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1. INTRODUCTION.

Color symmetry is distinguished by the fact that all physically
observable states are apparently color singlets. In this respect color is
different from other known internal and space—time gymmetries; its rdle re-
sembles rather the one played by the symmetric group in physics (Pauli prin-
ciple).

It is plausible {o assume therefore that - similarly to the Pauli
principle - the color properties of observed hadrons may be expressed through
algebraic relations obeyed by the dynamical variables desceribing hadronic
constituents. One may also expect that the apparent unobservability of
hadronic constituents is a conseguence of such algebraic relations rather
than of some peculiar dynamical mechanism. This question, however, has not
been Answered in a satisfactory way until nowl).

Girsey and his collaborators have pioneered such an algebraic approach
to the description of color2’3’4). They observed that algebras belonging to
a certain c¢lass (Cayley algebras and some of their generalizations) possess
automorphism groups containing SU(3) (identifiable with the color group) as a
subgroup. Moreover, the multiplication tables of those algebras exhibit
triality properties which are isomorphic to those required by the multiplioca~

3)

levant algebras can be found in Freudenthal's paper5); the possible physical

tion rules of gquarks~’. An analysis of the automorphism groups of the re-—
gignificance of those group structures has been elucidated in ref.6.

Gilrsey et al. explicitly asgume that algebras of the Cayley type
serve as a model for charge space properties of quarks and leptons. However,
it would be desirable to achieve a unification of charge and space-time pro-
perties of quarks and leptons at a deeper leveIT).

In this paper we report the first results of an investigation into
such a possible unification. In particular, we propose that the unification
can be achieved within the framework of supersymmetric theories8). In order
to realise this idea, we construct a class of "supersymmetxry" algebras which
satisfy a number of phreically reasonable eriteria {discussed in Secs3)s The
algebras a0 constructed admit a treatement of leptons and gquarks on an equal
footing, along the lines proposed by Gﬂrsey6). However, we find that as soon
ag the quark-lepton algebra is unified with the Abelian algebra of space-
time coordinates in a geometrical framework, the quark and lepton parts have
to be dealt with separately.

This iz a desirable feature, for it suggests that theories to be cone



-2 -

structed along the lines propesed here have an inherent possgibility of di-
stinguishing vetween gquarks and leptons on a geometrical basis.

The next Section serves primarily a paedagogical purpose. We introduce
and analyse (at a very elementary level) the algebraic mechanism which endows
the algebras investigated by Girsey et ale. with the desirable trizality pro-
perties. Besides summarizing the necessary mathematical apparatus, we also
gain some insight into the possibilities of generalizing the algebraic frame-
work, so as to suit the physical reguirements.This is carried out in Sec.3,
while the basic geometrical aspects of the problem - in particular, the
question of constructing superspaces -~ are dealt with in Seced.

The lagt Section contains comments and remarks concerning the
poggibility of developing the scheme deseribed here into a dynamical theoxry.
The investigations described in this paper are confined to the
algebraic and geometric aspects of the problem under consideration. The
question of constructing dynamical models within this framework will be

discussed in subseguent publications.

2, THE ALGEBRAIC ORIGIN OF TRIALITY: THE CAYLEY-DIXON CONSTRUCTION

The Cayley=Dixon (CD) process is devised to systematically enlarge
algebras endowed with certain properties. The prescription itself is a simple
Onee

Assume that €A is an algebra with involutiong) and let o € (@2
(im1y2504e)}. We enlarge e by introducing a new abstract element, say 4
such that 1rzu=/p. is @ number (element of the ground field). We then
consider elements of the form (Q+BQ,) as elements of the "large"
algebra, ﬁo Multiplication in f)’ ia defined by

(0-4“’%.)(“3*"'“4):(0:03"“[‘—%3;)+""(df-a4""a.!az)) (2.1)

where 5‘ is the conjugate of Qg in UC .
Remark., The CD process obviously generalizes the process of "complexi-

fication" of real numbers. Indeed, if @gare real numbers (&; =@ ) and U%-{,

then the algebra.dér with multiplication {2.1) is the algebra of complex numbers.
In abstract algebra, the CD process is used to generate Hurwits

algebras which are interesiing from an algebraic point of views their pro-

perties are described in standard textbooks}o). From our point of view,

however, the CD process is interesting for a different reason. In order to

2)

understand this, we study the simplest model considered by Glirsey et al. ',
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based on the split octonion algebra.
We start from the guaternion algebra and we write its multiplication
table in terms of standard basis elements € , (1=1,2,3):

eLeJ‘ = ...S‘._j + e‘-_jKeK y (2.2)

where é‘jk is the Levi-Civitd tensor and the summation convention is used.
The multiplication table is invariant under the involution ©;=- @,
(e¢ e_,') -==e5 e; . Moreover; the multiplication table (2.2) is invariant

under a change of basis by means of a proper orthogonal transformation,

’ .
L= .O*'J' e, O'&i Ouj =3y , DetOy-=1. (2:3)

( Actually, the transformations (2.3) spen the full automorphism group of the
algebra (2.2),)

We now enlarge the gquaternion algebra (2.2) by introducing the new "ima-
ginary unit" -, oL 4.

One verifies that the elements
»*
!
u,=4(e;+ve;) , w=ile -ve;),

Uo= s(1+0U), -ujtz.f;(/_v),

(2.4)

span a2 basis of the enlarged algebralo). The multiplication rules (2.1)

give e.ge
U L_Ld'_ = -4(-(65 +Ue;) (eJ+ Uej)zé.(e‘%._’_vzefe_i) f‘é-'ly(é::%'f"%e()

=L(ce - .a. . - e L
=L (@€-ge)- Lveg-€e) = €, 56-VE)= 6 U,

where (2.,2) has been used. One ocan now similarly deduce the entire multipli-
cation table of the basis elements (2.4). The multiplication rules are iden-
tical t0 the ones established by GHnaydin and Giirsey for elements of the

gplit octonion algebrall). For the sake of completeness we exhibit the full

muiltiplication ftable below.

£

u; Uy = € Ui wie) = €Uy
® *

ol == Oy ufu ;==& ul
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U U, = Uy ufuf :uf
U Ug=0 wXul-0
Wu;=0 Uo U* =0
u; u;:u; L{f Up =U;
Up Uy = UL, 5 Uy =uf

Uo uo*: U;Uo"-'—"o, (2.5)

The multiplication tsble (2.5) is invariant under the group SU{3) , which,
in a sense, may be regarded as a " complexification " of the automorphism
group, 50(3) , of auaternions. The group SU(3) is identifiable with the
color group, since the rules (2.5) exhibit triality. Indeed, U5/ (3),
!L?N(g),uo“u (1) under SU(3)e The multiplication rules (2.5) zive
(A (1) , ()x(3)A(3) , which is just what is needed for a "colored"
quark algebral2 . (We remark in parentheses that (2.5) is actually invari-
ant under a larger group - a "sgplit" form of G(2) - of which sU(3) is
a subgroup, sece ref.3, However, we are primarily interested in those auto-—
morphisms of (2.5) which leave the element 4* invariant.)

We now obgerv: the two features of the CD process which are important
for what follows,

1.} Enlargement of the automorphism groun. In infinitonsimal form, the

automorphism transformations (2.3) of the gquaternion algebra read:

ge‘. =a‘-j ej , ( Qi = Qj': ) Ci.‘j ’T'EECI[) .

The enlargement of (2.2) to (2.5) lezds to an enlargement of the auto-
morphism group, since

S(eitvel) = Qie; £ v q;e;
remaing an automorphism. In addition to transformations with real anti-
hermitean matrices ai,j , however, the "large" algebra (2.5) also renains

invariant under tronsformations with "pure imaginary" antihermitean matrices

of the form trstj s Where S;J is a symmetric matrix of real elements,
vize
S(ertne) = v e+ vey)
= Lt (54€; LS e;)
see e3.(?2.1). One easily verifies that the matrices (10- and "U"Sc_; - wWith
their action on (Q\.tuei\ just defined - span the Lie algebra of SU(3),which
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is then identified with the color group.

2,) The"triality rule" arises because the CD multiplication (2.2)
gelects the appropriate (symmetric or antisymmetric, respectively) parts of
the guaternion product (242)¢ Thus we can abstract the prescription by means
of which algebras exhibiting triality can be constructed.

First, one starts with a'small" algebra which is a quaternion algebraj
the coefficients of the quaternion units €. , need not belong to a commuta-
tive field.

Next, one introduces a new element, ¥ 5 such that ﬂﬁ;i and
conatructs "oomplexified elements" in analogy with (2.4)..

Finally, one defines a multiplication rmle (the analogue of (2.1)),
which selects the appropriately symmetrised or antisymmetrised quaternion

products.

3.CONSTRUCTION OF A CHIRAL QUARK=LEPTON ALGESRA .

We want to construct an algebra of quark and lepton "coordinates"
(in the sense of supergauge theories) which exhibits correct triality pro-
perties for quarkse. To this end,following the prescription given in the

previous Section, we consider a general quaternion of the form:

Qo = X + eaxi (3.1)

where the Gh.stands for quaternionic units with 2 multiplication rule given
by (2.2). We want the quantities Xi‘ to describe quark degrees of freedom,
whereas the color singlet part, Xx is to bhe regarded as a leptonic

6,7)

coordinate « (For the sake of brevity, we shall use the terms "quarks" and
"leptons", respectively.)
It is evident therefore that xi; and Xq have to be elements of a

Grassmann algebra,
{ x?x) X%} = {Xoox(ﬁ-g = 0. (3-2)

However, there is no basic physical princivle fixing the relative
commitativity properties of X, and X?," +« The index set fo(} consists
of spinor and posaibly of internal symmetry indices z2s well. For the time
being, we leave the guestion of internal gymmetries openj most of the sub-
sedquent considerations are carried ocut under the taocit assumption that &

is just a (Weyl) spinor index.
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In addition %o qu, we shall have to congider iis quaternion conjugate,
a; = Xy — eq)(?x s too. The usual spinor notation is used throughout13).

The guantities Gt have to span a representation of the Lorentz and internal
symmetry groupse. It follows that Xy and X?k have to transform according
10 the same representation of the Lorentz and internal symmetry groupsj
otherwise, there could not exist a Lorentz invariant (internal symmetry
invariant, respectively) distinciion between leptons and quarks. This is just
the expression of the lepton~quark symmetry in this framework.

We now build up the algebra of the "complexified" quantities,
=5 (qu+ V0 q), with vEL .

We want i) to enforce the triality rule for the quark part,

ii) %o exclude mixed (quark-lepton, diguark-lepton, etc)
states, at least up to the three guark and guark-antiquark levels.

The CD prescription has to be modified for two reasons. First, the
presence of conjugations in (2.1) does not allow one to define transformations
of ng with complex matrices in any consistent waysj in particular, GQ‘ cannoit
be considered a Weyi spinor. Second, the coefficients of the gquaternion units
are now elements of an anticomm:tative, rather than of a commutative algebra.
For quaternions Cv; (i=1,2,44e) with anticommuting coefficients, and viig

a suitable definition of the product is:

Gt R QtvGe) = (GGt Q)+ PV (04t DG, (3.3)

instead of (2.1).
Further’the relative commatativity properties of the coefficient
algebra and of the quaternion units are to be left open.

We put:

xo(e £ = Xeg Xo( y
q _ a
X,(X(‘;=€Xﬁg><o() (3.4)
where X)S,e are real, and b’i 5’1_: €%= 4 . 1n addition, egs.(2.2) and

(3+2) are assumed to hold, of course.

We take now the product,
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QB = 5 { 4> + 1 { quael -

Using {3.4) and (3.2) together with (3.1} we find:

{9,968 = (e er (raXf + XgX'a)
+ 2 € €abr e, x%\xp,

The absence of quark-lepton compounds requires Z({-é 20 « {Dileptons are
absent automatically, since %Xo‘, x¢,§=0.)
For the triple product we find:

QuBs) Q5 = € €ane [ L (era 15ae) XA X4 XS

+(/+<r)xf,,xﬁ Xy + »[...].

The three-quark system is a color singlet if A-:—-i 3 the absence of a diguark-
lepton system reguires J=-1. Hence, all coefficients in (3.4) are uniquely

determineds
Y=_|) =1 5 €=1. (3.5)

We note in passing that the product (3..3) ig asgociative up to the three-
quark level {but not beyond that): (Gdag)@g=a¢(q9a)-
We now consider the left-handed part of the quark-antiquark system.

WHe define
Qy = 3(q2—~ ¥9), (346)

where O3 =Xy -Ql)f:.a X, @nd Xc;( being spinor conjugates of X, and Xi .
respectively. (This means, in particular that QL and Q;Lare conjugates of
each other. The conjugation so defined is an automorphism of the algebra

generated by the @d and G,’(_ .) Evidently the conjugate spinors have to
have the same commutation properties among themselves and with the quaternion

units as the undotted spinors dos The producis QdQ," and QQQQ are

given by:



6= £ Loyl ~ & v [ax,9a]
By =% U90,9w] +5» Tau ) qul -

On working out the product as illustrated on the example of ithe two- and
three~guark products, one finds that lepton—quark cross terms are absent and

the guark-antiguark system is a color singlet if and only if

{Kc,(, X(&-IS - {X"L)Xii = {x‘l)x%} =0, (3.7)

It is worth remarking that +the very existence of an algebra which satisfies
a2ll the physical criteria listed above has not been evident & priori. Our

construction shows not only that such an algebra exists, but it is uniquely

determined.
The left-handed algebra spanned by the GL‘ and.GéApossesses no
non-trivial bilinear invariantlf),
Bty = €*FQ QL= 0
in virtue of (3.3). However, there exists a real color singlet four—vectorl5),
viz.
[y, Q1=  (xuxg+ x2x%).
In order to construct a non- trivial invariant (and also, in order to span a
representation of the extended Loremtz group), @ right-honded spinor has to
be introduced, vigz.
R¥ = L ( +% yayad) , R¥*=1 (% _wax), (3.8)
with 4""‘=L5°L eaaq“. An invariant is then given by
[8a«, R* ] = xuy™+ x% u*™
Finally, we point out that elements of the form (a+va) and {b-vb), (where
a and b may carry any number of spinor indices) form subalgebras of the

algebra generated by Q‘* and Q,{ .

4. COLORED SUPIERSPACE,

We recall that the concept of a superspace, forming the basis of
supecrgauge invariant theories

16)

» can be approached from a purely geometrical
point of view
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For the sake of simplicity, we work in a flat space and with chiral spinors.
Minkowski space possesses an affine structure. In order to achieve 2 unifi-—
cation of the spinorial and Minkowski spaces, an affine structure has to be
defined on the unified space which is compatible with the affine connections
defined on the subspaces,

There exists a simple and straightforward way of implementing an
affine structure on a given space. It consists of defining an infinitesimal
displacement ("flow")} vector which remains invariant under "parallell trans—
fer". In "conventional" supergauge theories, the infinitesimal displacement

vector may be tzken to be:

. (
o= A L (g, d] = [degsrgul)
dw°‘= d(‘?o{ ) duﬂ& “‘AL?J
{(4.1)

where dxd.&. is an infinitesimal vector in Minkowski gpace and C?at ) (‘Po'(
are Grassmann coordinates. Under the infinitesimal displacement, St_?de €x
Sdtpofo, the requirement that dar remein invariant, & dwg& = Edui)gf_o,
determines the transformation property of X .

This approach to the construction of superspaces can be readily
generalized to the " colored” algebra developed in the last Section. Indeed,
if we formally define the infinitesimal spinor, a

a
onL: :_'L( o(x,d- eadxi) 431_,43‘ (d?(ou‘ ead’(a( )

the wvector

;‘_‘ [Q&)GIQOL] =7 (x&dx,,(+x‘;.£olx1)

is real and it is a color singlet. Hence, the vector dS2 with components

ARga = dX g+ L [Q,dQ] - [dQy,R1),
Ci"sl'ott: Ci(QQL)
d g = dQy

(4.2)
is 2 good candidate for an infinitesimal displacement vector in superspace,

As a natural generalization of infinitesimal supergauge transform:.tions we

take

SOy = 3 (Qy +Day)
OSQy = L (@y-"ay)

a
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In eq. (4.3) eo& and 63' are infinitesimal. In other words, we induce in—
finitesimal transformations on the Grassmann components of QO{ » The super-
space spanned by the @dand Xd& is to be flat, hence S OL&ek =0,

Commutativity and conjugation properties of the imfinitesimal para—
meters éd and e?{ have to be identical with those of the Qo( « This
follows from the fact that we want (4.3) 1o be an infinitesimal translation:
Qd.{.S Qo( has to enjoy the same properiies ang\does.

The transformation properties of A Xy¥ under (4.3) can be read off from

the requirement that AQ remain inva?iant. We find:

Toxuxz-i[50x% ,4QJ + 1 [dR2, > Rx]
= ~i(€eudxa+ €%, dx'g-dxg é,g—ou%c e:) (4.4)

Similarly to ordinary supergauge theories, one readily verifies that the
cormutator of two supergauge transformations is a translation with nilpotent
parameter, cf, ref.3.

Having defined supergauge transformations on Qo(’ the generators of
the algebra, we proceed to investigate whether the transformations (4.3) can
be consistently implemented on the full algebra.

Taking again ordinary supergauge theories as a guide, we enlarge the
algebra of Grassmann coefficients, Xol and Xi by the algebra of its {outer)
derivationsl7), ‘Pd‘ and m‘, respectively., The generators Pd‘) P“d

LA &2

satisfy the relations,

$p5ptlz0, (p*, prPloo [ox ptPI =0
i“’:"P!’P}’;P)“:P } Py > es)

in complete analogy with eqs. (3.2), (3.4), (3.5) and (3.7). Further,
o . 5% a o ¢
{?ﬂ‘f;}-gp, SP ,x"F}:S"“ ‘S“P)
o A o
['P >xp_-1"o) 5.?0(3’(%&’03"- (4.6)

The commutation(anticommutation) rules are dictated by the requirements
discussed in Sec.3 and by the reyuirement that the o« and a'o(act as genera-
tors of infinitesimal translations on the coefficients of &q.

Next, we proceed to ocomplexify the algebra given by (4.5) and (4.6).

In particular, we conjecture that the infinitesimal map,
of
M(&ex, e%) = ‘:T(au& tvag) (b -’l"e‘d)x
Pz pYs Q-a.‘Pa'“ (4.7)

induces infinitesimal translations on the subalgebra generated by the QN.'
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On working out the product we find:
M(€x, €)= L (E-P — v c.p)
| -« <€ Lol < ol
where €Eoh= e_‘?d‘ -e:r.Pf.LApart from an irrelevant numerical factor,
M(ed‘éa& indeed acts as an infinitesimal left {ranslation on @-‘. s VizZ.
M(_ed., E?;:) Q(}, R Ry VT Qo v
However, M does not zct as a deriva‘tionla) on the full algebra; in particular,
a
M (Ea,E%) (Qg» Ry) "/’ ( M(euue'.l) Q ) @-{
+ &‘5 ( M (6*36 a)@%) .

The transformations which act as derivations are of the type M(D,&ﬁ}a.nd
Ifﬂ(eght)'onlx. In other words, the supergauge parameters have to be either

of a purely lepitonic or of a purely hadronic (gquark) type. An entirely similar

result holds for the subalgebra generated by the Q:L too.
The explicit expressions of ihe "good" transformations are the

following,.
L(€a) = J(eat ven) (- v p)= § (Eap'-veu ),

T (€)= L (€x-vey) (p™ +v pY) =2 (ex p¥4v €3 PY),

H(e2)=A(ete weken) (poe,-vpies)
= -4 (Eu pr% v P
H(€d): i (hea-veten (p e, evpies)
1 . asl a o
-'--'-5'_(6;(? +v €y P> ) (4.8)
The transformations listed above act as left translations on the spinorial
coordinates. One realises, however, that L and H act as translations on the
subalgebra compeosed of elements of the form (a,-{- £V 4 a,), whereas L and H act
as translations on the subalgebra composed of elements of the form ( b -1y L)
only. There exist no left translations with a domain extendable to the full
algebra, Furthermore, the algebra ( or any of its subalgebras ) does not
admit right translations.
Phe infinitesimal transformations (4.8) satisfy the following "ortho-

gonality" relations:
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LTH=HL=LT =1 L=HH=HH=LA=TLao
[L,HlI=[L,4] =0 (4.9)

_Finitetransformations can be generated on the respective subalgebras by

11

means of & formal exponentiation. We have, for instance,

(exp LR Qua L+ L (L&) -
= Qu +-;—C QGF’FP —'\J‘ér‘?r) (q.{-\-’lﬂv&)tﬂ_
= Qu+g (Teopt aud +v [epphhqul)

= Qu +3 (Ex + VEX), (4.10)

and similarly for the other transformations listed in (4.8). Due to the fact
that L,...,Efact as derivations, the action of any finite transformation is
well-defined (and possesses the requisite group properties) on the subalgebm
which forms its domain of definition.

We conclude that it is possible to impose an affine structure on a
"colored" superspace defined by the infinitesimal vector (4.2) in a limited
senses Supergauge transformations defined by (4.3) and (4.4) possess linear
realizations if and only if

a) the superspace is split into its leptonie and hadronic parts,

b) the domain of definition of the supergauge operators is restricted

to appropriate subalgebras,.

We note that a) corresponds to splitting off the trace of the quaternion
. ( o~
{341}, ieee one replaces Cvck by i(cp""i W&) everywhere,

5«SUMMARY AND COMHENTS,

Regarding the triality rule for guarks as a generalization of the
Pauli principle (as explained in Sec.l), we have shown that a superspace can
be constructed with the following properties.

i) The triality rule iz exactly implemented as a consequence of
algebraic relations.

ii) Quarks and leptons are treated symmetrically.

iii) The "fusion" of the gquark and lepton coordinates with Minkowski
space into an enlarged affine space forces 2 splitting of the fermionie
coordinates into their leptonic and hadronic parts. Thus, the exiztence of

separately conserved lepton and bharyon numbers is not only made possible,
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but it is sirongly suggested by the geometrical structure. Whether or not
these two quantum numbers are separately conserveq,depends, of course, on the
dynamical superstructure built upon such a geometry.

While we have noi sicceeded so far in constructing a consistent dyna-
miczl model based on this superspace, a few comments about the dynamical
superstructure can be made already at this stage,.

a) As pointed out before, the algebra constructed in Secs3 is not—
associative. As a consequence, the quantities Qd) Q&) «+s 3y cannot be
regarded as dynamical varizbles in the usual sense, In particular, there
exists no realization of their algebra in terms of linear operators acting
on a vector space. Therefore, we conjecture that theories based on super-
spaces constitute the most natural framework in which colored gquarks can be
handled on an equal footing with leptons.

b) One can envisage the implementation of the suversymmetry devised
here in terms of superfields.

Consider, for the sake of simplicity, scalar superfields only. These
are bagically of two types.

Type 1 ¢ fields based on a subalgebra. These have the general form:

¢ = (% Lta ha),

where we used the notation:
Q’d\‘“i( X + VXuy)
bha = & (Ca XU ¥ veaxd).
Upon expanding (i in powers of (LJ. and d » we get:
b - Ly La + HEG he + H4E ) (b c\(s)
4 BERE G (o b ) * oo
BAPY

The ordinary fields Lf* and can be interpreted as lepton and baryon
fields, respectively. The baryon field is symmetric in the indices &

a b A G (C ﬁﬁl)
due to the fact that (Ql\ot Qf\f. Qf\g) =Ya €qpe KE‘*‘SFEK + E*(ﬁpi‘s) o
‘Phere appear no "dilepton fields" (since Q_,\ LF,"O) or lepton-quark, lepton-
diquark fields, cf.Sec.3. The coordinate space may be enlarged by the in=
clugion of right-handed spinors, cf. eq.(3.8). Supersymmetry transformations
can be realised on in terms of the operators L and H.. Together with a
conjugate field, E‘( Xy Q-:l S Q/\&) , one may consiruct chiral currents,.

Type 2 ¢ Fields based on the full algebra, These are of the form*

baab O Ly Ly by B)

On expanding in powers of the fermionic coordinates, there appear
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"meson fields™ as coefficients of Q,,LQJ,) g\.{_%\& y etoc. However, super—
gymmetry transformations cannot be realised linearly on gy See Sec.d.
Hence, fields of type 2 seem to be somewhat unattractive from a theoretical

point of view.
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