignment. Similarly, inscriptions can be snapped to var-

ious different snap points for their parent objects. For

example, transitions have snap points at each corner as

Fig. 22 A group of elements in a module

well as at the middle of each side, and inscriptions can

be snapped to these points. Several different elements

can be aligned by snapping them to guidelines. All of the

elements that are snapped to a guideline will be moved

when the guideline is moved.

New model elements do not need to be created from

scratch because they can be created by cloning, i.e., copy-

ing, existing elements. Many kinds of elements can be

cloned, including inscriptions, nodes together with all

their inscriptions and modules. When an object is cloned,

all of its graphical attributes, such as size and line col-

our, are cloned as well. Objects can be cloned within

the same model or between two models (more than one

model may be open at a time in CPN Tools). It is also

possible to clone just the graphical attributes from one

object to another.

It can be tedious to perform the same operation on a

number of individual elements, such as changing the col-

our of model elements, or moving and realigning model

elements. In CPN Tools, it is possible to create groups,

and to perform operations on the elements in a group.

Group tabs at the bottom left of a module in a binder

indicate which groups are defined for the module. The

elements that are not in the group are dimmed, as shown

in Fig. 22. If a tool is applied to an element in a group, the

tool will be applied to all of the other relevant elements

in the group. For example, changing the colour of any

element in the group will change the colour of all of the

elements in the group, while changing the direction of an

arc will only affect the arcs in the group. Regular groups

can only contain elements from the same module, but

global groups can contain elements from any module in

the model.

3.3 Construction of hierarchical models

The tools for creating hierarchical nets are found in the

Hierarchy palette which is shown in Fig. 23. The avail-

able tools (from left to right and top to bottom) are:

Coloured Petri Nets and CPN Tools 231

Fig. 23 The hierarchy palette

Fig. 24 Overview of hierarchical relationships

– Move a transition or group to a new submodule.

– Replace a substitution transition with its submod-

ule.

– Assign a submodule to a substitution transition.

– Assign a port to a socket.

– Set port type to input.

– Set port type to output.

– Set port type to input/output.

– Assign a place to a fusion set.

These tools support both top-down and bottom-up

construction of CPN models. Supporting a top-down

approach, the Move to Submodule tool will move a

group of elements from one module to a new submod-

ule, create a substitution transition with appropriate arcs

in the original module, create appropriate port places in

the submodule, and assign ports to sockets. The Assign

Submodule tool supports a bottom-up approach, in that

it will assign an existing module to be the submodule

associated with an existing (substitution) transition, and

it will automatically assign port places to sockets when-

ever possible. In addition, the Clone tool can also be

used to clone hierarchy elements, such as port-type tags,

or even a substitution transition and all of its submod-

ules.

Information about hierarchical relationships can be

seen in modules and the index, as shown in Fig. 24. The

left-hand side of the figure shows the names of the mod-

ules from a model overview. A small triangle next to a

module name indicates that it has submodules, and the

submodules of the module are listed below and indented

to the right of the supermodule. In the example, the

Protocol module is the top-level module, and it has three

submodules. One of these submodules (Network) also

has two submodules. A number in parentheses after the

module name indicates that there are multiple instances,

while a missing number indicates that there is only one

instance of that module in the model.

Instantiation of modules is handled fully automati-

cally by CPN Tools, and the user can access the indi-

vidual instances of modules. It should be noted that

instantiation of modules is done prior to simulation of

the CPN model. Hence, the number of instances of mod-

ules is fixed throughout the simulation of a hierarchical

model, and it is not possible to dynamically instantiate

new modules during the simulation.

The right-hand side of Fig. 24 shows hierarchical infor-

mation that can be seen in a module. The small tag

immediately below TransmitData indicates that it is a

substitution transition, and that it is associated with the

submodule Transmit. The list to the lower right of Trans-

mitData shows the assignments between its sockets and

the port places in submodule Transmit. The list is opened

and closed by clicking on the small triangle in the lower

left-hand corner of the substitution transition. Place A

is a socket for TransmitData, but the small tag next to

the place indicates that it is also an input port. The tags

associated with port places, substitution transitions, and

fusion places are collectively referred to as hierarchy

tags. Marking menus for some hierarchy tags contain

operations for opening and showing sub- and super-

modules in binders. This makes it possible to navigate

efficiently.

3.4 Syntax check and code generation

CPN Tools performs syntax and type checking, and sim-

ulation code generation. Error messages are provided to

the user in a contextual manner next to the object caus-

ing the error. Figure 25 shows an example of an error

message for a place inscription.

The syntax check and code generation are incremen-

tal and performed in parallel with editing. This means

that it is possible to execute parts of a CPN model even

if the model is not complete, and it means that when

parts of a CPN model are modified, syntax check and

code generation are only performed on the elements

that depend on the parts that were modified. Some ele-

ments will not be checked until they have enough infor-

Fig. 25 Contextual error message

232 K. Jensen et al.

mation to be syntactically correct. For example, a place

will not be checked until it has a colour set inscription,

and a transition will not be checked until all of its sur-

rounding places can be checked, and all of its surround-

ing arcs have arc inscriptions.

The main outcome of the code generation is the simu-

lation code. The simulation code contains the functions

for inferring the set of enabled binding elements in a

given marking of the CPN model, and for computing

the marking reached after an enabled binding element

occurs.

3.5 Graphical feedback and help

CPN Tools uses several kinds of graphical feedback to

provide information when editing and analysing a CPN

model. Help information is also available. Colour-coded

auras are used to highlight objects with particular char-

acteristics or to indicate different kinds of relationships

between objects. For example, bright red auras indi-

cate errors. Auras are associated with places, transitions,

arcs, inscriptions, declarations, module tabs, and index

entries, such as module names. Auras are propagated

to parent-like objects whenever possible. In Fig. 25 the

place has an inscription with an error, and the place will

therefore have a red aura. The red aura will be prop-

agated to the tab for the module in the binder, to the

name of the module in the index, and to the model

name. Error auras are always shown, and they will be

removed only if the error is fixed. Other kinds of auras

appear only when the cursor hovers over a particular

kind of object. For example, dark blue auras indicate

dependencies between declarations and model objects,

and they appear only when the cursor hovers over a dec-

laration or a node. In Fig. 19, one of the declarations has

an aura (in dark blue) because the cursor has been used

to open a marking menu for a place that is dependent

on that declaration.

A speech bubble is a yellow rectangle that provides

context-sensitive information, such as an error message.

Some speech bubbles appear automatically, while oth-

ers appear after a slight delay when the cursor is moved

over an appropriate object. For example, moving the

cursor over a model name will cause a speech bubble

containing the full path to the model to appear. On the

other hand, speech bubbles with error messages for net

structure, like the one in Fig. 25 appear automatically.

Status bubbles are colour-coded bubbles that occa-

sionally appear at the bottom of the index. A speech

bubble is often associated with the status bubble, as

shown in Fig. 26. It may be necessary to move the cursor

over a status bubble to see the corresponding speech

Fig. 26 Status bubble at bottom of index

bubble. Green indicates that an operation completed

successfully, red indicates an error, and light purple indi-

cates that a time-consuming operation, such as a long

simulation, is being performed.

Detailed help information can be accessed in a num-

ber of ways. Dragging the Help index entry to the work-

space will open the main page for the offline help in a

Web browser. A brief tool tip describing the function-

ality of the tool will appear if the cursor hovers over a

tool cell in a tool palette. Marking menus for tool cells

in palettes and for palette tabs in binders contain tools

for opening a relevant help page in a browser.

4 Simulation

The simulator of CPN Tools exploits a number of

advanced data structures and algorithms for efficient

simulation of large hierarchical CPN models [28]. The

simulator exploits the locality property of Petri nets,

which ensures that the occurrence of a transition only

affects its immediate surroundings. This ensures that the

number of steps executed per second in a simulation is

independent of the number of places and transitions in

the CPN model. This means that simulation scales to

large CPN models.

The CPN Tools simulator only executes steps consist-

ing of a single binding element. The marking resulting

from the occurrence of an enabled step with multiple

binding elements is the same as letting the binding ele-

ments in the step occur one after each other in some

arbitrary order. Hence, markings that can be reached

via occurrence sequences consisting of steps with mul-

tiple binding elements can also be reached via occur-

rence sequences with steps consisting of a single binding

element.

CPN Tools uses graphical simulation feedback, as

shown in Fig. 27, to provide information about the mark-

ings that are reached and the binding elements that are

enabled and occur during a simulation. A small circle

next to a place indicates the number of tokens on the

place in a marking, and a box next to the circle shows

the colours of the tokens. In Fig. 27, place DataReceived

contains one token with value "COL". Green auras indi-

cate enabled transitions, and the auras can be found on

Coloured Petri Nets and CPN Tools 233

Fig. 27 Simulation feedback in CPN Tools

Fig. 28 Simulation tool palette

transitions, on module names in binders and the index,

and on submodule tags. The box below ReceivePacket

will be discussed below.

Many of the tools that are available for simulating

CPN models can be found in the simulation tool palette

shown in Fig. 28. A VCR (Video Cassette Recorder)

metaphor is used for the graphical symbols representing

the simulation tools. The simulation tools can be picked

up with the mouse cursor and applied to the CPN model.

The available tools (from left to right) are:

– Return to the initial marking.

– Stop an ongoing animated automatic simulation.

– Execute a single transition with a manually chosen

binding.

– Execute a single transition with a random binding.

– Execute an animated automatic simulation, i.e., exe-

cute an occurrence sequence with randomly chosen

binding elements and display the current marking

between each step.

– Execute a fast automatic simulation, i.e., execute an

occurrence sequence with randomly chosen bind-

ing elements without displaying the current marking

between each step.

– Evaluate a CPN ML expression (to be explained in

Sect. 6.6).

4.1 Interactive and automatic simulations

When a CPN model is simulated in interactive mode, the

simulator calculates the set of enabled transitions in each

marking encountered. Then it is up to the user to choose

between the enabled transitions and bindings. Figure 27

shows an example where the user is in the process of

choosing between the enabled bindings of the Receive-

Packet transition. The choice between the enabled bind-

ings is done via the rectangular box opened next to the

transition. It lists the variables of the transition and the

values to which they can be bound in the current mark-

ing. In this case, the value 2 has already been bound to

the variable k and the value "COL" has been bound to

data. This is done automatically by the simulator since

there is only one possible choice for these variables. The

user still has a choice in binding values to the variables

n and d. The user may also leave the choice to the sim-

ulator which uses a random number generator for this

purpose. In the above case it suffices for the user to bind

either n or d since the value bound to the other variable

is then uniquely determined and will be automatically

bound by the simulator.

After the chosen binding element has been executed,

the marking and enabling information is updated and

presented to the user, who either chooses a new enabled

binding element or leaves the choice to the simula-

tor, and so on. This means that it is the simulator that

makes all the calculations (of the enabled binding ele-

ments and the effect of their occurrences), while it is

the user who chooses between the different occurrence

sequences (i.e., the different behavioural scenarios). If

it is not necessary to choose a particular binding of vari-

ables, the user can use the Single Step tool to execute a

single transition. The tool can be applied to different tar-

gets, and it will have different effects depending on the

target. For example, if the tool is applied to an enabled

transition, then that particular transition will occur, and

if the tool is applied to a binder, then a randomly cho-

sen enabled transition on a module in the binder will

occur. An interactive simulation is by nature slow, since

it takes time for the user to investigate the markings and

enablings and to choose between them. This means that

only a few steps can be executed each minute and the

working style is very similar to single-step debugging

known from conventional programming environments.

When a CPN model is simulated in animated auto-

matic mode, the simulator calculates the set of enabled

transitions in each marking encountered. The simulator

also chooses between the enabled transitions and bind-

ings. The simulator feedback is updated after each step

in an animated automatic simulation. The Play tool, i.e.,

the third tool from the right in Fig. 28, has tool options

234 K. Jensen et al.

Fig. 29 Dead marking Mdead reached at the end of a simulation

which determine how many steps should be executed

in an animated automatic simulation, and how long the

simulator should pause between each step. The simula-

tor will perform the specified number of steps, unless it

reaches a state in which there are no more enabled tran-

sitions or until the Stop tool from the simulation palette

is applied.

A CPN model can also be simulated in fast automatic

mode. This kind of simulation is similar to a program

execution, and a speed of several thousand steps per

second is typical. Before the start of a fast automatic

simulation, the user specifies one or more stop criteria,

e.g., that 100,000 steps should occur or 50,000 units of

model time should elapse. If one of the stop criteria

becomes fulfilled or if there are no more enabled tran-

sitions, the simulation stops and the user can inspect the

marking which has been reached. There are also a num-

ber of different ways in which the user can inspect the

markings and the binding elements that occurred during

the simulation. We shall briefly return to this at the end

of this section.

A simulation of the protocol example may stop in the

marking Mdead shown in Fig. 29. This marking is a dead

marking because there are no enabled transitions. Due

to the non-determinism in the CPN model, we cannot

guarantee that the dead marking will be reached since

it is possible to keep losing packets and acknowledge-

ments. However, if we reach a dead marking it will be

the marking shown in Fig. 29. Here, we see that all six

data packets have been received (in the correct order).

The sender has stopped sending because NextSend has

a token with colour 7 and there is no data packet with

number 7. All the places A, B, C, and D connecting the

network to the sender and receiver are empty. Finally,

place NextRec has a token with colour 7. Hence, this

marking represents the desired terminal state of the pro-

tocol system. By making a number of automatic simu-

lations of the CPN model, it is possible to test that the

simple protocol design appears to be correct. Conduct-

ing a set of automatic simulations does not guarantee

that all possible executions of the protocol have been

covered. Hence, we cannot in general use simulation

to verify properties of the protocol, but it is a power-

ful technique for testing the protocol and for locating

errors. In Sect. 5 we will introduce state space analy-

sis which makes it possible to ensure that all possible

executions are covered. This makes it possible to verify

systems, i.e., prove that different behavioural properties

are present or absent in a model.

As mentioned earlier in this section, the user may be

interested in inspecting some of the markings and some

of the binding elements that occurred during a simu-

lation. A simple (and brute-force) way to do this is to

inspect the simulation report which lists the steps that

have occurred. Figure 30 shows the beginning of a sim-

ulation report for the hierarchical model from Sect. 2.4.

We see the first three transitions that occurred. A simu-

lation report specifies the names of the transitions that

occur during a simulation, the module instances where

the transitions are located, and the user determines if the

report should specify the values bound to the variables

of the occurring transitions. In this case, the SendPacket

transition in instance 1 of the Sender module occurred

in step 1, the Transmit transition in instance 2 of the

Transmit module occurred in step 2, and the Receive-

Packet transition in instance 1 of the Receiver module

occurred in step 3. The number 0 following the step

number specifies the model time at which the transition

Coloured Petri Nets and CPN Tools 235

Fig. 30 Beginning of a simulation report

occurs. Since the hierarchical model of the simple pro-

tocol presented in Sect. 2.4 is untimed, all steps occur at

time zero.

4.2 Simulation breakpoint monitors

Simple simulation tool options can specify that a sim-

ulation should stop after a certain number of steps or

after a certain amount of model time has passed, but in

many cases it can be useful to stop a simulation in a par-

ticular state or after a particular transition has fired. In

CPN Tools, monitors can be used to examine the binding

elements that occur and the markings that are reached

during a simulation. Different kinds of monitors can be

used for different purposes. Breakpoint monitors can be

used to stop simulations when specific conditions are ful-

filled. A transition enabled monitor is a standard break-

point monitor that can be associated with a transition,

and the monitor will stop a simulation when the transi-

tion is enabled (or disabled, as determined by an option

for the monitor). Another standard breakpoint monitor

can be used to stop a simulation when the marking of a

particular place is empty (or not empty, as determined by

an option for the monitor). A generic breakpoint moni-

tor can be used to define a model-specific condition that

will determine when a simulation should stop. It is then

checked at certain steps in the simulation whether the

condition is fulfilled.

Each monitor has monitoring functions that deter-

mine its functionality. For transition enabled monitors,

the monitoring functions are hidden from the user. How-

ever, for generic breakpoint monitors, the monitoring

function is accessible, and it must be modified by the

user. When a new monitor is created, template code for

the accessible monitoring functions is automatically gen-

erated. The template code must be modified to obtain

the desired behaviour. This means that the user does

not have to write monitoring functions from scratch.

Fig. 31 Overview of a monitor in the index

A monitoring function often consists of 5–10 lines of

CPN ML code. Each monitor is associated with a group

of nodes consisting of zero or more places and zero or

more transitions in the model. A monitor can only exam-

ine the nodes with which it is associated. For a generic

breakpoint monitor, the user must define a predicate

function that determines when a simulation should stop.

A predicate function will be called after certain steps in

a simulation, and it should return the value true when

the simulation should stop.

An example of a model-specific breakpoint monitor

would be a monitor that will stop a simulation of the pro-

tocol if the sender receives an acknowledgement which

is lower than the sequence number of the data packet

that is currently being sent. In this case, the monitor

is associated with the ReceiveAck transition only. The

predicate function for this monitor will be invoked each

time the ReceiveAck transition occurs and it will return

true if the value bound to the variable k is greater than

the value bound to the variable n.

A monitor is created by applying one of the tools

from the Monitoring palette (not shown) to an appropri-

ate target. The target may be a single place or transition,

a group of nodes, a global group of nodes, or the name

of the model. Note that a monitor may be associated

with nodes from different modules. After a monitor has

been created, it will be added to the index, where differ-

ent kinds of information related to the monitor can be

viewed and modified. Figure 31 shows the information

that is added to the index when a generic breakpoint

monitor is created for the ReceiveAck transition in the

Protocol module. The monitor overview shows the user-

specified name of the monitor (CheckReceivedAck), the

type of the monitor ((generic) breakpoint), the nodes

that the monitor is associated with, and the accessi-

ble monitoring functions. The predicate function for the

CheckReceivedAck monitor looks as follows:

fun pred

(Protocol’Receive_Ack (1, {k,n})) = n < k

Since this monitor is associated with only one tran-

sition, the predicate function can only examine binding

elements for the ReceiveAck transition. The predicate

236 K. Jensen et al.

function will automatically be called in CPN Tools after

the ReceiveAck transition occurs, and it will not be

called after any of the other transitions in the model

occur. The function inspects the values of the variables

n and k and compares them as described above. For fur-

ther details on implementing model-specific monitors

we refer to [10].

It is also possible to disable monitors, which means

that it is possible to ensure that a monitor will not be

activated during a simulation without having to remove

the monitor from the model.

5 State space analysis

Simulation can only be used to consider a finite number

of executions of the model being analysed. This makes

simulation suited for detecting errors and for obtaining

increased confidence in the correctness of the model,

and thereby the system. For the simple protocol we may

conduct a number of simulations which show that the

model of the protocol always seems to terminate in the

desired state where all data packets have been received

in the correct order. This makes it likely that the proto-

col works correctly, but it cannot be used to ensure this

with 100% certainty since we cannot guarantee that the

simulations cover all possible executions. Hence, after

conducting a set of simulations, there may still exist exe-

cutions of the model leading to a state where, e.g., the

data packets are not received in the correct order.

Full state spaces represent all possible executions of

the model being analysed. The basic idea of full state

spaces is to calculate all reachable states (markings) and

all state changes (occurring binding elements) of the

CPN model and represent these in a directed graph

where the nodes correspond to the set of reachable

markings and the arcs correspond to occurring binding

elements. The state space of a CPN model can be com-

puted fully automatically and makes it possible to auto-

matically verify, i.e., prove in the mathematical sense

of the word that the model possesses a certain formally

specified property. We present state spaces and behavio-

ural properties using a non-hierarchical CPN model.

However, full state spaces generalise to hierarchical and

timed CPN models, and CPN Tools supports full state

spaces for hierarchical and timed CPN models.

5.1 Revised model for state space analysis

To introduce state space analysis we consider the simple

protocol from Fig. 1. Before we construct a state space

for the model of the protocol, we will make a small modi-

fication. The CPN model in Fig. 1 has infinite occurrence

sequences in which the transition SendPacket occurs an

infinite number of times immediately after each other

(retransmitting the first packet an infinite number of

times). This means that there is an infinite number of

reachable markings. To obtain a finite number of reach-

able markings, we limit the number of tokens which may

simultaneously reside on the network buffer places A, B,

C, and D. This is done by adding a new place Limit as

shown in Fig. 32. It has the colour set UNIT defined as:

colset UNIT = unit;

if not success
then 1`()
else empty

if not success
then 1`()
else empty

()

()

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

n if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

if n=k
then k+1
else k

(n,d)(n,d)

3 3`() 11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 32 CPN model used for state space analysis

Coloured Petri Nets and CPN Tools 237

where unit is the basic CPN ML type containing the

single value (). The initial marking of Limit is the multi-

set 3‘(). Tokens with the token colour () can be

thought of as being “uncoloured” tokens where the

value attached carries no information (since it can only

take one possible value). A token is removed from place

Limit each time a packet is sent to the network, and

a token is added to place Limit, each time a packet is

removed or lost from the network. This means that the

total number of tokens on the five places A, B, C, D, and

Limit is constant and identical to the number of tokens

which Limit has in the initial marking.

Clearly, making this kind of modification changes the

behaviour of the model, and it should be done with

care. However, for models with very large state spaces,

it is often useful to analyse the restricted behaviour of a

model in order to increase our confidence in the correct-

ness of the unrestricted model. For the protocol exam-

ple, we have chosen to limit the number of tokens on the

network buffer places to three tokens. This configuration

allows packets to overtake each other, and it also allows

for duplicate packets to be in the buffer places. How-

ever, it significantly limits how often packets overtake

each other as well as the number of duplicate packets in

buffer places. If analysis shows that the restricted model

is correct, then this will increase our confidence in the

fact that the unrestricted model is also correct. Simi-

larly, if errors are found in the restricted model, then

the same errors exist in the unrestricted model of the

protocol. It is unlikely that we would obtain additional

insights into the behaviour of the unrestricted model by

increasing the number of tokens allowed in the buffer

places in the restricted model. On the other hand, if we

had limited the number of tokens in buffer places to just

one, then it would no longer be possible for packets to

overtake each other, nor would it be possible to have

duplicate packets in the buffer places. In this case, the

restriction is probably too radical, and the behaviour

of the restricted model would be significantly different

from the unrestricted model.

5.2 Full state spaces

A full state space is a directed graph, where there is a

node for each reachable marking and an arc for each

occurring binding element. There is an arc labelled with

a binding element (t, b) from a node representing a

marking M1 to a node representing a marking M2 if

and only if the binding (t, b) is enabled in M1 and the

occurrence of (t, b) in M1 leads to the marking M2.

Figure 33 shows an initial fragment of the state space

of the CPN model in Fig. 32. This fragment has been cre-

ated using the support for visualisation of state spaces

in CPN Tools. Each node is inscribed with three inte-

gers. The topmost integer is the node number and the

two integers separated by a colon give the number of

predecessor and successor nodes. Node 1 corresponds

to the initial marking, and the figure shows all markings

reachable by the occurrence of at most three binding

elements starting in the initial marking. The rectangular

node descriptor associated with each node gives infor-

mation about the marking of the individual places in

the state represented by the node. The node descrip-

tor lists the places which have a non-empty marking.

We have omitted the marking of place PacketsToSend

since this place always contains the six tokens corre-

sponding to the data packets to be sent. The rectangular

arc descriptor associated with each arc gives information

about the corresponding binding element. The node and

arc descriptors have a default content, but options are

available for the user to control the contents of the de-

scriptors.

In the initial marking only one binding element

(SendPacket,〈n=1,d="COL"〉) is enabled and it leads

to the marking which is identical to the initial mark-

ing except that there is now also a token with colour

(1,"COL") on place A, and there is one less token on

place Limit. In Fig. 33, this marking is represented by

node 2. In the marking corresponding to node 2, we

have three enabled binding elements:

SP = (SendPacket, 〈n=1, d="COL"〉)

TP+ = (TransmitPacket,

〈n=1, d="COL", success=true〉)

TP− = (TransmitPacket,

〈n=1, d="COL", success=false〉)

and their occurrence lead to the markings represented

by nodes 3, 4, and 1, respectively. The full state space

for the CPN model has 13,215 nodes and 52,784 arcs

and is far too big to be conveniently represented as a

drawing. Drawing fragments of a state space, like the

one in Fig. 33, can, however, be a very effective way of

analysing the markings reachable within a small number

of steps from a given marking.

State spaces are calculated fully automatically by the

CPN state space tool using a state space construction

algorithm. CPN Tools stores the directed graph repre-

senting the state space in internal memory. This means

that the full state space can only be generated if it fits

into the available computer memory. The tool supports

a number of stop and branching options that makes it

possible for the user to control the state space genera-

tion.

The generation of the full state spaces is in most cases

followed by the generation of the Strongly Connected

Component Graph (SCC-graph) which is derived from

238 K. Jensen et al.

SendPacket: {d="COL",n=1}

TransmitPacket: {n=1,d="COL",success=true}

TransmitPacket: {n=1,d="COL",success=false}

SendPacket: {d="COL",n=1}

ReceivePacket: {k=1,data="",n=1,d="COL"}

SendPacket: {d="COL",n=1} TransmitPacket: {n=1,d="COL",success=true}

TransmitPacket: {n=1,d="COL",success=false} SendPacket: {d="COL",n=1}

5
1:2

NextSend: 1`1

A: 3`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

NextSend: 1`1

A: 3`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

6
3:4

NextSend: 1`1

A: 1`(1,"COL")

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

NextSend: 1`1

A: 1`(1,"COL")

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

7
4:3

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 2`()

NextSend: 1`1

NextRec: 1`2

DataReceived: 1`"COL"

C: 1`2

Limit: 2`()

3
2:3

NextSend: 1`1

A: 2`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

NextSend: 1`1

A: 2`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 1`()

4
2:2

NextSend: 1`1

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

NextSend: 1`1

B: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

2
2:3

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

NextSend: 1`1

A: 1`(1,"COL")

NextRec: 1`1

DataReceived: 1`""

Limit: 2`()

1
1:1

NextSend: 1`1

NextRec: 1`1

DataReceived: 1`""

Limit: 3`()

NextSend: 1`1

NextRec: 1`1

DataReceived: 1`""

Limit: 3`()

Fig. 33 Initial state space fragment for CPN model in Fig. 32

the graph structure of the state space. The nodes in

the SCC-graph are subgraphs called strongly connected

components (SCCs) and are obtained by making a dis-

joint division of the nodes in the state space such that

two state space nodes are in the same SCC if and only

if they are mutually reachable, i.e., there exists a path

in the state space from the first node to the second

node and vice versa. The SCC-graph is used by CPN

Tools to determine a number of the standard behavio-

ural properties of the model (as we will explain below)

and the structure of the SCC-graph quite often gives

useful information about the overall behaviour of the

model being analysed.

Tools for generating, investigating, and displaying

state spaces are found in the State Space palette of

CPN Tools which is shown in Fig. 34. The available tools

(from left to right and top to bottom) are:

– Generate model-specific code for state space

analysis.

– Generate a state space.

– Generate an SCC graph.

– Save a state space report.

– Display a node in a state space.

– Display the successors of a state space node.

– Display the predecessors of a state space node.

Fig. 34 The State Space
palette

– Evaluate a CPN ML expression that returns a list of

either state space nodes or state space arcs, and dis-

play the resulting nodes and/or arcs from the state

space.

– Display the marking corresponding to a state space

node in the simulator.

– Add the current simulator state to the state space.

5.3 State space report

The first step when conducting state space analysis is

usually to ask for a state space report, which provides

some basic information about the size of the state space

and standard behavioural properties of the CPN model.

For the CPN model in Fig. 32, the state space report

looks as shown in Figs. 36, 37, 38, and 39. First we have

some state space statistics (see Fig. 35) telling how large

the state space is. For the model of the protocol we have

Coloured Petri Nets and CPN Tools 239

13, 215 nodes and 52, 784 arcs. The construction of the

full state space took 53 s. We also get statistics about

the SCC-graph. It has 5, 013 nodes and 37, 312 arcs, and

was calculated in 2 s. The fact that there are fewer nodes

in the SCC-graph than in the state space immediately

tells us that there exist cycles in the state space of the

simple protocol. This implies that we can have infinite

occurrence sequences and that the protocol may not

terminate.

The next two parts of the state space report con-

tain information about the boundedness properties. The

boundedness properties tell how many (and which)

tokens a place may hold—when we consider all reach-

able markings.

Figure 36 specifies the best upper and lower integer

bounds. The best upper integer bound of a place speci-

fies the maximal number of tokens that can reside on a

place in any reachable marking. The best upper integer

bound of the place DataReceived is 1 which means that

there is at most one token on place DataReceived, and

there exists reachable markings where there is one token

on DataReceived. This is what we would expect, since

DataReceived is always supposed to contain a single

token with a colour corresponding to the data that has

been received. The place A has a best upper integer

bound of 3 which means that in any reachable marking

there are at most three tokens on A, and there exists a

reachable marking where there is exactly three tokens

on A. Similar remarks apply to the places B, C, and D.

This is what we would expect, since we modified the

original model by introducing the Limit place to ensure

that there are at most three tokens simultaneously on the

places A, B, C, and D. What we learn from the best upper

integers bounds of the four network places is that there

are markings where the maximum number of packets

allowed simultaneously on the network are all in one

network buffer.

The best lower integer bounds for a place specifies the

minimal number of tokens that can reside on the place

in any reachable marking. The place DataReceived has

Fig. 35 State space report—statistics

Fig. 36 State space report—integer bounds

a best lower integer bound of 1 which means that there

is always at least one token on this place. Together with

the best upper integer bound of 1 this means that there

is exactly one token on this place in any reachable mark-

ing. When the best upper and lower integer bound are

equal it implies that the place always contains the same

number of tokens (as given by the two integer bounds)—

even if the colour of these tokens may vary. For example,

place DataReceived always contains exactly one token,

and place PacketsToSend always contains exactly six

tokens. The best lower integer bound of the place A is

0 which means that there exists a reachable marking

in which there are no tokens on this place. A similar

remark applies to the places B, C, and D.

Above, we have considered the minimal and maximal

number of tokens that may be present on a place ignor-

ing the token colours. Figure 37 specifies the best upper

and lower multi-set bounds. These bounds consider not

only the number of tokens, but also the colours of the

tokens. The best upper multi-set bound of a place spec-

ifies for each colour in the colour set of the place the

maximal numbers of tokens that is present on this place

with the given colour in any reachable marking. This

is specified as a multi-set, where the coefficient of each

value is the maximal number of tokens with the given

value.

As an example, the place C has the following multi-set

as the best upper multi-set bound:

3‘2 ++ 3‘3 ++ 3‘4 ++ 3‘5 ++ 3‘6 ++ 3‘7

This specifies that there is a maximum of three tokens

with the colour 2 on C in any reachable marking (and

similarly for the colours 3, 4, 5, 6, 7). It also speci-

fies that there exists a reachable marking where there

are three tokens with the colour 2 on the place. The

best upper multi-set for C also specifies that there can

never be a token with the colour 1 on the place. This

is expected, since the acknowledgements sent by the

receiver always specify the data packet expected next,

and because the first acknowledgement (with sequence

240 K. Jensen et al.

Fig. 37 State space report—multi-set bounds

number 2) is sent after the data packet with sequence

number 1 is received.

As another example, consider the place

DataReceived which has the following best upper multi-

set bound:

1‘"" ++ 1‘"COL" ++ 1‘"COLOUR" ++

1‘"COLOURED " ++ 1‘"COLOURED PET" ++

1‘"COLOURED PETRI " ++ 1‘"COLOURED PETRI NET"

This specifies a maximum of one token with the col-

our "" on DataReceived in any reachable marking (and

similarly for the other values in the multi-set). The size

of the above multi-set is 7—even though DataReceived

has a single token in each reachable marking as specified

by the best upper and lower integer bounds in Fig. 36.

From the best upper multi-set bound and the best upper

and lower integer bounds it follows that the possible

markings of the place DataReceived are:

1‘""

1‘"COL"

1‘"COLOUR"

1‘"COLOURED "

1‘"COLOURED PET"

1‘"COLOURED PETRI"

1‘"COLOURED PETRI NET"

This corresponds to the expected prefixes of the data

being sent from the sender. From the boundedness prop-

erties we cannot see the order in which these markings

are reached.

Above we have illustrated that the integer and the

multi-set bounds often tell us different and complemen-

tary “stories”. The integer bounds of DataReceived tell

us that the place always has exactly one token, but

nothing about the possible colours of this token. The

best upper multi-set bound of DataReceived tells us the

tokens colours we may have at the place, but not that

there is only one token at a time. It should be noted that

there is no guarantee that there exists a reachable mark-

ing with the multi-set equal to the best upper multi-set

bound. This is illustrated by the place DataReceived.

The best lower multi-set bound of a place specifies for

each colour in the colour set of the place the minimal

numbers of tokens that is present on this place with the

given colour in any reachable marking. This is speci-

fied as a multi-set, where the coefficient of each value

is the minimal number of tokens with the given value.

Best lower multi-set bounds give, therefore, information

about how many tokens of each colour that are always

present on a given place. All places for the simple pro-

tocol except PacketsToSend have the empty multi-set

empty as best lower multi-set bound. This means that

there are no tokens which are always present on these

places. However, we cannot conclude that there exists a

reachable marking with no tokens on these places. This

is illustrated by DataReceived, NextSend, and NextRec

which always have one token each. The best lower multi-

set for PacketToSend is:

1‘(1,"COL") ++ 1‘(2,"OUR") ++ 1‘(3,"ED ")++

1‘(4,"PET") ++ 1‘(5,"RI ") ++ 1‘(6,"NET")

This means that there is at least one token with the

colour (1,"COL") on PacketToSend in any reachable

marking (and similarly for the other values in the multi-

set). This is as expected since the data packet being

removed from PacketsToSend when SendPacket

occurs is immediately put back again.

Coloured Petri Nets and CPN Tools 241

Fig. 38 State space report—home properties

Figure 38 shows the part of the state space report spec-

ifying the home properties. The home properties tell us

that there exists a single home marking, which has the

node number 4868. A home marking Mhome is a mark-

ing which can be reached from any reachable marking.

This means that it is impossible to have an occurrence

sequence which cannot be extended to reach Mhome. In

other words, we cannot do things which will make it

impossible to reach Mhome afterwards.

In the protocol system we have a single home mark-

ing. By asking CPN Tools to display the marking cor-

responding to node 4868 from the state space, we get

the marking that is shown in Fig. 29. It can be seen that

this is the marking in which the protocol has successfully

finished the transmission of all six data packets. The fact

that this is a home marking means that no matter what

happens when the protocol is executed (e.g., packet loss

and overtaking of packets on the network), it is always

possible to reach the marking where the transmission

of all six data packets has been completed successfully.

It should be noted that we only know that it is possible

to reach the home marking Mhome from any reachable

marking M. There is no guarantee that Mhome actually

will be reached from M, i.e., there may exist occurrence

sequences that start in M and never reach Mhome. As

an example, the simple protocol has the infinite occur-

rence sequence in which SendPacket followed by Trans-

mitPacket with a binding losing the data packet occur

infinitely many times immediately after each other. In

this case we will never reach the marking in Fig. 29. If

we want to exclude that kind of behaviour, we would

introduce a counter which limits the number of retrans-

missions allowed for each individual packet.

The liveness properties in Fig. 39 specify that there

is a single dead marking which has the node number

Fig. 39 State space report—liveness properties

4868. A dead marking is a marking in which no binding

elements are enabled. This means that the marking cor-

responding to node 4868 is both a home marking and

a dead marking. The fact that node 4868 is the only

dead marking tells us that the protocol as specified by

the CPN model is partially correct—if execution termi-

nates we have the correct result. Furthermore, because

node 4868 is also a home marking it is always possible

to terminate the protocol with the correct result. It may

be a bit surprising that a dead marking can be a home

marking, but this is possible because any marking can

be reached from itself by means of the trivial occurrence

sequence of length zero.

Figure 39 tells us that there are no live transitions.

A transition is live if from any reachable marking we

can always find an occurrence sequence containing the

transition. In other words, we cannot do things which

will make it impossible for the transition to occur after-

wards. We have already seen that our protocol has a

dead marking, and this is the reason why it cannot have

any live transitions—no transitions can be made enabled

from the dead marking.

Finally, Fig. 39 also tells us that there are no dead

transitions. A transition is dead if there are no reachable

markings in which it is enabled. That there are no dead

transitions means that each transition in the protocol has

the possibility to occur at least once. If a model has dead

transitions then they correspond to parts of the model

that can never be activated. Hence, we can remove

dead transitions from the model without changing the

behaviour of it.

5.4 Query functions

Above, we have discussed the contents of the state space

report (with the exception of the so-called fairness prop-

erties). It is produced totally automatically, and it con-

tains information about a number of key properties for

the CPN model under analysis. The behavioural prop-

erties investigated in the state space report are stan-

dard properties that can be investigated for any model.

Hence, the state space report is often the first thing which

the user asks for. However, the user may also want to

investigate properties that are not general enough to be

part of the state space report. For this purpose a number

of predefined query functions are available in CPN Tools

that make it possible to write user-defined and model-

dependent queries. These queries are written in the CPN

ML programming language. The CPN state space tool

uses the predefined query functions when computing the

content of the state space report. CPN Tools addition-

ally contains a library that makes it possible to formulate

queries in a temporal logic [8].

242 K. Jensen et al.

An example of a model-specific query for the CPN

model in Fig. 32 would be to check whether the pro-

tocol obeys the stop-and-wait strategy, i.e., whether the

sequence number of the data packet currently being sent

by the sender is at most one less than the sequence num-

ber expected by the receiver. For this purpose we can

implement a predicate StopWait which given a mark-

ing, i.e., a node from the state space, checks whether the

difference between the sequence number in the receiver

side (represented by the token on place NextRec) and

the sequence number in the sender side (represented by

the token on place NextSend) is at most one. The imple-

mentation of the StopWait predicate is as follows:

fun StopWait (n:Node) =

let

val Sender_Seq =

ms_to_col (Mark.Protocol’NextSend 1 n);

val Receiver_Seq =

ms_to_col (Mark.Protocol’NextRec 1 n);

in

(Receiver_Seq - Sender_Seq) <= 1

end;

The function extracts the colours of the tokens on the

places NextSend and NextRec in the current marking

given by the parameter n which is a Node in the state

space. It then compares the value of the two sequence

numbers as described above. The StopWait predicate

can then be provided to the query function PredAll-

Nodes which lists all nodes in the state space satisfying

a given predicate. Surprisingly, not all nodes satisfy the

predicate. The reason for this is that acknowledgements

may overtake each other on the places C and D which

means that it is possible for the sender to receive an

old acknowledgement that causes the sender to dec-

rement its sequence number. Using the query functions

ArcsInPath provided by CPN Tools it is easy to obtain

a counter example, i.e., an occurrence sequence lead-

ing from the initial marking to a marking where the

predicate does not hold and have it visualised using the

drawing facilities of CPN Tools.

One of the main advantages of state space methods is

that they are relatively easy to use, and they have a high

degree of automation. The ease of use is primarily due

to the fact that with state space methods it is possible

to hide a large portion of the underlying complex math-

ematics from the user. This means that quite often the

user is only required to formulate the property which

is to be verified and then apply a computer tool. The

main disadvantage of state spaces is the state explosion

problem [38]: even relatively small systems may have an

astronomical or even infinite number of reachable states,

and this is a serious problem for the use of state space

methods for the verification of real-life systems. CPN

Tools includes a collection of reduction techniques for

alleviating the state explosion problem inherent in state

space-based verification. These advanced state space

techniques typically represent the state space in a com-

pact form or represent only parts of the state space. The

state space reduction is done in such a way that it is

still possible to verify properties of the system. A dis-

cussion of these reduction methods is, however, beyond

the scope of this paper, for details see, e.g., [9,18,25,26].

The state space of a timed CPN model is defined in

a similar way as for untimed CPN models, except that

each state space node now corresponds to a timed mark-

ing, i.e., the timed multi-sets specifying the markings of

the places and the value of the global clock. CPN Tools

also supports state space analysis of timed CPN models.

6 Performance analysis

Simulation-based performance analysis is supported via

automatic simulation combined with data collection.

The basic idea of simulation-based performance anal-

ysis is to conduct a number of lengthy simulations of

the model during which data about the performance

of the system is collected. The data typically provides

information such as the size of queues, delay of packets,

and load on various components. The collection of data

is based on the concept of data collector monitors that

allow the user to specify when and what data is to be col-

lected during the individual steps of a series of automatic

simulations. The data can be written in log files for post-

processing, e.g., in spreadsheets, or a performance report

can be saved summarising key figures for the collected

data such as average, standard deviation, and confidence

intervals. Simulation-based performance analysis typ-

ically uses batch simulation that makes it possible to

explore the parameter space of the model and conduct

multiple simulations of each parameter configuration to

obtain results that are statistically reliable. We illustrate

performance analysis using a timed model of the simple

protocol.

6.1 Revised model for performance analysis

We will develop a slightly modified version of our

protocol model to be used for performance analysis.

This model contains a module for the arrival of the data

packets to be sent by the sender and a module for the

protocol. These two modules are shown in Figs. 41 and

42, and they are tied together via the System module

shown in Fig. 40.

Coloured Petri Nets and CPN Tools 243

Fig. 40 System module—top-level module for the hierarchical,
timed protocol model

Let us first consider the data packets that the sender

must send. When analysing the performance of a system,

one is often interested in measuring the performance of

a system when it processes a particular kind of workload.

For example, the workload for the timed protocol is data

packets. With CPN models it is possible to use both fixed

workloads, i.e., workloads that are predetermined at the

start of a simulation, and dynamic workloads.

In previous sections, the initial marking inscription

of the place PacketsToSend has been used to deter-

mine exactly which data packets should be sent. When

debugging the model or when examining the logical cor-

rectness of the protocol via state space analysis, it is suffi-

cient to examine the behaviour of the model for a limited

number of data packets. However, it is unlikely that such

a protocol would be used to send a small, fixed number

of data packets that are always available in a buffer. If

data packets arrive much faster than they can be sent and

acknowledged, then a large queue of data packets will

grow at the sender, and an unacceptably large amount

of time may pass from when a packet arrives until it is

acknowledged. The arrival of data packets will affect the

performance of the protocol, and this behaviour should,

therefore, be modelled accurately. For this system, it is

useful to consider a dynamic workload.

The arrival of data packets is modelled in the Arriv-

als module shown in Fig. 41. A single timed token on

the place Next is used to control the arrival of new data

packets. The colour of the token represents the sequence

number of the next data packet that will arrive, and

the time stamp determines when a new data packet

will arrive. In the marking shown in Fig. 41, the next

data packet will arrive at time 3161, and it will get the

sequence number 16. When the CreatePacket transi-

tion occurs, the time delay of the token that is added

to the place Next is determined by the nextArrival

function defined as:

fun nextArrival() = discrete(200,220);

Intuitively, the value returned by the nextArrival

function represents the amount of time that will pass

before the next data packet arrives. Here the discrete

probability distribution function is used, but CPN Tools

provides support for a number of probability distribu-

tions, including, uniform, normal, Erlang, and exponen-

tial.

n+1@+nextArrival()n

newDataPacket(n)Create
Packet

Next

1`1

NO

Packets
To Send

Out

DATAPACKET

Out

1 1`16@3161

3

1`(13,"p13 ",2513)@3065+++
1`(14,"p14 ",2724)@2724+++
1`(15,"p15 ",2943)@2943

Fig. 41 Module for the arrival of data packets

When doing performance analysis, it is often interest-

ing to measure the amount of time that passes between

different events. In the timed protocol example, it is

interesting to measure the amount of time that passes

from when a data packet arrives at the sender until the

data packet is received by the receiver. To be able to

do this it must be possible to record and remember the

time at which the first event occurs. In a CPN model,

the easiest way to record this kind of information is to

include it in token values. The colour set DATAPACKET

shown below is used to model the data packets. Here

the token colour of a data packet is a triple consisting of

a sequence number, the data contents, and the time of

arrival for the data packet. The time of arrival is repre-

sented by the integer colour set TOA.

colset TOA = int;

var t : TOA;

colset DATAPACKET = product NO*DATA*TOA

timed;

When the CreatePacket transition occurs, a new data

packet is created by the newDataPacket function (not

shown) which returns a value of type DATAPACKET, i.e.,

a triple. The sequence number of the new data packet

is determined by the argument n, shown in Fig. 41, and

the time of arrival of the data packet will be equal to the

model time at which the transition occurs.

Figure 42 shows a variant of the timed protocol that

differs from the timed model in Fig. 14 in a number of

ways. In Fig. 42, data packets are discarded after they

have been acknowledged. Transition RemovePacket

removes data packets from the place PacketsToSend

after they have been acknowledged. The inscription to

the upper left of the transition, i.e., the inscription

[n<k], is the guard for the transition. This guard ensures

that only packets that have a sequence number that is

smaller than the sequence number on NextSend will

be removed from place PacketsToSend. A time delay

inscription on the arc from PacketsToSend to Remove-

Packet allows tokens to be removed ahead of time from

the place PacketsToSend. The arc inscription on the arc

244 K. Jensen et al.

data

(n,d,t)@+Wait

(n,d,t)

if n=k
then k+1
else k

k

n if ok()
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d,t)(n,d,t)

n

if n=k
then data^d
else data

(n,d,t)

if ok()
then 1`(n,d,t)
else empty

(n,d,t)@+Wait

Remove
Packet

[n<k]

Receive
Ack

@+7

Transmit
Ack

@+Delay()

Receive
Packet

@+17

Transmit
Packet

@+Delay()

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

DATAPACKET

NextSend

1`1

NO

Data
Received

1`""

DATA

B

DATAPACKET

Packets
To Send

In

DATAPACKET

k

k
if n>k
then n
else k

In

Fig. 42 Module for the protocol

from ReceiveAck to NextSend has also been changed

so that the sequence number on NextSend will never be

decreased. This means that the sender will not

retransmit packets that have already been received if

a duplicate acknowledgement is received.

The loss of data packets is also represented slightly

differently. For automatic simulations of the model

shown in Fig. 14, the variable success for the transi-

tion TransmitPacket would be randomly bound to either

trueorfalse each time the transition occurs, and both

values would be equally likely. In other words, approx-

imately 50% of the data packets would be lost during

automatic simulations. Many networks are more reli-

able than this, so when studying the performance of

the protocol, it is important to represent the loss rate

more accurately. In Fig. 42 the ok function determines

whether a packet will be transmitted successfully or lost:

fun ok() = uniform(0.0,1.0) <= 0.9;

The uniform function will return a random value

between 0.0 and 1.0, and all values in the interval have

the same probability of being chosen. The ok function

specifies that there is a 90% chance that data packets will

be transmitted successfully. The loss of acknowledge-

ments is modelled in a similar manner. Since fewer pack-

ets will be lost, it is not necessary to retransmit packets as

often. Therefore, the value of the constant Wait, which

determines how long the sender should wait before

retransmitting a data packet, has been changed to 175.

6.2 Performance measures and data collectors

There are a number of interesting performance mea-

sures for the timed protocol example. For example, it

could be interesting to know how many data packets or

how many duplicate data packets are received by the

receiver during a simulation. Measuring the number of

packets to send will indicate whether there is a backlog

of data packets at the sender. In this example, packet

delay will be the amount of time that passes from when

a data packet arrives at the sender until it is correctly

received by the receiver. Calculating average and max-

imum packet delay will indicate whether data packets

are received in a timely fashion.

Such performance measures can be calculated based

on numerical data that is extracted or collected from

a CPN model during simulations. In CPN Tools, data

collector monitors are used for this purpose. As we

shall see, the numerical data can be extracted from the

binding elements that occur and the markings that are

reached during a simulation. Different kinds of data col-

lector monitors can be used for different purposes. There

are standard or predefined data collector monitors that

can be used for any CPN model. We will also see exam-

ples of user-defined or generic data collector monitors

which collect data that is model specific. Data collector

monitors are created with tools from the Monitoring pal-

ette, and they can be created by cloning and modifying

existing data collector monitors.

Calculating the number of data packets that are

received by the receiver is simply a matter of count-

ing the number of times the ReceivePacket transition

occurs during a simulation. In CPN Tools a count

transition occurrences monitor is a standard monitor for

just this purpose. The monitor for counting the number

of received data packets is named ReceivedPackets.

In the model, a duplicate data packet is received

when the ReceivePacket transition occurs with a bind-

ing where n�=k. Generic data collector monitors can be

used to collect any kind of numerical data from a CPN

model. The behaviour of such monitors is determined

by their monitoring functions which are accessible to the

Coloured Petri Nets and CPN Tools 245

user. Here we will use a generic data collector monitor

to calculate the number of duplicate packets received by

counting the number of times a transition occurs with a

particular binding. The monitor is named ReceivedDupli-

catePackets.

So, we need to be able to determine at least two things

for the ReceivedDuplicatePackets monitor: (1) when data

should be collected from the model for updating the

counter of duplicate data packets, and (2) the value with

which the counter should be increased. This function-

ality is determined by the monitoring functions for the

data collector monitor.

In a data collector monitor, a predicate function will be

called periodically, and it should return true whenever

the monitor should collect data from the model. The

predicate function for the ReceivedDuplicatePackets mon-

itor looks like this:

fun pred (Protocol’Receive_Packet

(1,{d,data,k,n,t})) = true

The predicate function can examine the bindings of

the variables of the transition, but it is defined so that

it ignores the bindings of the variables. The function

returns true every time ReceivePacket occurs.

In a data collector monitor, an observation function

collects numerical data from the model. An observation

function is called each time the predicate function for

the same monitor is called and returns true. The fol-

lowing observation function collects data that is used to

calculate the number of duplicate data packets received:

fun obs (Protocol’Receive_Packet

(1, {d,data,k,n,t})) =

if n=k then 0 else 1

The predicate function above determines that this obser-

vation function will be called each time ReceivePacket

occurs. The function will return 1 whenever a duplicate

data packet is received by the receiver, and 0 when a

packet is received the first time. The data values that are

returned by the observation function are used to calcu-

late statistics, such as the sum, average, and maximum

of the data values that are collected. The sum of the

data values collected by this monitor will indicate how

many duplicate data packets have been received during

a simulation. The average of the data values will be the

proportion of duplicate data packets to the total number

of data packets received.

Each data collector monitor has two additional mon-

itoring functions: an initialisation function and a stop

function. The initialisation function can be used to col-

lect data from the initial marking of the model. Simi-

larly, the stop function can be used to collect data from

the final marking of a simulation. Initialisation and stop

functions cannot be used to collect data from binding

elements. For the ReceivedDuplicatePackets monitor, nei-

ther the initialisation function nor the stop function is

used to collect data from markings.

We define another generic data collector monitor

called PacketDelay which collects data from occurring

binding elements. It is defined to measure packet delay,

and to calculate average and maximum packet delay.

When the ReceivePacket transition occurs (see Fig. 42),

the variable t is bound to the arrival time of the data

packet that is being received, and this value can be used

to calculate the packet delay. This data collector monitor

is associated only with the ReceivePacket transition.

The predicate function for this monitor is exactly the

same as the one for the ReceivedDuplicatePackets monitor.

The observation function for measuring packet delay

subtracts the time of arrival for the data packet t from

the model time at which the transition occurs, and the

time that is required to receive the data packet (17) is

added, since the time delay for receiving the data packet

ought to be included in the packet delay. The initialisa-

tion and stop functions are not used to collect data from

markings.

We have seen a number of examples of how data col-

lector monitors can be used to collect data from binding

elements that occur during a simulation. We will now

see how monitors can be used to collect data from the

markings that are reached during a simulation.

The number of tokens on the place PacketsToSend

in a particular marking is equal to the number of pack-

ets to be sent. In CPN Tools, a marking size monitor is

a standard monitor that is used to measure the number

of tokens on a place during a simulation. Such a moni-

tor can calculate the average and maximum number of

tokens on a place during a simulation. We will use a

marking size monitor named PacketsToSend for measur-

ing the number of tokens on the place PacketsToSend

during a simulation, and to calculate the average and

maximum number of data packets to be sent during a

simulation.

One way to measure the number of tokens on a place

is to count the number of tokens on the place in the

initial marking and after every step in a simulation. If

the model is not timed, then this is a good way to collect

the data for calculating the average number of tokens

on the place, and a marking size monitor for untimed

models does, in fact, use this technique.

However, for a timed model, it is often desirable to

use timing information when calculating the average

number of tokens on a place. Such timing information

will be taken into consideration if we calculate the time-

average number of packets to send. By time average we

mean a weighted average of the possible number of data

246 K. Jensen et al.

packets to send (0, 1, 2, …) weighted by the proportion

of time during the simulation that there were that many

data packets to send. When calculating the time average,

it is sufficient to measure the number of tokens at the

place only when one of the transitions surrounding the

place occurs. When the number of tokens is measured,

the interval of model time that passes until the number

of tokens is measured again is used to weight the first

measurement. A marking size monitor for timed models

uses this technique.

We define another generic data collector monitor

called WaitingForTransmission which calculates the time-

average number of data packets and acknowledgements

that are waiting to be transmitted. In other words, it

measures the sum of the number of tokens on places

A and C. Since it calculates the time-average number

of tokens on these two places, it is sufficient to mea-

sure the number of tokens when one of the transitions

connected to either of the places occurs. The monitor

is associated with the following nodes: places A and C,

and transitions SendPacket, TransmitPacket, Receive-

Packet, and TransmitAck. The predicate function will be

called only when one of these transitions occurs, and

the function will return true whenever it is called. The

observation function returns the total number of tokens

on the two places:

fun obs (bindelem,

Protocol’A_1_mark : DATAPACKET tms,

Protocol’C_1_mark : NO tms) =

(size Protocol’A_1_mark) +

(size Protocol’C_1_mark)

The initialisation and stop functions for the WaitingFor-

Transmission monitor are similar to the observation func-

tion of the monitor.

Generic data collector monitors are not required to

collect data regularly during simulations. For the timed

protocol example, we would like to calculate throughput

as the number of unique data packets that were received

by the receiver per second. This can be calculated at the

end of a simulation by dividing the number of unique

packets that are received during the simulation by the

length of the simulation expressed as seconds of model

time. In this model, one second is equal to 1,000,000

units of model time. The stop function for generic data

collector monitor named Throughput is used to calcu-

late throughput. It is also necessary to define predicate,

observation, and initialisation functions for the Through-

put monitor, even though these functions will not be used

to collect data.

6.3 Statistics

Since most simulation models contain random behav-

iour, the simulation output data are also random, and

care must be taken when interpreting and analysing the

output data. Performance measures are estimated by

calculating statistics for the data that is collected by data

collector monitors during a simulation. Below we give

a very brief description of some of the statistical con-

cepts used when conducting performance analysis using

CPN Tools. For a more detailed introduction to statistics

please see a textbook on statistics or simulation, such as

[27] or [3].

Statistics that are calculated relative to a collection

of discrete data values are known as discrete-parameter

statistics [21]. For example, the average packet delay is

defined relative to the collection of discrete observations

Di where Di is the packet delay for the ith data packet

received during a simulation.

As discussed in the previous section, the time-aver-

age number of data packets waiting to be sent is equal to

the time-average number of tokens on place PacketsTo-

Send. This is a different kind of “average” than the aver-

age packet delay, because time-average is taken over

(continuous) time, rather than over data packets (which

are discrete). Time-average is an example of a contin-

uous-time statistic. Intuitively, continuous-time statistics

are those that result from taking the (time) average,

minimum, or maximum of a plot of something dur-

ing the simulation, where the x-axis is continuous time

[21].

A data collector monitor can calculate either the

(regular) average or the time-average. A monitor that

calculates the (regular) average is said to calculate dis-

crete-parameter statistics. A monitor that calculates

time-average is said to calculate continuous-time sta-

tistics. Both kinds of monitors can calculate a number of

different statistics, including: count (number of obser-

vations), minimum, maximum, sum, and average. Each

data collector monitor has predefined functions that can

be used to access the statistics that are calculated for the

monitor, such as count, sum, avrg, and max.

It is important to remember that running different

simulations will result in different estimates of perfor-

mance measures. Confidence intervals are often used

to evaluate the accuracy of performance measure esti-

mates. Accurate confidence intervals can only be

calculated for data values that are independent and iden-

tically distributed (IID). Intuitively, data values are IID

if they are not related to each other, and if they have the

same probability distribution. CPN Tools can calculate

90, 95, and 99% confidence intervals. Figure 43 shows an

example of how the 95% confidence interval for average

Coloured Petri Nets and CPN Tools 247

 180

 200

 220

 240

 260

 280

 300

 100 50 25 105

A
v
e

ra
g

e
 p

a
c
k
e

t
d

e
la

y

Number of Simulations

95% confidence intervals

Fig. 43 95% confidence intervals for average packet delay

packet delay generally decreases as more IID estimates

are collected from increasing numbers of simulations.

Since all of the data collected by a single data col-

lector monitor is not likely to be IID, it is necessary

to find other methods for collecting IID estimates of

performance measures. One widely used method is to

collect IID estimates from independent, simulation rep-

lications, which start in the same initial state and stop

when the same stop criterion is fulfilled. For exam-

ple, simulation replications of the timed protocol exam-

ple could all stop after 1,000 data packets have been

received, or after one hour of model time has passed.

The batch-means method is another commonly used

technique for obtaining IID estimates of performance

measures. In this method, IID estimates of performance

measures are derived from data values from a single,

long simulation. The idea behind this method is to group

individual observations into a number of batches, to

calculate the averages of the observations within each

batch, and then to use the averages from each of the

batches as IID estimates of a performance measure.

As we will see in Sect. 6.5, determining whether IID

estimates should be obtained from simulation replica-

tions or via the batch-means method will depend on the

kinds of simulation experiments that are to be done.

6.4 Performance output

Several different kinds of output can be generated for

data collector monitors. In this section, we will see some

examples of performance-related output, including log

files, statistical reports, and scripts for plotting data

values.

All of the data that is collected by a data collector

can be saved in a data collector log file. The log file

also contains information about the steps and model

Fig. 44 Data collector log file for PacketsToSend monitor

times at which the data was collected. An option for

a data collector monitor determines whether a log file

should be generated for the monitor. Figure 44 shows

an example of a log file for the PacketsToSend monitor.

The last line of Fig. 44 shows that there was 1 token

on place PacketsToSend after the 9th simulation step

which occurred at model time 220, and this was the 6th

time that the number of tokens on the place was mea-

sured. The monitor measures the number of tokens on

the place whenever one of the surrounding transitions

occurs. Since the number of tokens on the place does

not change when the SendPacket transition occurs, suc-

cessive data values that are collected by the monitor

may be the same, as can be seen in the first column of

Fig. 44. The last two columns show that more than one

data value may be collected after different simulation

steps that occur at the same model time.

Data collector log files can be post-processed after

a simulation has completed. For example, they can be

imported into a spreadsheet or plotted. CPN Tools gen-

erates scripts for plotting data collector log files with

the gnuplot program [14]. Figure 45 shows an example

of how a log file for the PacketsToSend monitor can be

plotted with gnuplot.

The statistics that are calculated for data collector

monitors are saved in different kinds of reports. A sim-

0

1

2

3

0 1000 2000 3000 4000 5000

N
u

m
b

e
r

Model time

Packets to Send

Fig. 45 Plotting data for PacketsToSend monitor

248 K. Jensen et al.

Fig. 46 Statistics from a simulation performance report

ulation performance report contains statistics that are

calculated for the data that is collected by data collec-

tors during one simulation. Figure 46 shows statistics

from a simulation performance report. The simulation

stopped after 1,000 data packets had been received by

the receiver. In addition to statistics, the report contains

information (not shown in Fig. 46) indicating that the

simulation stopped at model time 188,775 after the exe-

cution of 6,916 simulation steps.

The upper part of Fig. 46 shows the continuous-time

statistics from the simulation performance report. There

are five columns with different kinds of statistics. The

user can determine which statistics should be included

in a simulation performance report. The statistics for the

PacketsToSend monitor show that the time-average num-

ber of data packets to send was 1.57, and that the max-

imum number of data packets to send was 7. The count

statistic for the monitor shows that it collected 2,911 data

values, i.e., it measured the number of tokens on place

PacketsToSend 2,911 times. The first time the monitor

measured the number of tokens was at model time 0.

The time average for the WaitingForTransmission monitor

shows the time-average number of packets waiting to be

transmitted, i.e., the time-average number of tokens on

places A and C, was 0.14.

The lower part of Fig. 46 shows the discrete-param-

eter statistics from the simulation performance report.

The count statistic for the PacketDelay monitor shows

that the monitor measured the packet delay for 1,000

data packets. The average packet delay is 273.26 units

of time, with a minimum and maximum packet delay

of 51 and 1,275, respectively. Note that not all statis-

tics in a simulation report will be useful, for example

the average, minimum, and maximum values for the

ReceivedPackets monitor are not interesting, and the sum

and count statistics show the same value, namely the

number of packets that were received during the

simulation. The statistics for the ReceivedDuplicatePac-

kets monitor indicate that 102 out of 1,000 received pack-

ets were duplicates. Finally, the throughput for the sim-

ulation was 4,756.99 (unique) data packets per 1,000,000

time units, i.e., per second. Recall that the throughput

is calculated by a monitor stop function at the end of a

simulation, and this explains why the count statistic for

the monitor is 1, and why the sum, average, minimum

and maximum values for the monitor are the same.

The statistics in a simulation performance report are

unreliable, because they are just one estimate of var-

ious different performance measures. Different statis-

tics would be obtained if another simulation were run.

A reliable estimate of a performance measure can be

obtained by calculating a confidence interval for the

average of a set of IID estimates for the performance

measures. For example, IID estimates of the average

packet delay can be obtained by running a number of

independent simulation replications in CPN Tools. Such

IID estimates can also be saved in log files. Figure 47

shows IID estimates from ten simulation replications

for average packet delay for 1,000 packets. This data

can then be used to calculate a confidence interval for a

reliable estimate of average packet delay for the timed

protocol example.

Another performance report contains reliable esti-

mates of performance measures based on IID data val-

ues. Figure 48 shows an excerpt of such a performance

report. The statistics shown in the figure are calculated

for IID estimates of performance measures that were

collected from ten simulation replications. A value in

the 95% Half Width column is equal to half of the length

of the 95% confidence interval for the average in the

same row. For example, the data from Fig. 47 were used

to calculate the statistics in the avrg_iid row under the

PacketDelay heading, and the 95% confidence interval

Fig. 47 Log file with IID estimates of average packet delay

Fig. 48 Reliable statistics based on data from ten replications

Coloured Petri Nets and CPN Tools 249

for the average packet delay based on the data from

the ten simulations is 240.01±25.32. A value in the Min

(Max) column is the minimum (maximum) of the IID

estimates that were collected for the performance mea-

sure in the first column of the same row. For example,

the minimum average packet delay from the ten rep-

lications is 203.79, while the maximum average packet

delay is 311.17. Some, but rarely all, of the statistics

shown in this performance report will represent useful

performance measures for the model.

6.5 Conducting simulation experiments

Performance analysis studies are conducted for differ-

ent reasons, e.g., to evaluate existing or planned sys-

tems, to compare alternative configurations, or to find an

optimal configuration of a system. Experimental design

[27] is concerned with determining which scenarios are

going to be simulated and how each of the scenarios will

be simulated in a simulation study. When deciding how

many simulations to run and how long to run each sim-

ulation for a scenario, it is necessary to consider what

kind of system is being modelled and what the purpose

of the simulation study is. There are two kinds of sys-

tems, terminating systems and non-terminating systems,

which will be described below. As we shall see, different

statistical techniques are used to analyse these different

kinds of systems.

Terminating systems are characterised by having a

fixed starting condition and a naturally occurring event

that marks the end of the system. An example of a termi-

nating system is a business day at a bank that starts at 10

a.m. and ends at 4 p.m. The purpose of simulating termi-

nating systems is to understand their behaviour during

a certain period of time, and this is also referred to as

studying the transient behaviour of the system.

Terminating simulations are used to simulate termi-

nating systems. The length of a terminating simulation

is determined either by the system itself, if the system

is a terminating system, or by the objective of a simu-

lation study. The length of a terminating simulation can

be determined by a fixed amount of time, e.g., 6 h, or it

can be determined by some condition, e.g., the depar-

ture of the tenth customer. Simulation replications are

generally used to collect IID estimates of performance

measures for terminating simulations.

In a non-terminating system, the duration of the

system is not finite. The Internet exemplifies a non-

terminating system. Non-terminating simulations are

used to simulate non-terminating systems. In a non-

terminating simulation, there is no event to signal the

end of a simulation, and such simulations are typically

used to investigate the long-term behaviour of a system.

Non-terminating simulations must, of course, stop at

some point, and it is a non-trivial problem to determine

the proper duration of a non-terminating simulation.

If the behaviour of a non-terminating system becomes

fairly stable at some point, then there are simple tech-

niques for analysing the steady-state behaviour of the

system using non-terminating simulations. Determining

when, or if, a model reaches a steady state is also a com-

plicated issue. IID estimates of performance measures

for steady-state simulations are often obtained by apply-

ing the batch-means method during a long simulation.

It is often useful to be able to define a warmup period

in which data should not be collected at the beginning

of a simulation. When analysing steady-state behaviour

using non-terminating simulations, the warmup period

is used to ignore the behaviour of the model during the

time it takes the model to reach a steady state. It can

also be useful to define a warmup period for terminat-

ing simulations.

6.6 Model parameters and comparing configurations

Simulation-based performance analysis is often used to

compare different scenarios or configurations of a sys-

tem. The performance of a system is often dependent

on several parameters. For example, the performance of

the timed protocol example is influenced by parameters

that determine the probability that packets will be trans-

mitted successfully, the minimum and maximum times

between arrivals of data packets, and even the distribu-

tion of the interarrival times of data packets. Changing

these parameters will most likely affect the performance

measures of the model. In the original version of the

model, these parameters were hardcoded into functions,

such as the ok function:

fun ok() = uniform(0.0,1.0) <= 0.9;

The probability that a packet will be transmitted suc-

cessfully is 90%, as determined by the 0.9 in the ok

function. This parameter can be changed by modifying

the declaration of the ok function. In CPN Tools, these

changes require the syntax of the declaration and the

parts of the model that depend on the declaration to be

rechecked. Making such changes can therefore be time

consuming, especially if many parts of a large model

must be rechecked. If parameters are defined in this

way, then it is not possible to automatically simulate a

number of configurations without manual interaction by

a user.

These problems can be avoided if parameters are

declared as reference variables. It is possible to change

the value of a parameter declared as a reference vari-

able without having to recheck the syntax of any part of

250 K. Jensen et al.

Fig. 49 Using the Evaluate ML tool to change a parameter value

a model. Here is the declaration of a reference variable

that determines the probability that a packet is trans-

mitted successfully, and the ok function that uses the

reference variable:

globref successrate = 0.9;

fun ok() =

uniform(0.0,1.0) <= !successrate;

The keyword globref indicates that a global reference

variable is being declared, i.e., the reference variable can

be accessed from any part of the CP-net. The name of

the reference variable is successrate, and the initial

contents of the reference variable is 0.9. The ! opera-

tor is used to access the contents of a reference variable.

Figure 49 shows how the value of successrate could

be changed to 0.75 by picking up the Evaluate ML tool

from the simulation tool palette (shown in Fig. 28) and

applying the tool to an auxiliary text. The value of a

parameter could also be changed in a function. If model

parameters are declared as reference variables, then it is

very easy to change the values of the parameters and to

automatically simulate different model configurations.

If the scenarios of a simulation study are not pre-

determined, then the purpose of the study may be to

locate the parameters that have the most impact on a

particular performance measure or to locate important

parameters in the system. Sensitivity analysis [22] inves-

tigates how large changes in parameters affect perfor-

mance measures. Gradient estimation [27] examines how

small changes in numerical parameters affect the per-

formance of the system. Optimisation [2] is often just a

sophisticated form of comparing alternative configura-

tions, in that it is a systematic method for trying different

combinations of parameters in the hope of finding the

combination that gives the best results.

7 Visualisation

Even though the CPN modelling language supports

abstraction and a module concept, there can, in many

cases, be an overwhelming amount of detail in the

constructed CPN model. Furthermore, observing every

single step in a simulation is often too detailed for inves-

tigating the behaviour of a model, especially for large

CPN models. This level of detail can be a limitation, in

particular when presenting and discussing a CPN model

with colleagues unfamiliar with the CPN modelling lan-

guage. The idea of animation graphics and visualisation

is to add high-level graphics to CPN models. This means

that feedback from simulations can be obtained at a

more adequate level of detail using application domain

concepts, and in such a way that the underlying formal

CPN model is fully transparent to the observer.

CPN Tools can interact with the BRITNeY Suite ani-

mation tool [40] that supports the creation of domain-

specific graphics on top of CPN models. The animation

tool supports a wide range of diagram types via an ani-

mation plug-in architecture. Below we give two exam-

ples of how the animation tool can be used to create

domain-specific graphics. One example is the use of mes-

sage sequence charts (MSCs) to illustrate the exchange

of messages in the simple protocol. The second example

illustrates how it is possible to provide input and con-

trol a simulation of a CPN model by interacting with

system-specific graphics. We use the CPN model previ-

ously shown in Fig. 1 as a basis for both examples.

7.1 Message sequence charts

Figure 50 shows an example of an MSC created during a

simulation of the CPN model of the simple protocol. The

MSC has four columns. The leftmost column represents

the sender and the rightmost column represents the

receiver. The two middle columns represent the sender

and receiver side of the network. The MSC captures a

scenario where the first data packet sent by the sender

is lost which then causes a retransmission of the data

packet to occur. The retransmitted data packet is then

successfully transmitted to the receiver and the corre-

Fig. 50 Example of a message sequence chart

Coloured Petri Nets and CPN Tools 251

sponding acknowledgement is successfully received by

the sender.

The graphical feedback from the execution of the

CPN model is achieved by attaching code segments to

the transitions in the CPN model. A code segment con-

sists of a piece of sequential CPN ML code that is exe-

cuted whenever the corresponding transition occurs in

the simulation of the CPN model. As an example, the

transition SendPacket has the following code segment

attached:

input (n,d);

output ();

action

msc.addEvent ("Sender","Network 1",

NOxDATA.mkstr

(n,d))

The code segment is provided with the value bound

to the variables n and d via the input part of the code

segment. The code segment then uses the function

msc.addEvent provided by the animation tool to cre-

ate an event from the Sender column to the Network1

column labelled with the value bound to n and d. The

functionNOxDATA.mkstr converts the pair(n,d) into

a corresponding string used to label the arc of the MSC.

The output part of the code segment is not used in this

code segment, but its use will be illustrated in the next

subsection. The other transitions of the CPN model have

similar code segments. Each code segment essentially

consists of invoking the appropriate primitive in the ani-

mation tool. An alternative to using code segments is to

use a user-defined monitor to invoke the appropriate

primitive depending on which transition occurs. For fur-

ther details regarding user-defined monitors we refer

to [10].

7.2 Interaction graphics

Figure 51 shows an example of a system-specific anima-

tion graphic created using an animation plug-in based

on the SceneBeans framework [35]. The graphic illus-

trates the system modelled by the CPN model of the

simple protocol. The computer to the left represents

the sender, the computer to the right represents the

receiver. The cloud in the middle represents the net-

work. When a simulation is started, a modal dialog pops

up that allows the observer to enter the text string to be

transmitted from the sender to the receiver. In this case

it was the text string "Coloured Petri Nets" that

was entered. The modal dialog is created by adding a

transition Init connected to the PacketsToSend as shown

in Fig. 52. The Init transition is the only enabled transi-

tion in the initial marking, and when it occurs it removes

Fig. 51 Example of system-specific animation graphics

CreatePackets(data)

()

Init

input ();
output (data);
action
setupVisualization()

Init

()

UNIT

Packets
To Send

NOxDATA

1 1`()

Fig. 52 Transition Init and surroundings

the token with colour () from place Init, executes the

attached code segment, and creates data packets on the

place PacketsToSend according to the string entered by

the user in the modal dialog. The function setupVisu-

alisation (not shown) in the code segment of the Init

transition invokes the primitive in the animation tool

for creating a modal dialog box and returns the string

entered. The string entered will be bound to the variable

data used in the output part of the code segment. The

string bound to data is then used as the argument for

the function CreatePackets which splits the string

into corresponding data packets.

The text on top of the sender computer shows the text

string to be transmitted and is hence a representation of

the marking of place PacketsToSend. Similarly, the text

on top of the receiver computer shows the text string

received by the receiver and is hence a representation

of the marking of place DataReceived. The two counters

on top of the sender and the receiver are representations

of the values of the tokens on places NextSend and Next-

Rec, respectively. The four numbers at the edges of the

network cloud represent the number of tokens on the

network places A, B, C, and D. In the topmost part of

252 K. Jensen et al.

the network a data packet (1,"Col") is shown which

is currently in transit on the network. The two square

boxes in the middle below the data packet (and coloured

green and red) let the user decide whether the packet

is to be lost (if the user clicks on the red square) or

successfully transmitted (if the user clicks on the green

square). This illustrates how it is possible to provide

input to an ongoing simulation via the animation graph-

ics. The interaction graphics shown in Fig. 51 is created

in a similar way as the MSCs above by attaching code

segments invoking the animation primitives to the tran-

sitions of the CPN model. The only difference is that the

code segments now invoke primitives from a different

animation plug-in. Furthermore, the interaction graph-

ics has an XML scene file that describes the different

elements in the animation, i.e., the computers, the net-

work cloud, the labels, and the buttons. Further details

on the animation tool can be found in [7,40].

8 Conclusion

To cope with the complexity of modern concurrent sys-

tems, it is crucial to provide methods that enable debug-

ging and testing of central parts of the system designs

prior to implementation and deployment. One way to

approach the challenge of developing concurrent sys-

tems is to build an executable model of the system.

Constructing a model and simulating it usually lead to

significant new insights into the design and operation

of the system considered and often results in a simpler

and more streamlined design. Furthermore, construct-

ing an executable model usually leads to a more com-

plete specification of the design and makes it possible

to make a systematic investigation of scenarios which

can significantly decrease the number of design errors.

The construction of a model of the system design typ-

ically means that more effort is spent in early phases

of system development, i.e., requirements engineering,

design, and specification. This additional investment is,

in most cases, justified by the additional insight into

the properties of the system that can be gained prior

to implementation. Furthermore, many design prob-

lems and errors can be discovered and resolved in the

requirements and design phase rather than in the imple-

mentation, test, and deployment phases. Finally, mod-

els are, in most cases, simpler and more complete than

traditional design documents which means that the con-

struction and exploration of the model has resulted in

a more solid foundation for doing the implementation.

This may in turn shorten the implementation and test

phases significantly and decrease the number of flaws in

the final system.

The development of CP-nets has been driven by the

desire to develop an industrial-strength modelling lan-

guage—at the same time theoretically well-founded and

versatile enough to be used in practice for systems of

the size and complexity found in typical industrial pro-

jects. CP-nets are, however, not a modelling language

designed to replace other modelling languages (such as

UML). In our view it should be used as a supplement

to existing modelling languages and methodologies and

can be used together with these or even integrated into

them. High-level Petri Nets is an ISO/IEC standard [4]

and the CPN modelling language and supporting com-

puter tools conform to this standard. The practical appli-

cation of CP-nets typically relies on a combination of

interactive and automatic simulation, visualisation, state

space analysis, and performance analysis. These activi-

ties in conjunction result in a validation of the system

under consideration in the sense that it has been justified

that the system has the desired properties and a high-

degree of confidence and understanding of the system

has been obtained. CPN models can be used to validate

both the functional/logical correctness and the perfor-

mance of a system. This saves a lot of time, because we

do not need to construct two totally independent mod-

els of the system. Instead we can use a single model or

(more often) two models that are very closely related to

each other. There exist a number of modelling languages

that are in widespread use for performance analysis of

systems, e.g., queueing theory. However, most of these

modelling languages cannot be used for modelling and

validation of the logical properties of systems. Some of

these are also unable to cope with performance analysis

of systems which have irregular behaviour.

The paper has given a brief introduction to the CPN

modelling language and the associated analysis meth-

ods. The reader interested in a complete treatment of the

modelling language and analysis methods are referred

to [16,17,19] or the forthcoming book [20]. The web site

associated with [20] contains an extensive set of slides,

exercises, and projects for using CP-nets and CPN Tools

in courses. Further detailed information on the use of

CPN Tools can be found via [10] which contains an elab-

orate set of manuals, tutorials, and other examples of

CPN models. The CPN Tools web site also explains how

to obtain a licence for CPN Tools. Beyond what was pre-

sented in this paper, CPN Tools further includes a collec-

tion of libraries for different purposes. One example is

Comms/CPN [13] for TCP/IP communication between

CPN models and external applications. CPN Tools gen-

erally has an architecture that allows the user to extend

its functionality, such as experimenting with new state

space methods. Hence, in addition to being a tool for

modelling and validation it also provides a prototyping

Coloured Petri Nets and CPN Tools 253

environment for researchers interested in experiment-

ing with new analysis algorithms.

We have illustrated the use of CP-nets for modelling

and validation of a simple protocol. Readers interested

in more elaborate industrial use of CPN models and

CPN Tools are referred to [12,19,20,24], the proceed-

ings of the annual CPN workshop [32], and the proceed-

ings of the annual conference on theory and application

of Petri Nets [30].

Acknowledgments There are many people who have influenced
the development of CP-nets, their analysis methods, and their tool
support. Unfortunately, we cannot mention them all here, but
we are extremely grateful for their numerous contributions. We
would like to thank the many developers of CPN Tools. In partic-
ular, Søren Christensen and Kjeld Høyer Mortensen who played
key roles in the development of CPN Tools and its predeces-
sor Design/CPN, Michel Beudouin-Lafon and Wendy E. Mackay
who played a central role in designing the GUI of CPN Tools,
and Henry Michael Lassen who has been instrumental in the
development of CPN Tools since the start of the project. Users
of CPN Tools have provided invaluable feedback that has helped
to improve the tool. In particular, feedback from Wil van der Aalst
and his group has helped to significantly improve the stability of
the tool. Finally, we would also like to thank the reviewers of this
paper for (among other things) their detailed and thoughtful com-
ments: Charles Lakos, Guy Gallasch, Jens Bæk Jørgensen, João
Miguel Fernandes, Jonathan Billington, Laure Petrucci, Lin Liu,
and Simon Tjell. L. M. Kristensen was supported by the Carlsberg
Foundation and the Danish Research Council for Technology and
Production. Lisa Wells was supported by the ISIS Katrinebjerg
Competence Centre.

References

1. Adamski, M.A., Karatkevich, A., Wegrzyn, M. (eds.): Design
of Embedded Control Systems. Springer, Berlin (2005)

2. Andradóttir, S.: Simulation optimization. In: Banks [3],
chap. 9

3. Banks, J. (ed.): Handbook of Simulation. Wiley, New York
(1998)

4. Billington, J.: ISO/IEC 15909-1:2004 Software and system
engineering. High-level Petri nets, Part 1: Concepts, defini-
tions and graphical notation, 2004

5. Billington, J., Diaz, M., Rozenberg, G. (eds.): Application of
Petri Nets to Communication Networks, vol. 1605. Springer,
Berlin (1999)

6. Billington, J., Gallasch, G.E., Han, B.: A Coloured Petri Net
approach to protocol verification. In: Desel, J., Reisig, W.,
Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
Advances in Petri Nets. In: Proceedings of 4th Advanced
Course on Petri Nets, Lecture Notes in Computer Science,
vol. 3018 pp. 210–290. Springer, Berlin (2004)

7. BRITNeY Suite. http://www.wiki.daimi.au.dk/britney/
8. Cheng, A., Christensen, S., Mortensen, K.H.: Model check-

ing coloured Petri Nets exploiting strongly connected compo-
nents. In: Proceedings of International Workshop on Discrete
Event Systems, pp. 169–177 (1996)

9. Christensen, S., Kristensen, L.M., Mailund, T.: Condensed
state spaces for timed Petri Nets. In: Proceedings of Interna-
tional Conference on Application and Theory of Petri Nets.
Lecture Notes in Computer Science, vol. 2075 pp. 101–120.
Springer, Berlin (2001)

10. CPN Tools.: http://www.daimi.au.dk/CPNTools/
11. Desrochers, A.A., Al-Jaar, R.Y.: Applications of Petri Nets

in Manufacturing Systems: Modeling, Control, and Perfor-
mance Analysis. IEEE, (1994)

12. Examples of Industrial Use of CP-nets. http://www.daimi.
au.dk/CPnets/intro/example_indu.html

13. Gallasch, G.E., Kristensen, L.M.: COMMS/CPN: A Com-
munication Infrastructure for External Communication with
Design/CPN. In: Proceedings of Third Workshop and Tuto-
rial on Practical Use of Coloured Petri Nets and the CPN
Tools, DAIMI PB-554, pp. 75–91. Department of Computer
Science, University of Aarhus, Denmark (2001)

14. Gnuplot.: http://www.gnuplot.info
15. ITU (CCITT).: Recommendation Z.120: MSC. Technical

report, International Telecommunication Union, 1992
16. Jensen, K.: Coloured Petri Nets. Basic concepts, analysis

methods and practical use. Basic Concepts, vol. 1. Springer,
Berlin (1992)

17. Jensen, K.: Coloured Petri Nets. Basic concepts, analysis
methods and practical use. Analysis Methods, vol. 2. Springer,
Berlin (1994)

18. Jensen, K.: Condensed state spaces for symmetrical Coloured
Petri Nets. Formal Methods in System Design, vol. 9, (1996)

19. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use. Practical use, vol. 3. Springer,
Berlin (1997)

20. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Modelling
and Validation of Concurrent Systems. Springer Textbook (in
preparation) Companion web site: www.daimi.au.dk/CPnets/
cpnbook.

21. Kelton, W.D., Sadowski, R.P., Sadowski, D.A.: Simulation
with Arena, 2nd edn. McGraw-Hill, (2002)

22. Kleijnen, J.P.C.: Experimental design for sensitivity analy-
sis, optimization, and validation of simulation models. In:
Banks [3]

23. Kristensen, L.M., Christensen, S., Jensen, K.: The Practi-
tioner’s Guide to Coloured Petri Nets. Int. J. Softw. Tools
Technol. Transf. 2(2), 98–132 (1998)

24. Kristensen, L.M., Jørgensen, J.B., Jensen, K.: Application of
Coloured Petri Nets in System Development. In: Lectures on
Concurrency and Petri Nets. Advances in Petri Nets. Proceed-
ings of 4th Advanced Course on Petri Nets. Lecture Notes in
Computer Science, vol. 3098, pp. 626–685. Springer, Berlin
(2004)

25. Kristensen, L.M., Mailund, T.: A generalised sweep-line
method for safety properties. In: Proceedings of Formal Meth-
ods Europe, Lecture Notes in Computer Science, vol. 2391,
pp. 549–567. Springer, Berlin (2002)

26. Kristensen, L.M., Valmari, A.: Finding Stubborn Sets of Col-
oured Petri Nets Without Unfolding. In: Proceedings of Inter-
national Conference on Application and Theory of Petri Nets.
Lecture Notes in Computer Science, vol. 1420, pp. 104–123.
Springer, Berlin (1998)

27. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis,
3rd edn. McGraw-Hill, (2000)

28. Mortensen, K.H.: Efficient data-structures and algorithms for
a Coloured Petri Nets Simulator. In: Proceedings of Third
Workshop and Tutorial on Practical Use of Coloured Petri
Nets and the CPN Tools, 2001

29. Object Management Group. Unified Modeling Language:
Superstructure, version 2.0, formal/05-07-04, 2005

30. Proceedings of International Conference on Application and
Theory of Petri Nets and Other Models of Concurrency.
Springer, Berlin 1980–present

31. Proceedings of Workshop on Modelling of Objects, Compo-
nents, and Agents, 2001–present

254 K. Jensen et al.

32. Proceedings of Workshop on Practical Use of Coloured Petri
Nets and the CPN Tools, 1998–present. http://www.daimi.
au.dk/CPnets/

33. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical
Computer Science, vol. 4 Springer, Berlin (1985)

34. Reisig, W.: Elements of Distributed Algorithms: Modeling
and Analysis with Petri Nets. Springer, Berlin (1998)

35. SceneBeans. http://www.dse.doc.ic.ac.uk/Software/Scene-
Beans/

36. Standard ML of New Jersey. http://www.smlnj.org
37. Ullman, J.D.: Elements of ML Programming. Prentice-Hall,

Englewood Cliffs (1998)

38. Valmari, A.: The state explosion problem. In: Lectures on
Petri Nets I: Basic Models. Lecture Notes in Computer Sci-
ence, vol. 1491 pp. 429–528. Springer, Berlin (1998)

39. van der Aalst, W., van Hee, K.: Workflow Management: Mod-
els, Methods, and Systems. MIT Press, Cambridge, MA (2002)

40. Westergaard, M., Lassen, K.B.: The BRITNeY Suite Anima-
tion Tool. In: Proceedings of 27th International Conference
on Application and Theory of Petri Nets and Other Models of
Concurrency. Lecture Notes in Computer Science, vol. 4024
pp. 431–440. Springer, Berlin (2006)

41. Yakovlev, A., Gomes, L., Lavagno, L.: Hardware Design and
Petri Nets. Springer, Berlin (2000)

	Coloured Petri Nets and CPN Tools for modelling and validationof concurrent systems
	Abstract
	Introduction
	The CPN modelling language
	Net structure, declarations, and inscriptions
	Enabling and occurrence of transitions
	Steps, concurrency and conflict
	Modules
	Modelling of time
	Construction of CPN models
	Overview of the GUI
	Construction of model elements
	Construction of hierarchical models
	Syntax check and code generation
	Graphical feedback and help
	Simulation
	Interactive and automatic simulations
	Simulation breakpoint monitors
	State space analysis
	Revised model for state space analysis
	Full state spaces
	State space report
	Query functions
	Performance analysis
	Revised model for performance analysis
	Performance measures and data collectors
	Statistics
	Performance output
	Conducting simulation experiments
	Model parameters and comparing configurations
	Visualisation
	Message sequence charts
	Interaction graphics
	Conclusion
	Acknowledgments

