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Colouring Graphs with Sparse Neighbourhoods:

Bounds and Applications

Marthe Bonamy∗, Thomas Perrett†, Luke Postle‡

October 17, 2018

Abstract

Let G be a graph with chromatic number χ, maximum degree ∆ and clique number ω.
Reed’s conjecture states that χ ≤ ⌈(1 − ε)(∆ + 1) + εω⌉ for all ε ≤ 1/2. It was shown by
King and Reed that, provided ∆ is large enough, the conjecture holds for ε ≤ 1/130, 000. In
this article, we show that the same statement holds for ε ≤ 1/26, thus making a significant
step towards Reed’s conjecture. We derive this result from a general technique to bound the
chromatic number of a graph where no vertex has many edges in its neighbourhood. Our
improvements to this method also lead to improved bounds on the strong chromatic index
of general graphs. We prove that χ′

s
(G) ≤ 1.835∆(G)2 provided ∆(G) is large enough.

1 Introduction

It is well known that the chromatic number χ(G) of a graph G is bounded above by ∆(G) + 1,
where ∆(G) denotes the maximum degree of G. Similarly, a trivial lower bound on χ(G) is given
by the clique number ω(G), which is the largest number of pairwise adjacent vertices in G. In
1998, Reed conjectured that, up to rounding, the chromatic number of a graph is at most the
average of these two bounds.

Conjecture 1.1. [13] If G is a graph, then χ(G) ≤ ⌈ 1
2 (∆(G) + 1 + ω(G))⌉.

As evidence for his conjecture, Reed proved that the chromatic number can be bounded
above by a non-trivial convex combination of ω and ∆ + 1.

Theorem 1.2. [13] There exists ε > 0 such that for every graph G, we have χ(G) ≤ ⌈(1 −
ε)(∆(G) + 1) + εω(G)⌉.

King and Reed [10] subsequently gave a shorter proof of Theorem 1.2 by exploiting a recent
result of King [9] on independent sets hitting every maximal clique. Using King’s result, it
suffices to prove Theorem 1.2 for graphs G with clique number ω(G) ≤ 2

3 (∆(G) + 1). Given
this fact, there are two main steps in the proof of King and Reed. The first is to show that if
such a graph is also critical, then no neighbourhood contains many edges. More precisely, there
exists δ > 0 such that every neighbourhood induces at most (1 − δ)

(

∆(G)
2

)

edges. We say that
such a graph is δ-sparse. The second step is to invoke the naive colouring procedure and the
probabilistic method to colour the graph. Indeed, using these techniques, it can be shown that
a δ-sparse graph is (1− ε)(∆(G) + 1)-colourable for some ε > 0 depending on δ. This completes
the proof.
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Seeking only a short proof of Theorem 1.2, King and Reed did not optimise the two steps of
their method. Approximately, they find that δ = 1/160 and ε < 1/320e6 suffice. However, since
Reed’s Conjecture is equivalent to proving Theorem 1.2 for ε ≤ 1/2, it is natural to ask if one
can increase the value of ε obtained. It would suffice to provide an improved answer to any of
the two following questions. Recall first that a graph G is (k+1)-critical if G is not k-colorable
but every proper subgraph of G is.

Question 1.3. Let G be a ⌊(1−ε)(∆(G)+1)⌋+1-critical graph with ω(G) ≤ (1−α)(∆(G)+1).
What is the largest δ = δ(ε, α), such that G is δ-sparse?

Question 1.4. Let G be a δ-sparse graph. What is the largest ε = ε(δ) such that χ(G) ≤
(1− ε)(∆ + 1)?

1.1 Main Results

In this paper we improve on the best known results for both of these questions. In fact, we
prove results in the context of list colouring, a generalization of colouring. A list assignment is
a function that to each vertex v ∈ V (G) assigns a nonempty set L(v) of colours. An L-colouring
is a coloring φ of G such that φ(v) ∈ L(v) for every v ∈ V (G). A k-list-assignment is a list
assignment L such that |L(v)| ≥ k for every v ∈ V (G). A graph G is k-list-colourable if G has
an L-coloring for every k-list-assignment L. The list chromatic number of G, denoted χℓ(G) is
the minimum k such that G is k-list-colourable. We say a graph G is L-critical with respect to
a list assignment L if G does not have an L-colouring but every proper subgraph of G does.

In response to Question 1.3, we prove the following theorem.

Theorem 1.5. Let ε, α > 0 such that ε < α
2 . If G is L-critical with respect to some ⌈(1 −

ε)(∆(G) + 1)⌉-list-assignment L and ω(G) ≤ (1 − α)(∆(G) + 1), then G is (α−2ε)2

2 -sparse.

Note that this implies the same result for ⌊(1 − ε)(∆(G) + 1)⌋ + 1-critical graphs. King
and Reed [10] showed that if G is a ⌊(1 − ε)(∆(G) + 1)⌋+ 1-critical graph with clique number
ω(G) ≤ 2

3 (∆(G)+1), then G is δ-sparse provided δ < 1
4 (

1
6−ε)2. Setting α = 1/3 in Theorem 1.5,

our bound gives δ = 2(16 − ε)2, an eightfold improvement.
Question 1.4 is a well studied problem. Molloy and Reed [11] proved that, for δ ∈ [0, 0.9],

one may take ε(δ) = 0.0238δ provided that the maximum degree is large enough. More recently,
with the same conditions, Bruhn and Joos [2] improved this to ε(δ) = 0.1827δ − 0.0778δ3/2.
These bounds are approximations of more complicated expressions, see [11] and [2] respectively.
Both of these results are proved using a single application of the naive colouring procedure, a
randomised colouring technique which generates a partial proper colouring of a δ-sparse graph.
In this article, we develop an iterative version and using this we improve the bound of Bruhn
and Joos by a factor of

√
e ≈ 1.6487 as follows.

Theorem 1.6. Let G be a δ-sparse graph with δ ∈ [0, 0.9], and let ε = 0.3012δ − 0.1283δ3/2.
There exists ∆1(δ) such that if ∆(G) > ∆1(δ), then χ(G) ≤ χℓ(G) ≤ (1 − ε)(∆(G) + 1).

In fact, we prove Theorem 1.6 in the setting of correspondence colouring defined in Section 3,
a generalization of list colouring. The use of correspondence colouring allows us to simplify some
of the intricacies in the proof and is quite natural in this setting.

This paper is not the first to consider an iterative application of the naive colouring procedure.
Indeed, the notable result of Johansson [7], which states that triangle-free graphs satisfy χ(G) ≤
O(∆(G)/ log∆(G)) is proved in this way, see also [12]. Triangle-free graphs behave particularly
nicely with respect to an iterative version because, for any partial colouring, the subgraph
induced by the uncoloured vertices is still triangle-free. We should briefly remark however that
the method of Johannson [7] is somewhat different in the sense that the procedure is only applied
to a fraction of the vertices in each step. In this case the technique is often called the semi random
method or Rödl nibble and can be traced back to [1, 15].
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In this paper, we show that for δ-sparse graphs, the naive colouring procedure can generate
a partial colouring with the additional property that the uncoloured subgraph G′ is almost δ-
sparse (see Lemma 3.20). This is the key which allows us to apply the procedure iteratively to
the uncoloured subgraph. In addition, the probability that a vertex remains coloured is about
e−1/2 (see Proposition 3.7) and hence the probability a vertex is in G′ is about p = 1 − e−1/2.
After one iteration, Bruhn and Joos had shown that the difference between the maximum degree
of G′ and the resulting list sizes had decreased by at least (0.1827δ−0.0778δ3/2)∆(G); if that was
the initial difference, then we could greedily colour G′ to finish. However, given the key lemma
that G′ is almost δ-sparse, we may apply the procedure again. In each step, we accrue a new
savings proportional to the current maximum degree. Terminating this procedure ad infinitum
would result in roughly the following savings:

(0.1827δ− 0.0778δ3/2)∆(G)(1 + p+ p2 + p3 + . . .) = (0.1827δ− 0.0778δ3/2)∆(G)
1

1 − p

= e1/2(0.1827δ− 0.0778δ3/2)∆(G)

≈ 0.3012δ− 0.1283δ3/2

Of course, we cannot carry out this iteration indefinitely, but after four iterations, we have
saved as much as claimed in Theorem 1.6. For technical reasons, we adopt a different perspective
in the proof of Theorem 1.6, wherein we study the ratio of maximum degree to list size and show
that as long as this ratio is at most that of Theorem 1.6, then the ratio will slowly decrease after
each iteration until it falls below 1 whereupon we finish by colouring greedily.

By using Theorem 1.5 and Theorem 1.6 together with the technique of King and Reed, we
obtain that the ε-version of Reed’s Conjecture holds for ε = 1/26.

Theorem 1.7. There exists ∆2 > 0 such that if G is a graph of maximum degree ∆ > ∆2 and
clique number ω, then χ(G) ≤ ⌈ 25

26 (∆ + 1) + 1
26ω⌉.

1.2 The Strong Chromatic Index

The strong chromatic index, χ′
s(G), of a graph G is defined as the least integer k for which

there exists a k-colouring of E(G) such that edges at distance at most 2 receive different colours.
Equivalently, χ′

s(G) = χ(L2(G)), where L2(G) denotes the square of the line graph of G. Since
∆(L2(G)) < 2∆(G)2, the trivial upper bound on the chromatic number gives that χ′

s(G) ≤
2∆(G)2. However Erdős and Nešetřil conjectured a much stronger upper bound, see [6].

Conjecture 1.8. If G is a graph, then χ′
s(G) ≤ 1.25∆(G)2.

If true, this bound would be tight. Indeed, if Gk denotes the graph obtained from a 5-
cycle by blowing up each vertex into k vertices, then ∆(Gk) = 2k and L2(Gk) is a clique with
5k2 = 1.25∆(Gk)

2 vertices. Figure 1 depicts the graph G3.

Figure 1: A blow-up of the 5-cycle.

In 1997, Molloy and Reed made the first step towards Conjecture 1.8. They showed that for
all graphs G, the graph L2(G) is a subgraph of a graph H such that ∆(H) = 2∆(G)2 and H
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is 1/36-sparse. Thus the naive colouring procedure guarantees that H (and hence G) can be
coloured with (1 − ε)(2∆(G)2 + 1) colours for some ε > 0.

Theorem 1.9. [11] There exists ε > 0 such that if G is a graph with sufficiently large maximum
degree ∆, then χ′

s(G) ≤ (1− ε) · 2∆2.

With δ = 1/36 and their colouring procedure, the value of ε that Molloy and Reed obtain is
approximately 0.0238 · 1

36 ≈ 0.0007. Bruhn and Joos [2] improved the bound on the neighbour-
hood sparsity and showed that L2(G) is asymptotically 1/4-sparse. With δ = 0.24, say, and their
colouring procedure, they deduce Theorem 1.9 for ε = 0.1827 · 0.24− 0.0778 · 0.243/2 ≈ 0.0347.
This gives the following.

Theorem 1.10. [2] If G is a graph of sufficiently large maximum degree ∆, then χ′
s(G) ≤

1.93∆2.

In this article we improve the bound in Theorem 1.10. To do this we first show that one only
needs to colour a subgraph F of L2(G) consisting of high degree vertices with many neighbours
of high degree. This idea resembles the notion that one need only colour a critical subgraph of
L2(G). We then show that F admits a much better bound on its neighbourhood sparsity than
L2(G). Combined with Theorem 1.6, we obtain the following result.

Theorem 1.11. If G is a graph of sufficiently large maximum degree ∆, then χ′
s(G) ≤ 1.835∆2.

1.3 Outline of the Paper

In Section 2 we deal with Question 1.3 and prove Theorem 1.5. In Section 3 we address Ques-
tion 1.4. We recall the naive colouring procedure and develop an iterative version. We then
derive Theorem 1.6 as a consequence. Section 4 is devoted to the strong chromatic index and
the proof of Theorem 1.11. Finally, in Section 5, we prove Theorem 1.7.

For standard definitions and graph theoretic notation, we refer the reader to Diestel [3].

2 A Density Lemma

In this section we prove Theorem 1.5, which guarantees that a graph that is critical with respect
to some k-list-assignment is δ-sparse, for some δ depending on k and the clique number of G.
To do this, we first show that if G is an L-critical graph with respect to some k-list-assignment
L, then the minimum degree of an induced subgraph of G cannot be too large.

Proposition 2.1. If G is an L-critical graph with respect to some k-list-assignment L, then for
all induced subgraphs H of G, we have δ(H) < ∆(G)− k + χℓ(H).

Proof. Suppose for a contradiction that H is an induced subgraph of G with δ(H) ≥ ∆(G) −
k + χℓ(H). Let G′ = G − V (H) and note that for every vertex v ∈ V (H), we have dG′(v) ≤
∆(G) − δ(H) ≤ k − χℓ(H). Since G is L-critical, G′ has an L-colouring φ. Now to each vertex
v ∈ V (H), assign a list of colours L′(v), defined by L′(v) = L(v) \ {φ(u) | u ∈ NG′(v)}. For each
v ∈ V (H), we have |L′(v)| ≥ k − dG′(v) ≥ χℓ(H). Hence φ can be extended to an L-colouring
of G, a contradiction.

The bound in Proposition 2.1 exhibits an awkward dependence on χℓ(H), and so we first
derive an upper bound on this parameter. Note that we let G denote the complement of G.
One can easily guarantee a large matching in the complement of a graph if the clique number is
small.

Proposition 2.2. For every graph G, G has a matching of size at least ⌈ 1
2 (|V (G)| − ω(G))⌉.

Proof. If M is a maximal matching in G, then G − V (M) is a clique. Thus |V (G)| − 2|M | ≤
ω(G).

4



We make use of the following classical result of Erdős, Rubin and Taylor [5].

Theorem 2.3. [5] Let r be an integer. If G is a complete r-partite graph where each partition
class contains at most two vertices, then χℓ(G) = r.

Using Proposition 2.2 and Theorem 2.3, we can derive the desired bound.

Proposition 2.4. If G is a graph then χℓ(G) ≤ ⌊ 1
2 (|V (G)|+ ω(G))⌋.

Proof. By Proposition 2.2, the graph G has an antimatching M of size ⌈ 1
2 (|V (G)|−ω(G))⌉. Let

G′ denote the graph with vertex set V (G) and edge set
(

V (G)
2

)

\M . Note that G′ satisfies the
conditions in Theorem 2.3 with r = ω(G) + ⌊ 1

2 (|V (G)| − ω(G))⌋ = ⌊ 1
2 (|V (G)| + ω(G))⌋. Thus,

by Theorem 2.3, we have χℓ(G
′) = r. Now, since G ⊆ G′, we have χℓ(G) ≤ χℓ(G

′) = r as
desired.

Let G be a graph and A be a subset of V (G) with A = {v1, . . . , vr}. We say that v1, . . . , vr is a
minimum-degree ordering ofA if vi is a vertex of minimum degree in the subgraphG[{vi, . . . , vr}],
for all i ∈ {1, . . . , r}. We use this ordering to derive a first bound on δ.

Lemma 2.5. Let G be a graph of maximum degree ∆ and clique number ω. If G is L-critical
with respect to some k-list-assignment L, then for every vertex v ∈ V (G), we have

(

∆

2

)

− |E(G[N(v)])| ≥ 1

2
·
(

2k −∆− ω + 1

2

)

.

Proof. Let v be a vertex of G with d(v) = r, and let D(v) =
(

∆
2

)

− |E(G[N(v)])|. Also,
let H denote the graph formed from G[N(v)] by adding ∆ − r independent vertices. We do
this so as to compare |E(G[N(v)])| more easily with

(

∆
2

)

, as it is the maximum number of
edges in the neighborhood of a vertex of degree ∆. Finally, let v1, . . . , v∆ be a minimum-
degree ordering of V (H), and set Hi = H [{vi, . . . , v∆}] for i ∈ {1, . . . ,∆}. Clearly, we have

D(v) =
∑∆

i=1 (|V (Hi)| − 1− dHi(vi)). For i ∈ {1, . . . ,∆ − r}, the vertex vi is isolated, and
thus dHi(vi) = 0. On the other hand, for i ∈ {∆ − r + 1, . . . ,∆}, the vertex vi has degree
dHi(vi) = δ(Hi) < ∆− k + χℓ(Hi) by Proposition 2.1, so we have

D(v) ≥
∆
∑

i=1

max{0, |V (Hi)| − (∆− k)− χℓ(Hi)}.

By Proposition 2.4, we have χℓ(Hi) ≤ 1
2 (|V (Hi)|+ω(G)). Furthermore, |V (Hi)| = ∆− i+1

for each i ∈ {1, . . . ,∆}. Thus, we have:

D(v) ≥
∆
∑

i=1

max

{

0,
∆− i+ 1

2
− ω

2
− (∆− k)

}

=
1

2

∆
∑

i=1

max {0, 2k −∆− ω − i+ 1} . (1)

The second term in the maximum of (1) eventually becomes negative when i > 2k−∆−ω+1.
Because of the maximum, we may truncate the sum and deduce that

D(v) ≥ 1

2
·
2k−∆−ω
∑

i=1

max {0, 2k −∆− ω − i+ 1}

=
1

2
·
2k−∆−ω
∑

j=1

j

=
1

2
·
(

2k −∆− ω + 1

2

)

.
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We can now prove Theorem 1.5.

Proof of Theorem 1.5. Let k = ⌈(1 − ε)(∆(G) + 1)⌉. By Lemma 2.5, we have for every vertex
v ∈ V (G) that

(

∆

2

)

− |E(G[N(v)])| ≥ 1

2
·
(

2k −∆− ω + 1

2

)

=
1

2
·
(

2⌈(1− ε)(∆ + 1)⌉ −∆− (1− α)(∆ + 1) + 1

2

)

≥ 1

2
·
(

(α− 2ε)(∆ + 1) + 1

2

)

≥ 1

2
(α− 2ε)2

(

∆

2

)

.

Hence G is (α−2ε)2

2 -sparse.

3 A Sparsity Lemma

3.1 The Naive Colouring Procedure

The naive colouring procedure is a well studied technique which generates a partial proper k-
colouring of a graph G. In the context of graph colourings it was first used by Kahn [8], though
it had already appeared in a more abstract setting [1]. We refer the reader to [12] for a survey
on further applications of the technique. In its simplest form, the naive colouring procedure
consists of the following two steps.

1. To each vertex u ∈ V (G), assign a colour chosen uniformly at random from {1, . . . , k}.

2. If u and v are adjacent vertices with the same colour, then uncolour both u and v.

Let G be a graph and k be an integer with k < ∆(G)+1. If no vertex of G has too many edges
in its neighbourhood, then one can show that with positive probability, the partial k-colouring
generated by the above procedure has the property that vertices of large degree see many repeated
colours in their neighbourhoods. To be more precise, let Col(u) denote the number of coloured
vertices in N(u) and let Dist(u) denote the number of distinct colours amongst the colours of
the vertices in N(u). If there are repeated colours in N(u), then clearly Col(u) > Dist(u). The
following proposition states that if the difference is large enough, then such a partial colouring
can be extended to a colouring of the whole graph in an efficient way.

Proposition 3.1. Let G be a graph and k be an integer such that k < ∆(G) + 1. If there is a
partial proper k-colouring of G such that for every vertex u ∈ V (G), we have Col(u)−Dist(u) ≥
d(u) + 1− k, then G has a k-colouring.

Proof. Let u ∈ V (G) be an uncoloured vertex. The number of uncoloured neighbours of u is
precisely d(u) − Col(u). The number of colours in {1, . . . , k} which do not appear in N(u) is
k − Dist(u) ≥ d(u) − Col(u) + 1. It remains to list colour the uncoloured subgraph G′, where
every vertex u ∈ V (G′) has a list of size at least one greater than dG′(u). Such a colouring can
be constructed greedily.

It is hard to analyse the expectation of the random variable Col(u) − Dist(u). However, by
inclusion-exclusion, it is easy to see that Col(u)−Dist(u) ≥ Pu−Tu, where Pu and Tu denote the
number of pairs and triples of vertices in N(u) which are all coloured the same and all remain
coloured after the procedure. When computing the expectation of Pu and Tu, it is convenient
to assume that the graph in question is ∆-regular. Indeed, this is no restriction, since if G is a
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graph of maximum degree ∆, then G may be embedded in a ∆-regular graph G′ by iterating
the following process. Take two copies of G and add edges between corresponding vertices of
degree less than ∆. Note that χ(G′) = χ(G) and if G is δ-sparse, then so is G′. In this way, we
will frequently assume that the graph under consideration is ∆-regular.

Once the expectations of Pu and Tu have been calculated, one can show that they are
concentrated about their expectations. In other words, the probability that Pu − Tu is far from
its expectation is very small. The Lovász Local Lemma can then be applied to ensure that this
is the case for every u ∈ V (G).

Lovász Local Lemma. Let p ∈ [0, 1), d a postive integer, and B a finite set of (bad) events
such that for every B ∈ B,

• Pr[B] ≤ p, and

• There exists a set of events Dep(B) ⊆ B of size at most d such that B is mutually inde-
pendent of B \Dep(B).

If 4pd ≤ 1, then there exists an outcome in which none of the events in B occur.

In this paper we show that the naive colouring procedure can be iterated. More precisely,
we prove that if G is a δ-sparse graph, then after a single application of the procedure the graph
induced by the uncoloured vertices retains some of the sparsity of the original graph. Thus we
can apply the procedure again to the uncoloured subgraph. In order to show that the sparsity
is retained, we first show that with positive probability, the set of uncoloured vertices behaves
somewhat randomly. The precise condition that we require is the following.

Definition 3.2. Let µ ∈ [0, 1], G be a graph with maximum degree ∆, and A ⊆ V (G). We say
that G[A] is a µ-quasirandom subgraph of G if for every pair of not necessarily distinct vertices
u, v ∈ V (G), we have

||N(u) ∩N(v) ∩A| − µ|N(u) ∩N(v)|| ≤
√
∆(log∆)5.

Note that for u = v, the condition in Definition 3.2 reduces to |dA(u)−µd(u)| ≤
√
∆(log∆)5.

To show that the uncoloured subgraph is a µ-quasirandom subgraph of G, we track more random
variables which count the number of uncoloured vertices in the common neighbourhood of two
vertices. These random variables will also be shown to be highly concentrated, and so we can
add the corresponding bad events to our previous application of the Lovász Local Lemma.

3.2 Correspondence Colouring

Any iterative application of the naive colouring procedure necessitates the introduction of lists
of colours. This is because in each step, some colours are forbidden at a vertex v, namely those
which have been assigned to the neighbours of v in a previous application. In analysing the
procedure, a technical issue arises due to the fact that the probability a vertex keeps a particular
colour in its list may vary depending on the vertex and the colour. Previously, this issue has
been dealt with by introducing extra vertices, or coin flips, to equalise the probabilities.

Here, we use a generalisation of list colouring called correspondence colouring, introduced
by Dvořák and the third author in [4] (and sometimes referred to as DP-coloring). As well as
proving a more general statement, the use of correspondence coloring automatically equalises
the probabilities, and thus simplifies the proof. Here is the definition we use which is equivalent
to but slightly different from the definitions given elsewhere.

Definition 3.3. [4] Let G be a graph, and let ~G be an arbitrary orientation of G.

• A correspondence assignment C of G is a function defined on V (G) ∪ E(~G) as follows:

To each vertex u ∈ V (G), C assigns a set C(u) ⊆ N, and to each edge uv ∈ E(~G), C
assigns an injective partial function Cuv : C(u) → C(v) such that Cvu = C−1

uv for every

edge uv ∈ ~G.

7



• If each C(u) has size at least k, then C is a k-correspondence assignment for G.

• A C-colouring of G is a function f : V (G) → N such that f(u) ∈ C(u) for every u ∈ V (G),

and for every edge uv ∈ E(~G), either f(u) 6∈ dom(Cuv) or Cuv(f(u)) 6= f(v).

• The correspondence chromatic number of G, denoted χc(G), is the smallest integer k such
that G is C-colourable for every k-correspondence assignment C.

We say that the function Cuv assigned to the edge uv is total if dom(Cuv) = C(u). Note
that there is no requirement that functions in the definition above are total. Hence the following
definition.

Definition 3.4. Let G be a graph and C be a correspondence assignment of G. We say C is
total if Cuv and Cvu are total for every edge uv of G.

Note that if C is total andG is connected, then |C(u)| = |C(v)| for every pair of vertices u, v ∈
V (G). We remark if C is a correspondence assignment of a graph G such that |C(u)| = |C(v)|
for every pair of vertices u, v ∈ V (G), then we will often extend C to a total correspondence
assignment C′ by arbitrarily extending each function Cuv, uv ∈ E(G) to be total. Clearly, if G
is C′-colourable, then G is also C-colourable.

Definition 3.5. Let G be a graph and let C be a total correspondence assignment of G. If
uv ∈ E(G), c1 ∈ C(u), c2 ∈ C(v), then we say c1 and c2 correspond under C if Cuv(c1) = c2,
or equivalently, Cvu(c2) = c1. If the correspondence assignment is clear from the context, then
we simply say that c1 and c2 correspond.

Note that Proposition 3.1 is still valid for correspondence colouring.
We now state precisely the variant of the naive colouring procedure that we use. Let C be a

k-correspondence assignment.

Procedure 3.6. Suppose G is a graph and C is a correspondence assignment for G. We generate
a partial C-colouring f as follows.

Step 1: Assign each vertex u ∈ V (G) a colour f1(u) chosen uniformly at random from C(u).

Step 2: For every edge uv ∈ E(G), pick an end D(uv) uniformly at random, that is D(uv) = u
with probability 1

2 and D(uv) = v with probability 1
2 .

Step 3: For each vertex u ∈ V (G), let f(u) = f1(u) if and only if for every edge uv ∈ E(G),
at least one of the following hold: Cuv(f1(u)) 6= f1(v) or D(uv) = v. (Equivalently,
uncolour u if there exists an edge uv ∈ E(G) such that Cuv(f1(u)) = f1(v) and D(uv) =
u.)

We remark that the uncolouring method used here in Steps 2 and 3 was also used by Bruhn
and Joos [2]. Before analysing the procedure, we note the following fundamental fact.

Proposition 3.7. Let G be a ∆-regular graph and let C be a total k-correspondence assignment
of G. For every vertex u ∈ V (G), the probability that u is coloured after an application of
Procedure 3.6 (that is f(u) = f1(u)) is (1− 1

2k )
∆.

Proof. Let K be the event that f(u) = f1(u). For each neighbour v of u, let Uv be the event
that Cuv(f1(u)) = f1(v) and D(uv) = u. Now by definition, P[K] = P[

⋂

v∈N(u) Uv]. Since these

events are independent, we find that P[K] =
∏

v∈N(u) P[Uv].

Note that P[Uv] = P[Cuv(f1(u)) = f1(v)] × P[D(uv) = u], since the events are independent.
Since all correspondences are total, P[Cuv(f1(u)) = f1(v)] =

1
k . Furthermore, P[D(uv) = u] = 1

2 .

Hence P[Uv] =
1
2k and P[Uv] = 1− 1

2k .

Thus P[K] =
∏

v∈N(u)(1 − 1
2k ) = (1 − 1

2k )
|N(u)|. As G is ∆-regular, |N(u)| = ∆. Hence

P[K] = (1− 1
2k )

∆ as desired.

8



We are ready to prove the key lemma of this section. The result is similar to Lemma 7 in
Bruhn and Joos [2], however we extend it to correspondence colouring, and we ensure that the
uncoloured vertices induce a µ-quasirandom subgraph.

Lemma 3.8. Let G be a ∆-regular δ-sparse graph and let C be a k-correspondence assignment
for G. Also let γ > 0 satisfy

γ <
∆δ

2k
e−

∆
k − ∆2δ

3
2

6k2
e−

7∆
8k .

There exists an integer ∆3(δ, γ) such that if ∆ ≥ ∆3(δ, γ), then there is a µ-quasirandom subgraph
G′ of G, and a k′-correspondence assignment C′ of G′ such that any C′-colouring of G′ extends
to a C-colouring of G, where µ = 1− (1− 1

2k )
∆ and k′ ≥ k − (1− µ− γ)∆.

Proof of Lemma 3.8. We may assume that for each vertex u ∈ V (G), the set C(u) has size
precisely k (by restricting to an arbitrary subset of C(u) of size k). Furthermore, we may assume
that C is a total correspondence assignment (by extending, for each edge uv, the function Cuv

to an arbitrary total function and setting Cvu = C−1
uv ). Note the latter two assumptions only

restrict the possible set of C-colourings.
Now consider an application of Procedure 3.6 to the graph G, which produces a partial

C-colouring f of G. Let G′ be the subgraph of G induced by the uncoloured vertices, and
let C′ be the correspondence assignment obtained from C as follows: For each u ∈ V (G′), let
C′(u) := C(u) \ {Cvu(f(v)) : v ∈ NG(u) \ V (G′)}. To every edge uv in E(G′), let C′ assign the
map C′

uv , where C′
uv is the restriction of Cuv to C′(u) and C′(v).

We set k′ = minu∈V (G′) |C′(u)|. Note that every C′-colouring φ′ of G′ can be extended to a
C-colouring φ of G by letting φ(v) = φ′(v) if v ∈ V (G′) and φ(v) = f(v) otherwise. Moreover,
we could truncate each C′(u) to an arbitrary subset of size k′ restricting further the possible
C′-colorings. However, this is not technically needed since the definition of k-correspondence
assignment we use requires only lists of size at least (not necessarily equal to) k.

It remains to show that both of the following hold with high probability: V (G′) is µ-
quasirandom; and k′ ≥ k − (1− µ− γ)∆.

To this end we define a collection of events and random variables. Firstly, for each pair
of vertices u, v ∈ V (G) such that the distance from u to v is at most 2, we define a random
variable Nu,v by Nu,v = |N(u) ∩N(v) ∩ V (G′)|. In particular, for a vertex u ∈ V (G), we have
Nu,u = dV (G′)(u). Let Bu,v be the event that

|Nu,v − µ|N(u) ∩N(v)|| ≥
√
∆(log∆)5.

We show that the probabilities of all these bad events are small in the following two claims.

Claim 3.9. For every u, v ∈ V (G), we have P[Bu,v] ≤ ∆− 1
2 log log∆.

Proof. By Proposition 3.7, we have E[Nu,v] = µ|N(u) ∩ N(v)|. Thus P[Bu,v] = P[|Nu,v −
E[Nu,v]| ≥

√
∆(log∆)5]. In Section 3.3 we argue that the random variable Nu,v is highly

concentrated about its expectation. More precisely, it follows from Lemma 3.19 that

P[|Nu,v − E[Nu,v]| ≥
√
∆(log∆)5] ≤ ∆− 1

2 log log∆.

Hence the conclusion. ♦

For every vertex u ∈ V (G), let

Pu := |{v1v2 ∈ E(G[N(u)]) : Cv1u(f1(v1)) = Cv2u(f1(v2)), v1, v2 /∈ V (G′)}|.

That is, Pu denotes the number of non-adjacent pairs of vertices in N(u) whose colours under f
correspond to the same colour at u. For a graph H , let T (H) denote the set of triangles of H .
For every vertex u ∈ V (G), let
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Tu := |{v1v2v3 ∈ T (G[N(u)]) : Cv1u(f1(v1)) = Cv2u(f1(v2)) = Cv3u(f1(v3)), v1, v2, v3 /∈ V (G′)}|.

That is, Tu denotes the number of non-adjacent triples of vertices in N(u) whose colours under
f correspond to the same colour at u.

For convenience, for each u ∈ V (G), let δu > δ be a fixed constant such that N(u) induces
precisely (1− δu)

(

∆
2

)

edges.
We begin by finding a lower bound on the expectation of Pu as follows.

Claim 3.10. For each vertex u ∈ V (G), we have

E[Pu] ≥ (1− o(1)) · δu
∆2

2k
e−

∆
k ,

where o(1) denotes a function that tends to 0 as ∆ tends to infinity.

Proof.
Let c ∈ C(u). First let v1 and v2 be non-adjacent neighbours of u. Let c1 = Cuv1 (c) and

c2 = Cuv2(c).
Note that

P[f(v1) = c1, f(v2) = c2] = P[f1(v1) = c1, f1(v2) = c2]·P[v1, v2 6∈ V (G′)|f1(v1) = c1, f1(v2) = c2].

Yet

P[f1(v1) = c1, f1(v2) = c2] = P[f1(v1) = c1] · P[f1(v2) = c2] =
1

k2
,

since the events are independent.
Thus we proceed to calculate P[v1, v2 6∈ V (G′)|f1(v1) = c1, f1(v2) = c2] as follows. For each

xy ∈ E(G), let Ux,y be the event that Cxy(f1(x)) = f1(y) and D(xy) = x (that is the event that
y ‘uncolours’ x). Note for each xy ∈ E(G), P[Ux,y] =

1
2k and hence P[Ux,y] = 1− 1

2k .

P[v1,v2 6∈ V (G′)|f1(v1) = c1, f1(v2) = c2]

= P

[(

⋂

w∈N(v1)

Uv1,w

)

∩
(

⋂

x∈N(v2)

Uv2,x

)]

=
∏

w∈N(v1)\N(v2)

P[Uv1,w] ×
∏

x∈N(v2)\N(v1)

P[Uv2,x] ×
∏

y∈N(v1)∩N(v2)

P[Uv1,y ∩ Uv2,y].

For each y ∈ N(v1)∩N(v2), we have by the union bound that P[Uv1,y∪Uv2,y] ≤ 1
k and hence

P[Uv1,y ∩ Uv2,y] ≥ 1− 1
k .

Let |N(v1) ∩ N(v2)| = ℓ. Since G is ∆-regular, we have that |N(v1) ∩ N(v2)| = |N(v2) ∩
N(v1)| = ∆− ℓ. Hence

P[v1, v2 /∈ V (G′)|f1(v1) = f1(v2) = c] ≥
(

1− 1

2k

)2∆−2ℓ

·
(

1− 1

k

)ℓ

≥
(

1− 1

k

)∆

.

Thus for each c ∈ C(u)

P[Cv1u(f(v1)) = Cv2u(f(v2)) = c] ≥ 1

k2
·
(

1− 1

k

)∆

.

Since |C(u)| = k, we find that

P[Cv1u(f(v1)) = Cv2u(f(v2))] ≥
1

k
·
(

1− 1

k

)∆

.
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Yet

E[Pu] =
∑

v1v2∈E(N(u))

P[Cv1u(f(v1)) = Cv2u(f(v2))].

As there are precisely δu
(

∆
2

)

non-adjacent pairs in N(u), we conclude that

E[Pu] ≥ δu

(

∆

2

)

· 1
k
·
(

1− 1

k

)∆

≥ (1− o(1)) · δu
∆2

2k
e−

∆
k ,

as desired, where the last inequality follows because the two inequalities that γ is assumed to
satisfy imply that k = Θ(∆). ♦

We now compute an upper bound on the expectation of Tu, the number of non-adjacent
triples of vertices in N(u) whose colours under f correspond to the same colour at u, as follows.

Claim 3.11. For each vertex u ∈ V (G), we have

E[Tu] ≤
∆3δ

3
2

6k2
e−

7∆
8k .

Proof. Let c ∈ C(u). Let v1, v2, v3 ∈ T (G[N(u)]). For i ∈ {1, 2, 3}, let ℓi denote the number
of vertices in N(v1) ∪N(v2) ∪N(v3) that have precisely i neighbours in {v1, v2, v3}. Note that
ℓ1 + 2ℓ2 + 3ℓ3 = 3∆.

We now proceed with an analysis similar to that for the pairs. Let c1 = Cuv1 (c), c2 = Cuv2(c)
and c3 = Cuv3 (c).

Since

P[f1(v1) = c1, f1(v2) = c2, f1(v3) = c3] =
1

k3
,

it suffices to compute

P[v1, v2, v3 6∈ V (G′)|f1(v1) = c1, f1(v2) = c2, f1(v3) = c3].

For each y with precisely two neighbours in {v1, v2, v3}, say y ∈ N(v1)∩N(v2) and y 6∈ N(v3),
we have P[Uv1,y ∪ Uv2,y] ≥ 3

4k . Indeed, P[Uv1,y ∩ Uv2,y] = P[f1(y) = Cv1y(c1) = Cv2y(c2)] ·
P[D(yv1) = v1 and D(yv2) = v2]. Note that P[D(yv1) = v1 and D(yv2) = v2] =

3
4 . The value of

P[f1(y) = Cv1y(c1) = Cv2y(c2)] is either 0 (if Cv1y(c1) 6= Cv2y(c2)) or
1
k (if Cv1y(c1) = Cv2y(c2)).

In both cases, P[Uv1,y ∩ Uv2,y] ≤ 1
4k , hence P[Uv1,y ∪ Uv2,y] ≥ P[Uv1,y] + P[Uv2,y] − 1

4k = 3
4k . It

follows that P[Uv1,y ∩ Uv2,y] ≤ 1− 3
4k .

Similarly, for each y ∈ N(v1) ∩ N(v2) ∩ N(v3), we have P[Uv1,y ∪ Uv2,y ∪ Uv3,y] ≥ 7
8k and

hence P[Uv1,y ∩ Uv2,y ∩ Uv3,y] ≤ 1− 7
8k .

We find that the probability that v1, v2, v3 ∈ V (G)\V (G′) is at most
(

1− 1
2k

)ℓ1 ·
(

1− 3
4k

)ℓ2 ·
(

1− 7
8k

)ℓ3
. Since we can check that (1− 1

2k )
3 ≤ (1− 7

8k ) and (1− 3
4k )

2 ≤ (1− 7
8k ), we find that

the probability that v1, v2, v3 ∈ V (G) \ V (G′) is at most:

(

1− 1

2k

)ℓ1

·
(

1− 3

4k

)ℓ2

·
(

1− 7

8k

)ℓ3

≤
(

1− 7

8k

)ℓ1/3+2ℓ2/3+ℓ3

=

(

1− 7

8k

)∆

.

A result of Rivin [14] states that every graph with δu
(

∆
2

)

edges contains at most
δ3/2u ∆3

6
triangles. Thus, for large enough ∆,

E[Tu] ≤
δ
3/2
u ∆3

6
· k · 1

k3
·
(

1− 7

8k

)∆

≤ ∆3δ
3
2

6k2
e−

7∆
8k ,
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as desired. ♦

Now, using linearity of expectation and Claims 3.10 and 3.11, we have

E[Pu − Tu] ≥ (1− o(1)) · ∆
2δu
2k

e−
∆
k − ∆3δ

3
2
u

6k2
e−

7∆
8k

≥ (1− o(1))

(

∆δ

2k
e−

∆
k − ∆2δ

3
2

6k2
e−

7∆
8k

)

∆.

As discussed after Proposition 3.1, the value of Pu − Tu is a lower bound on the number of
repeated colours. Let Au be the event that

Pu − Tu ≤
(

1− 1

log∆

)

(

∆δ

2k
e−

∆
k − ∆2δ

3
2

6k2
e−

7∆
8k

)

∆.

Claim 3.12. For every u ∈ V (G), we have P[Au] ≤ 2∆− 1
2 log log∆.

Proof. We argue in Section 3.3 that the random variables Pu and Tu are highly concentrated
about their expectations. More precisely, Lemmas 3.17 and 3.18 state that for large enough ∆
we have that

P[|Pu − E[Pu]| ≥
√
∆ log4 ∆] ≤ ∆− 1

2 log log ∆

and
P[|Tu − E[Tu]| ≥

√
∆ log5 ∆] ≤ ∆− 1

2 log log∆.

Thus, it follows from Claims 3.10 and 3.11 that for ∆ large enough, we have P[Au] ≤
2∆− 1

2 log log ∆ as desired. ♦

Let A and B denote the set of events of the form Au and Bu,v respectively. For x, y ∈ V (G),
let dG(x, y) denote the distance from x to y in G. Note that Au only depends on random
variables in {f1(w) : dG(u,w) ≤ 2} ∪ {D(wx) : dG(u,w) ≤ 1} and similarly Bu,v depends only
on random variables in {f1(w) : dG(u,w) ≤ 2} ∪ {D(wx) : dG(u,w) ≤ 1.

Let d = ∆9. A routine calculation show that for each x ∈ V (G) and integer i ≥ 0, we have
|{y : d(x, y) ≤ i}| ≤ ∆i+1.

For each u ∈ V (G), let Dep(Au) := {Av : dG(v, u) ≤ 4}∪{Bv,w : dG(v, u) ≤ 4}. Note that, by
the mutual independence principle, Au is mutually independent of all events in (A∪B)\Dep(Au).
Furthermore |Dep(Au)| ≤ ∆5+∆5 ·∆3 ≤ ∆9 since ∆ ≥ 2. Hence |Dep(Au)| ≤ d. By Claim 3.12,

it follows that P[Au] ≤ 2∆− 1
2 log log∆ ≤ 1

4d where the last equality follows since ∆ is large enough.
Similarly for each u, v such that dG(u, v) ≤ 2, let Dep(Bu,v) := Aw : dG(w, u) ≤ 4} ∪ {Bw,x :

dG(w, u) ≤ 4}. Note that, by the mutual independence principle, Bu,v is mutually independent
of all events in (A∪B)\Dep(Bu,v). Furthermore as above |Dep(Bu,v)| ≤ ∆5+∆5 ·∆3 ≤ ∆9 = d.

By Claim 3.12, it follows that P[Au] ≤ ∆− 1
2 log log∆ ≤ 1

4d where the last equality follows since ∆
is large enough.

The Lovász Local Lemma then implies that with positive probability none of the events in
A ∪ B occur. Since no event in B occurs, the uncoloured subgraph G′ is µ-quasirandom. In
particular, every vertex u ∈ V (G) has at most (1 − µ)∆ +

√
∆(log∆)5 coloured neighbours.

Similarly, since no event in A occurs, we have that, if ∆ is large enough, then Pu − Tu ≥
γ∆+

√
∆(log∆)5 for every u ∈ V (G′).

Now, the k′-correspondence assignment C′ of G′ satisfies

|C′(u)| ≥ k − ((1 − µ)∆ +
√
∆(log∆)5) + Pu − Tu

at every vertex u ∈ V (G′). Thus, we have k′ ≥ k − (1− µ− γ)∆ as desired.
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3.3 Concentration Details

In this section we prove the concentration results required in the proof of Lemma 3.8. Our main
tool will be a modified version of Talagrand’s inequality, developed by Bruhn and Joos [2].

Consider a random variable X determined by a set of independent trials. If changing the
outcome of a small number of trials does not affectX very much, then a well known concentration
inequality may apply. Unfortunately, in the naive colouring procedure, changing the colour of
one vertex can have a large effect. Indeed changing the colour of a vertex u may cause all vertices
in N(u) to lose their colour during Step 3 of Procedure 3.6. However such an outcome is very
unlikely, since it requires that the colours assigned to the vertices in N(u) all correspond to the
same colour at u.

Bruhn and Joos [2] developed a version of Talagrand’s Inequality capable of handling such
outcomes. To describe it, let Ω be a product space of discrete probability spaces, and define a
set Ω∗ ⊆ Ω of exceptional outcomes. We say that X has downward (s, c)-certificates if for every
t > 0, and for every ω ∈ Ω\Ω∗ there is an index set I of size at most s so that X(ω′) < X(ω)+ t
for every ω′ ∈ Ω \ Ω∗ where the restrictions ω|I and ω′|I differ in less than t/c coordinates.

In other words, for each non-exceptional outcome, there is a small index set which can
guarantee that the random variable X is not too much larger for similar outcomes. We can now
state the theorem of Bruhn and Joos.

Theorem 3.13. [2] Let ((Ωi,Σi,Pi))
n
i=1 be discrete probability spaces, (Ω,Σ,P) be their product

space, and let Ω∗ ⊂ Ω be a set of exceptional outcomes. Let X : Ω → R be a random variable, let
M = max{sup |X |, 1}, and let c ≥ 1. If P[Ω∗] ≤ M−2 and X has downward (s, c)-certificates,
then for t > 50c

√
s,

P[|X − E[X ]| ≥ t] ≤ 4e−
t2

16c2s + 4P[Ω∗].

For each vertex v ∈ V (G), let Ωv denote the discrete probability space that is selecting a
colour f1(v) from C(v) uniformly at random. For each edge uv ∈ E(G), let Ωuv denote the
discrete probability space that is selecting an end D(uv) uniformly at random from {u, v}. Let
Ω denote the product probability space

∏

v∈V (G)Ωv ×
∏

uv∈E(G) Ωuv. Thus each outcome ω ∈ Ω

is indexed by V (G) ∪E(G).
For each vertex v ∈ V (G), let Qv be the set of outcomes ω ∈ Ω such that there exists a

subset S of N(v), |S| ≥ log∆, and c ∈ C(v) such that Cwv(f1(w)) = c for all w ∈ S (that is at
least log∆ vertices in N(v) have colours corresponding to the same colour at v).

Let u ∈ V (G) be a fixed vertex. We define the exceptional outcomes

Ω∗ :=
⋃

v:d(u,v)≤2

Qv.

Lemma 3.14. For large enough ∆,

P[Ω∗] ≤ ∆− 2
3 log log∆.

Proof. First we calculate P[Qv]. This calculation can be found in [2, p. 18 (arXiv version)] and
trivially generalises to correspondence colouring. Hence we have the following:

P[Qv] ≤ ∆2(
e∆

k log∆
)log ∆.

As the number of vertices at distance at most two from a vertex is at most ∆2 + 1, we have

P[Ω∗] ≤ (∆2 + 1)∆2

(

e∆

k log∆

)log∆

= ∆6+log(∆
k )−log log∆ ≤ ∆− 2

3 log log ∆, (2)

as desired, where the last inequality follows since ∆ is large enough. Note that the middle term
is ∆2 times bigger than the probability obtained in [2], but that increase is negligible given how
fast it decreases in ∆.
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Proposition 3.15. For each u ∈ V (G), the random variable Pu has downward (s, c)-certificates
where s = 3∆ and c = log2 ∆.

The proof is almost identical to that of Bruhn and Joos [2, Lemma 7] except that, since we
deal with correspondence colouring, it is possible that a single vertex v affects the colours of
many vertices in N(u), all of which correspond to different colours at u.

Proof. Let ω ∈ Ω \ Ω∗. For every vertex v ∈ N(u) ∩ V (G′), let av denote a neighbour w of
v such that Cwv(f1(w)(ω)) = f1(v)(ω) and D(wv)(ω) = v (such exist since v ∈ V (G′)). Let
I =

(
⋃

v∈N(u) Ωv

)

∪
(
⋃

v∈N(u)∩V (G′)(Ωav ∪ Ωvav )
)

. Note that |I| ≤ 3∆.

To prove that Pu has downward (3∆, log2 ∆)-certificates it now suffices to prove the following
claim.

Claim 3.16. For every t > 0 and ω′ ∈ Ω \ Ω∗ such that that Pu(ω
′) ≥ Pu(ω) + t, then ω|I and

ω′|I differ in at least t
log3 ∆

coordinates.

Proof. First we characterize how the coordinates in I may differ between ω and ω′ as follows.
Let

A1 := {v ∈ N(u) : Ωv(ω)) 6= Ωv(ω
′)},

that is the set of neighbours of u that have different colours under f1 in ω versus ω′. Similarly
let

A2 := {v ∈ N(u) : Ωvav (ω) 6= Ωvav (ω
′)},

that is the neighbours of u where D(vav) differs in ω and ω′. Finally let

A3 := {w ∈ V (G) : ∃v ∈ N(u) ∩ V (G′), w = av,Ωw(ω) 6= Ωw(ω
′)},

that is the vertices w ∈ V (G) for which f1(w) differs in ω and ω′ and are also an av for some
v ∈ N(u) ∩ V (G′). Note that ω|I and ω′|I differ in at most |A1|+ |A2|+ |A3| coordinates.

Now let

Pw
u := |{wx ∈ E(G[N(u)]) : Cwu(f1(w)) = Cxu(f1(x)), w, x /∈ V (G′)}|,

that is the number of pairs counted in Pu in which w appears. Let

B = {v ∈ N(u) : v ∈ V (G′(ω)) \ V (G′(ω′))},

that is the set of neighbours of u that are in V (G′) in ω but not in V (G′) in ω′. Now

Pu(ω
′) ≤ Pu(ω) +

∑

w∈A1∪B

Pw
u (ω′).

For each vertex v ∈ V (G) and colour c ∈ C(v), define

Nv,c := {x ∈ N(v) : Cxv(f1(x)) = c},

that is the set of vertices x ∈ N(v) whose colour in f1 corresponds to colour c at x. Since
ω, ω′ 6∈ Ω∗, we have that ω, ω′ 6∈ Qv. This implies that for each vertex v ∈ V (G) and colour
c ∈ C(v), we have

|Nv,c| ≤ log∆.

Note that if w ∈ N(u) and we let c = Cwu(Ωw(ω
′)), then Pw

u (ω′) ≤ |Nu,c| ≤ log∆, hence

Pu(ω
′) ≤ Pu(ω) + (|A1|+ |B \A1|) log∆.

Yet
B \A1 ⊆ A2 ∪

(

⋃

w∈A3

Nw,Ω(w)(ω)
)

,
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hence
|B \A1| ≤ |A2|+ |A3| log∆.

Combining, we have

t ≤ Pu(ω
′)− Pu(ω) ≤ (|A1|+ |B \A1|) log∆ ≤ (|A1|+ |A2|+ |A3|) log2 ∆.

Hence the number of coordinates in which ω|I and ω′|I differ is at least t
log2 ∆

= t
c as desired. ♦

Lemma 3.17. If ∆ is large enough, then P[|Pu − E[Pu]| ≥
√
∆ log4 ∆] ≤ ∆− 1

2 log log ∆.

Proof. We will apply Theorem 3.13 with t =
√
∆ log4 ∆, s = 3∆ and c = log2 ∆ but first we

check that the hypotheses of Theorem 3.13 are satisfied.
Note that by Proposition 3.15, Pu has downward (s, c)-certificates. Next note that M =

supPu ≤ ∆2. By Lemma 3.14, P[Ω∗] ≤ ∆− 2
3 log log∆ which is at most ∆−4 when ∆ is large

enough. Thus we have P[Ω∗] ≤ ∆−4 ≤ M−2. Hence all of the hypotheses of Theorem 3.13 are
satisfied.

Applying Theorem 3.13 with the parameters above, we conclude that for large enough ∆, we
have

P[|Pu − E[Pu]| ≥
√
∆ log4 ∆] ≤ 4∆− 1

48 log∆ +∆− 2
3 log log∆,

which is at most ∆− 1
2 log log∆ for large enough ∆.

In an analogous way one can show that the random variable Tu is concentrated about its
expectation. The only difference in the argument is that there could be up to

(

log∆
3

)

triples of
vertices in N(u) which correspond to a fixed colour at u. Nevertheless, taking t and c to be
log∆ times larger than for Pu above we obtain the following from Theorem 3.13.

Lemma 3.18. If ∆ is large enough, then P[|Tu − E[Tu]| ≥
√
∆ log5 ∆] ≤ ∆− 1

2 log log∆.

For the random variable Nu,v, u, v ∈ V (G), we can take c = log∆, s = 3∆ and t =√
∆ log2 ∆. An argument analogous to that of Proposition 3.15 shows that Nu,v has downward

(s, c)-certificates. Then Theorem 3.13 implies the following.

Lemma 3.19. If ∆ is large enough, then P[|Nu,v − E[Nu,v]| ≥
√
∆ log5 ∆] ≤ ∆− 1

2 log log∆.

3.4 Iterating the Procedure

We now argue that given the properties of the colouring obtained after applying Lemma 3.8, the
graph induced by the uncoloured vertices retains some of the sparsity of the original graph.

Lemma 3.20. Let δ, µ > 0, let G be a graph of maximum degree ∆ such that every neighbourhood
induces at most (1−δ)

(

∆
2

)

edges, and let G′ be a µ-quasirandom subgraph of G. For every δ′ < δ,
there exists ∆4(µ, δ, δ

′) such that if ∆ ≥ ∆4(µ, δ, δ
′), then every neighbourhood of G′ induces at

most (1− δ′)
(

∆(G′)
2

)

edges.

Proof. Let u ∈ V (G′), and for simplicity let N ′(u) = N(u) ∩ V (G′) and d′(u) = dV (G′)(u). If S
is a set of vertices, we also write E(S) to mean E(G[S]). Counting the edges induced by N ′(u),
we have 2|E(N ′(u))| = ∑v∈N ′(u) dN ′(u)(v). For any v ∈ N ′(u), since G′ is µ-quasirandom and

dN ′(u)(v) = |N(u) ∩N(v) ∩ V (G′)|, we have

dN ′(u)(v) ≤ µdN(u)(v) +
√
∆(log∆)5. (3)
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Thus we have

2|E(N ′(u))| ≤
∑

v∈N ′(u)

(

µdN(u)(v) +
√
∆(log∆)5

)

≤ µ
∑

v∈N ′(u)

dN(u)(v) + ∆
√
∆(log∆)5.

Rewriting the sum we have
∑

v∈N ′(u)

dN(u)(v) =
∑

v∈N ′(u)

∑

w∈N(u)∩N(v)

1

=
∑

w∈N(u)

∑

v∈N ′(u)∩N(w)

1

=
∑

w∈N(u)

dN ′(u)(w),

so another application of (3) gives

2|E(N ′(u))| ≤ µ
∑

w∈N(u)

(

µdN(u)(w) +
√
∆(log∆)5

)

+∆
√
∆(log∆)5

= µ2
∑

w∈N(u)

dN(u)(w) + µ∆
√
∆(log∆)5 +∆

√
∆(log∆)5

≤ 2µ2|E(N(u))|+ 2∆
√
∆(log∆)5.

Since every neighbourhood of G induces at most (1− δ)
(

∆
2

)

edges, we have

|E(N ′(u))| ≤ µ2(1− δ)

(

∆

2

)

+∆
√
∆(log∆)5,

and since µ2
(

∆
2

)

≤
(

µ∆
2

)

+ µ∆ for any µ > 0, we have

|E(N ′(u))| ≤ (1 − δ)

(

µ∆

2

)

+ 2∆
√
∆(log∆)5.

Because G′ is a µ-quasirandom subgraph of G, we have that µ∆ ≤ ∆(G′) +
√
∆(log∆)5, so

|E(N ′(u))| ≤ (1− δ)

(

∆(G′) +
√
∆(log∆)5

2

)

+ 2∆
√
∆(log∆)5

≤ (1− δ)

[

(

∆(G′)

2

)

+

(
√
∆(log∆)5

2

)

+∆(G′)
√
∆(log∆)5

]

+ 2∆
√
∆(log∆)5

Thus we have |E(N ′(u))| ≤ (1 − δ)
(

∆(G′)
2

)

+ O(∆
√
∆(log∆)5). Finally, for any δ′ < δ we have

|E(N ′(u))| ≤ (1− δ′)
(

∆(G′)
2

)

provided that ∆ is large enough.

We are now able to prove the main Theorem of this section.

Theorem 3.21. Let ε, δ > 0 be such that ε < 0.5 and

ε < e
1

2(1−ε)

(

δ

2(1− ε)
e−

1
1−ε − δ3/2

6(1− ε)2
e−

7
8(1−ε)

)

.

There exists ∆5(ε, δ) > 0 such that if G is a δ-sparse graph of maximum degree ∆ > ∆5(ε, δ),
then χc(G) ≤ (1− ε)∆.
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Proof. For convenience we define

g(ε, δ) =
δ

2(1− ε)
e−

1
1−ε − δ3/2

6(1− ε)2
e−

7
8(1−ε) . (4)

Set k = ⌊(1 − ε)∆⌋ and let C be a k-correspondence assignment for G. We will show that
G is C-colourable by repeatedly applying Lemma 3.8 to the remaining uncoloured graph. We
frequently assume that the maximum degree of this graph is sufficiently large, and explain at
the end of this proof why we may do this.

To simplify the analysis, let ε′ > 0 be such that (1 − ε′)∆ = k. If ∆5 is large enough, then
this can always be done in such a way that ε′ and δ still satisfy the conditions of the theorem
provided ∆ > ∆5. We also choose some δ′ < δ such that δ′ and ε′ still satisfy the condition.
When iterating the procedure, the sparsity of the uncoloured subgraph may decrease, but by
taking ∆5 to be large enough, we will ensure that it never drops below δ′. In this way, the
condition of the theorem is always satisfied and we can apply the naive colouring procedure
again.

Let β > 0 be a constant such that ε′e
− 1

2(1−ε′) + β < g(ε′, δ′). Informally, we show that in the
subgraph induced by uncoloured vertices, the ratio of number of colours available over maximum
degree increases by at least β/2 after every iteration of the naive colouring procedure. Thus,
this ratio eventually reaches 1, which guarantees we can colour the final uncoloured subgraph
greedily. Additionally, note that the upper-bound on the number of iterations does not depend
on ∆.

Let T = ⌈ 2ε
β ⌉+1. First we define parameters for the small constants we use as follows. Define

for each integer i such that 0 ≤ i ≤ T the following:

• εi = ε′ − iβ2

• γi = εie
− 1

2(1−εi) + β

• δi = δ − i
T (δ − δ′)

Let r0 = ∆. We now define the constants we use for the numbers of colours, degrees and
quasirandomness as follows. Define for each integer i such that 0 ≤ i ≤ T the following:

• ki = (1− εi)ri

• µi = 1− (1− 1
2ki

)ri

• ri =
(

µi−1 +
β
2

)

ri−1 for i 6= 0

First we argue that rT will be large enough provided that ∆5(ε, δ) is, as follows.

Claim 3.22. For every CT , there exists C such that if ∆5(ε, δ) > C, then rT > CT .

Proof. Note that given ε and δ, we have that µi ≥ 1 − e
1

2(1−εi) > 0 for every i ∈ {1, . . . , T }.
Since ri+1 ≥ µiri −

√
ri(log ri)

5, we have that ri+1 grows with ri for every i ∈ {1, . . . , T }.

We then argue two useful monotone properties.

Claim 3.23. If δ∗ ≥ δ′ and ε∗ ≤ ε′, then g(ε∗, δ∗) ≥ g(ε′, δ′).

Proof. It is easily checked that for fixed ε, the function g is increasing in δ. Therefore, it
remains to argue that g(ε∗, δ′) ≥ g(ε′, δ′), in other words, that g is a decreasing function of ε

for fixed δ. We point out that x 7→ δ′

2xe
− 1

x is an increasing function of x for x ∈ [0.5, 1], as

well as x 7→ − δ′
3
2

6x e−
7
8x for x ∈ [0.5, 1]. It follows that the sum is also an increasing function of

x ∈ [0.5, 1]. Setting x = 1 − ε, we obtain that g is a decreasing function of ε for ε ∈]0, 0.5] and
for fixed δ. ♦

We can similarly argue the following.
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Claim 3.24. For every i ∈ {1, . . . , T − 1}, we have γi+1 ≤ γi.

Proof. Since γi = εie
− 1

2(1−εi) + β and εi is a decreasing function of i, it suffices to argue that

the function x 7→ x · e−
1

2(1−x) is increasing on [0, 0.5]. This is easy to check by computing its

derivative (x 7→ (1− x
2(1−x2) ) · e

− 1
2(1−x) ) and noticing that it is positive on [0, 0.5[. ♦

Now we argue that there inductively exists by Lemma 3.8 subgraphs of G and new corre-
spondence assignments for those subgraphs whose parameters are defined as above.

Claim 3.25. There exist a family of graphs (Gi : i ∈ [0, T ]) with G0 = G and correspondence
assignments Ci for Gi with C0 = C such that all of the following hold for each i ∈ [1, T ]:

1) Gi is δi-sparse

2) Gi has maximum degree at most ri

3) Ci is a ki-correspondence assignment

4) If there exists a Ci-colouring of Gi, then there exists a C-colouring of G

Proof. We proceed by induction on i. Hence Gi−1 is δi−1-sparse graph with maximum degree
ri−1 and Ci−1 is ki−1-correspondence assignment for Gi−1 such that 4) holds.

By choice of β, we have ε′ · e−
1

2(1−ε′) + β < g(ε′, δ′). Since the left term is exactly γ0, we
rewrite the previous equation: γ0 < g(ε′, δ′).

Note that for every i, we have εi ≤ ε′ and δi ≥ δ′. By combining Claims 3.23 and 3.24, we
obtain, for each i ≥ 1,

γi = εie
− 1

2(1−εi) + β < g(εi, δi).

By the remark following Proposition 3.1, there exists a ri−1-regular graph G′
i−1 of sparsity

δi−1 that contains Gi−1 as a subgraph. We extend Ci−1 to ki−1-correspondence assignment of
G arbitrarily.

Applying Lemma 3.8 with γ = γi−1, G = G′
i−1,∆ = ri−1, δ = δi−1, k = ki−1 and C = Ci−1,

we find that there exists a µi−1-quasirandom subgraph of G′
i−1, call it Gi, such that there exists

an ℓ-correspondence assignment Ci ofGi such that any Ci-coloring of Gi extends to Ci−1-coloring
of G′

i−1. Hence there exists a Ci−1-coloring of Gi−1 and ℓ ≥ ki−1 − (1− µi−1 − γi−1)ri−1.
Since ri is large enough by Claim 3.22, Lemma 3.20 implies that Gi is δi-sparse and hence 1)

holds for Gi. Since 4) holds for Gi−1, we find that 4) holds for Gi.

Subclaim 3.26. 2) holds for Gi.

Proof. Since Gi is a µi−1-quasirandom subgraph of Gi−1, it follows that

ri ≤ µi−1ri−1 +
√
ri−1(log ri−1)

5.

Since ri is large enough, we have that
√
ri−1(log ri−1)

5 ≤ β
2 ri−1 and hence

ri ≤
(

µi−1 +
β

2

)

ri−1,

as desired.

Subclaim 3.27. 3) holds for Gi.

Proof. It suffices to show that ℓ ≥ ki. Recall that ℓ ≥ ki−1 − (1− µi−1 − γi−1)ri−1.

Since ki−1 = (1− εi−1)ri−1 and γi−1 = εi−1e
− 1

2(1−εi−1) + β, we have that

ki ≥ (1 − εi−1)ri−1 − (1− µi−1)ri−1 + (εi−1e
− 1

2(1−εi−1) + β)ri−1

=
(

µi−1 − (1− e
− 1

2(1−εi−1) )εi−1 + β
)

ri−1.
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Since µi−1 ≥ 1− e
− 1

2(1−εi−1) , we find that

ki ≥ ((1 − εi−1)µi−1 + β)ri−1

= (1 − εi−1)µi−1ri−1 + βri−1.

Since ri =
(

µi−1 +
β
2

)

ri−1, we have that

ki = (1− εi−1)(ri −
β

2
ri−1) + βri−1

= (1− εi−1)ri +
β

2
ri−1

≥
(

1− εi−1 +
β

2

)

ri

= (1− εi)ri,

as desired. ♦

Since T = ⌈ 2ε
β ⌉+ 1 and εT = ε− T β

2 , we find that εT < 0. Hence kT = (1− εT )rT > rT + 1
provided rT is large enough. Thus there exists a CT -colouring of GT using a greedy algorithm.
By Claim 3.25(4), it follows that G is C-colourable.

Bruhn and Joos [2] note that for δ ∈ [0, 0.9], setting ε = 0.1827δ − 0.0778δ3/2 satisfies

ε < g(ε, δ), where g is the function defined in (4). Since
√
e < e

1
2(1−ε) for all ε > 0, we have

that setting ε = (0.1827δ − 0.0778δ3/2)
√
e satisfies ε < e

1
2(1−ε) g(ε, δ) for δ in the same range.

Therefore we deduce Theorem 1.6 as a corollary.

4 Application to Strong Edge Colouring

In this section we prove Theorem 1.11. Recall that L(H) denotes the line graph of H , that is,
the graph with vertex set E(H) and where two edges are adjacent if they were incident in H .
The square of a graph G is obtained from G by adding an edge between every pair of vertices
u, v ∈ V (G) which have distance precisely 2 in G. In other words, two vertices are adjacent in
the square of G if and only if they are at distance 1 or 2 in G. If H is a graph, we denote the
square of the line graph of H by L2(H). Thus, a strong edge colouring of H is a vertex colouring
of L2(H). If uv ∈ E(H), then Ns(uv) denotes the strong neighborhood of uv, i.e. the set of edges
of H which have an endpoint adjacent to u or v. Equivalently, Ns(uv) is the neighbourhood of
the vertex uv in the graph L2(H). We also let ds(uv) = |Ns(uv)|. Given a set of vertices A and
a vertex u, we define dA(u) as d(u) − dA(u). Similarly, given a set of edges B and an edge uv,
we define ds

B
(uv) as |Ns(uv) \B|.

4.1 A Sparsity Bound for Squares of Linegraphs

Molloy and Reed [11] and Bruhn and Joos [2] gave evidence for Conjecture 1.8 by improving
the constant from the trivial bound of 2∆2. To do this they showed that for any graph H , the
graph L2(H) is a subgraph of a graph G such that ∆(G) = 2∆(H)2 and G is δ-sparse for some
δ > 0. This was achieved directly by carefully bounding the number of edges induced by the
strong neighbourhood of an edge of H . Bruhn and Joos obtained the following inequalities and
bounds which we shall make use of later.
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Lemma 4.1. [2] Let H be a graph of maximum degree ∆, and G = L2(H). Let uv ∈ E(H) and
define X = NH(u) ∪ NH(v) \ {u, v} and Y = NH(X) \ (X ∪ {u, v}). Letting C4(X,Y ) denote
the number of 4-cycles x1y1x2y2 such that x1, x2 ∈ X and y1, y2 ∈ Y , we have

ds(uv) ≤ (2− α− β)∆2 − 2∆,

C4(X,Y ) ≥ 1

2

(

(2− α− 2β − γ)2

2(2− α)2
∆4 − (7− γ

2
)∆3

)

,

and
|E(G[Ns(uv)])| ≤

(

2− α− β − γ

2

)

∆4 − 2C4(X,Y ) +
(γ

2
− 2
)

∆3,

where α∆ = |N(u) ∩N(v)|, β∆2 = |E(H [X ])| and γ∆3 =
∑

y∈Y dX(y)(∆− dX(y)).

We first slightly improve the bound on the number of edges induced by the strong neigh-
bourhood of an edge.

Lemma 4.2. Let H be a graph of maximum degree ∆, and G = L2(H). Let X = NH(u) ∪
NH(v) \ {u, v} and Y = NH(X) \ (X ∪ {u, v}), and let C4(X,Y ) denote the number of 4-cycles
x1y1x2y2 such that x1, x2 ∈ X and y1, y2 ∈ Y . If uv ∈ E(H), then

|E(G[Ns(uv)])| ≤
(

2− α− β − γ

2

)

∆4 − 2C4(X,Y )− γ2

2(2− α− β)
∆4 +

(γ

2
− 2
)

∆3,

where α∆ = |N(u) ∩N(v)|, β∆2 = |E(H [X ])| and γ∆3 =
∑

y∈Y dX(y)(∆− dX(y)).

Proof. By the remark following Proposition 3.1, we may assume that H is ∆-regular. Let
Z = Ns(uv).

We denote by P the number of all (directed) paths pqrs such that pq ∈ Z. We denote by B
the number of all paths pqrs such that pq ∈ Z and r, s 6∈ X .

Claim 4.3. We have 2|E(G[Ns(uv)])| ≤ P −B − 4|C4(X,Y )|.
Proof. We note that 2|E(G[Ns(uv)])| is at most the number of paths pqrs where pqrs is a path
with pq ∈ Z and rs ∈ Z. Since every edge in Z has an endpoint in X , this is at most P −B.

In fact, if pqrs is a cycle, then we count both paths pqrs and qpsr for the edge (pq, rs). If
pqrs is a cycle in C4(X,Y ), then this double couting is repeated for each directed pair of opposite
edges on the cycle. We derive 2|E(G[Ns(uv)])| ≤ P −B − 4|C4(X,Y )|, as desired. ♦

We note that P ≤ 2∆2 · |Z|. From Lemma 4.1, we know that |Z| ≤ (2 − α − β)∆2 − 2∆,
hence P ≤ 2∆2 · ((2 − α− β)∆2 − 2∆). We focus on lower-bounding B.

We will lower-bound B by considering two distinct types of such paths, as follows. We denote
by B1 the number of all paths (p, x, y, q) such that x ∈ X , y ∈ Y and q 6∈ X . We denote by B2

the number of all paths (x, y, w, z) such that x ∈ X , y ∈ Y and w, z 6∈ X . See Figure 2 for an
illustration of both types.

Note that both types are indeed taken into account in B, and that no path can be of both
types: the second vertex belongs to X in the case of B1, to Y in the case of B2. Therefore, we
have B ≥ B1 +B2.

Claim 4.4. We have B1 ≥ γ∆4 − γ∆3.

Proof. We prove this claim following Bruhn and Joos [2, Lemma 2.1]. Since H is ∆-regular, for
every fixed path xyq with x ∈ X , y ∈ Y and q 6∈ X , there are ∆ − 1 choices of p to extend it.
The number of such xyq is

∑

y∈Y

dX(y)(∆ − dX(y)) = γ∆3.

It follows that B1 ≥ γ∆3 · (∆− 1), hence the conclusion.
♦
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u

v

X Y

Figure 2: An example of a path pxyq (dotted, top) and of a path xywz (dotted, bottom).

Claim 4.5. We have B2 ≥ γ2

(2−α−β)∆
4.

Proof. Each vertex y ∈ Y can be extended to a path in R by choosing a neighbour of y in X ,
and a path of length two starting at y and avoiding X . Thus, since H is ∆-regular, we have

|B2| =
∑

y∈Y



dX(y)
∑

w∈N(y)\X
dX(w)





=
∑

y∈Y



dX(y)
∑

w∈N(y)\X
(∆− dX(w))



 . (5)

Expanding the sum, equation (5) becomes

|B2| =
∑

y∈Y

dX(y)∆dX(y)−
∑

y∈Y

∑

w∈N(y)\X
dX(y)dX(w). (6)

If, for some y ∈ Y , w is adjacent to y and not in X , then either w ∈ Y , or dX(w) = 0. Thus,
the second sum in (6) is really a sum over the edges of H [Y ].

∑

y∈Y

∑

w∈N(y)\X
dX(y)dX(w) =

∑

y∈Y

∑

w∈N(y)∩Y

dX(y)dX(w)

=
∑

yw∈E(H[Y ])

2dX(y)dX(w).

Since 2ab ≤ a2 + b2 for all integers a and b, we have
∑

yw∈E(H[Y ])

2dX(y)dX(w) ≤
∑

yw∈E(H[Y ])

(dX(y)2 + dX(w)2)

=
∑

y∈Y

dY (y)dX(y)2

≤
∑

y∈Y

dX(y)dX(y)2. (7)

Substituting the expression in (7) into (6), recombining and simplifying gives

|B2| ≥
∑

y∈Y

(

dX(y)∆dX(y)− dX(y)dX(y)2
)

=
∑

y∈Y

dX(y)dX(y)(∆ − dX(y))

=
∑

y∈Y

dX(y)dX(y)2. (8)
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Let us denote by E(X,Y ) the set of edges with an endpoint in X and the other in Y . If
e ∈ E(X,Y ), we denote by ye the endpoint of e in Y . Writing the sum in (8) as a sum over
edges we obtain

|B2| ≥
∑

y∈Y

dX(y)dX(y)2 =
∑

e∈E(X,Y )

dX(ye)
2.

Now using the Cauchy-Schwarz inequality, we have

|B2| ≥ |E(X,Y )|
(
∑

e∈E(X,Y ) dX(ye)

|E(X,Y )|

)2

=
1

|E(X,Y )|





∑

e∈E(X,Y )

dX(ye)





2

=
1

|E(X,Y )|
(

γ∆3
)2

. (9)

By Lemma 4.1, we have that |E(X,Y )| ≤ ds(uv) ≤ (2 − α − β)∆2. Substituting this into (9)

gives that |B2| ≥ γ2

(2−α−β)∆
4 as claimed. ♦

Combining Claims 4.3, 4.4 and 4.5 with the fact that P ≤ 2∆2 · ((2 − α − β)∆2 − 2∆), we
obtain the desired bound.

4.2 Restricting the Set of Interesting Edges

Let G be a graph with maximum degree r such that for every vertex u ∈ V (G), the graph
induced by the neighbourhood of u has at most (1− δ)

(

r
2

)

edges. Theorem 1.6 shows that there
is some γ > 0, which increases with the sparsity, such that G is colourable with (1− γ)r colours.
However given this fact, one need not colour all the vertices. Indeed if A ⊆ V (G) is the set
of vertices with degree at least (1 − γ)r, then it suffices to colour A. After this, the remaining
vertices of G can be coloured greedily without introducing any new colours. In fact, we can
repeat this argument to show that we only need to colour the maximum subgraph F of G with
minimum degree at least (1−γ)r (note that F may be empty). We show that in our application
to the strong chromatic index, the graph F thus obtained is even sparser than G.

Lemma 4.6. Let H be a graph with maximum degree ∆, and set G = L2(H). Let η ∈ [0, 0.3] be
a fixed constant and let F ⊆ E(H) be the maximum set of edges e such that dF (e) ≥ (2− η)∆2.
Finally, for e ∈ E(H), let Fe be the set F ∩NG(e). If e ∈ E(F ), then

|E(G[Fe])| ≤
(

31

6
− 128

3(10− 3η)
+ 4η − η2

)

∆4.

Proof. Let e be an edge uv of H such that e ∈ F . Let X = NH(u) ∪ NH(v) \ {u, v} and
Y = NH(X)\ (X∪{u, v}). We define an auxiliary graph C4(e) whose vertex set is E(X,Y ), and
whose edges consist of those pairs {f1, f2} ⊆ E(X,Y ) such that f1 and f2 are opposite edges of
a 4-cycle in C4(X,Y ). For an edge f ∈ E(H), we have dG(f) ≤ 2∆2 − dC4(e)(f). If f belongs
to F , by definition of F we have (2 − η)∆2 ≤ dG(f). Therefore, for any edge f ∈ F , we have
dC4(e)(f) ≤ η∆2. Note also that

∑

g∈E(X,Y )\F
dNs(e)(g) ≥

∑

g∈E(X,Y )\F
dC4(e)(g)

and
4C4(X,Y ) =

∑

f∈E(X,Y )∩F

dC4(e)(f) +
∑

g∈E(X,Y )\F
dC4(e)(g).
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Combining these observations we have

∑

g∈E(X,Y )\F
dNs(e)(g) ≥ 4C4(X,Y )− η|F |∆2.

Finally,

|E(G[Fe])| ≤ |E(G[Ns(e)])| −
∑

g∈E(X,Y )\F
dNs(e)(g) + |E(G[E(X,Y ) \ F ])|

≤ |E(G[Ns(e)])| − 4C4(X,Y ) + η|F |∆2 +
1

2
|E(X,Y ) \ F |2. (10)

Note that |E(X,Y )\F | ≤ |NG(e)\F |. Since e ∈ F , by definition of F we have |NG(e)∩F | ≥
(2− η)∆2. Thus, using Lemma 4.1, we have

|E(X,Y ) \ F | ≤ (2− α− β)∆2 − (2− η)∆2 = (η − α− β)∆2,

where, as usual, α∆ = |N(u) ∩ N(v)| and β∆2 = |E(G[X ])|. We can now bound the last two
terms in equation (10).

η|F |∆2 +
1

2
|E(X,Y ) \ F |2 ≤ η|F |∆2 +

1

2
(η − α− β)|E(X,Y ) \ F |∆2

≤ η(|F |+ |E(X,Y ) \ F |)∆2

≤ η|Ns(e)|∆2

≤ η(2− α− β)∆4.

Therefore, by Lemma 4.2 and the above, inequality (10) becomes

|E(G[Fe])| ≤
(

2− α− β − γ

2

)

∆4− γ2

2(2− α− β)
∆4+

(γ

2
− 2
)

∆3−6C4(X,Y )+η(2−α−β)∆4

Now, using the expression for C4(X,Y ) from Lemma 4.1 gives

|E(G[Fe])| ≤ f(α, β, γ, η)∆4 + (19− γ)∆3, (11)

where

f(α, β, γ, η) = 2− α− β − γ

2
− 3(2− α− 2β − γ)2

2(2− α)2
− γ2

2(2− α− β)
+ η(2 − α− β). (12)

It remains to show that f(α, β, γ, η) ≤ 9
10 + η

(

4− η − 64
5(10−3η)

)

. By Lemma 4.1 and the

definition of F , we have (2−η)∆2 ≤ dG(e) ≤ (2−α−β)∆2. Thus α+β ≤ η. Letting x = β+ γ
2 ,

equation (12) simplifies to

f(α, β, γ, η) = f0(α, β, η, x) = 2− α− x− 3(2− α− 2x)2

2(2− α)2
− 2(x− β)2

2− α− β
+ η(2− α− β). (13)

We first investigate the dependence on α. First, note that

∂f0
∂α

= −1− 3

2
· 2 · (− 2x

(α− 2)2
) · (1− 2x

2− α
)− 2(x− β)2

(2− α− β)2
− η

= −1 +
6x

(2− α)2
· (1− 2x

2− α
)− 2(x− β)2

(2− α− β)2
− η.
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For any positive a, the function x 7→ x ·(1−a ·x) reaches a maximum of 1
4a at x = 1

2a . Therefore,
for all α in the range considered, the term

6x

(2− α)2

(

1− 2x

2− α

)

attains its maximum at x = 2−α
4 . As α ≤ 1 by definition, we have

6x(2 − α− 2x)

(2 − α)3
≤ 6 · (2− α) · 2−α

8

(2− α)3
=

3

4(2− α)
< 1,

whence ∂f
∂α < 0. Thus, defining f1(β, η, x) = f0(0, β, η, x) we have

f0(α, β, η, x) ≤ f1(β, η, x) =
1

2
+ 2x− 3

2
x2 − 2(x− β)2

2− β
+ η(2 − β). (14)

For fixed β and η, we calculate

∂f1
∂x

= 2− 3x− 4(x− β)

(2− β)
,

so one can check that ∂f1
∂x = 0 only when x = 4+2β

10−3β . The second derivative ∂2f1
∂x2 is easily seen

to be negative, so f1 attains its maximum at x = 4+2β
10−3β . Thus we have f1(β, η, x) ≤ f2(β, η),

where

f2(β, η) = f1

(

β, η,
4 + 2β

10− 3β

)

= (2 − η)β +
31

6
− 128

3(10− 3β)
+ 2η.

Now,
∂f2
∂β

= 2− η − 128

(10− 3β)2
.

Since β ≤ η, we have 2− η − 128
(10−3β)2 ≥ 2− η − 128

(10−3η)2 which is positive for η ≤ 0.3. Thus f2
is increasing in β. Again, since β ≤ η, we conclude that

f2(β, η) ≤ f2(η, η) = 4η − η2 +
31

6
− 128

3(10− 3η)
.

This refined sparsity bound combined with our new colouring procedure is enough to prove
Theorem 1.11.

Proof of Theorem 1.11. Let H be a graph of sufficiently large maximum degree, and G = L2(H).
Let η = 0.164 and let F be the set of edges described in Lemma 4.6. By the argument preceeding
Lemma 4.6, it suffices to colour G[F ]. By Lemma 4.6, for each edge e ∈ E(H) we have

|E(G[Fe])| ≤
(

4η − η2 +
31

6
− 128

3(10− 3η)

)

∆4 + (19− γ)∆3 < 1.309∆4,

provided ∆ is large enough. Thus, |E(G[Fe])| ≤ (1 − δ)
(

2∆2

2

)

, where δ = 0.345. Note that
δ = 0.345 and ε = 0.0825 satisfy the conditions of Theorem 3.21, so G[F ] is (1−ε)2∆2-colourable.
We derive that H admits a strong edge colouring with at most 1.835∆2 colours.
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α ε α ε α ε

0.02 0.0029 0.32 0.0375 0.62 0.0603
0.04 0.0058 0.34 0.0393 0.64 0.0615
0.06 0.0085 0.36 0.0411 0.66 0.0627
0.08 0.0112 0.38 0.0428 0.68 0.0639
0.10 0.0138 0.40 0.0445 0.70 0.0651
0.12 0.0163 0.42 0.0461 0.72 0.0662
0.14 0.0187 0.44 0.0477 0.74 0.0673
0.16 0.0210 0.46 0.0492 0.76 0.0684
0.18 0.0233 0.48 0.0507 0.78 0.0694
0.20 0.0255 0.50 0.0522 0.80 0.0704
0.22 0.0277 0.52 0.0536 0.82 0.0715
0.24 0.0297 0.54 0.0550 0.84 0.0724
0.26 0.0318 0.56 0.0564 0.86 0.0734
0.28 0.0337 0.58 0.0577 0.88 0.0743
0.30 0.0356 0.60 0.0590 0.90 0.0752

Table 1: Values of α and ε which satisfy the conditions in Lemma 5.2.

5 Reed’s Conjecture

In this section we prove Theorem 1.7, by combining Theorem 1.5 and Theorem 3.21 with the
technique of King and Reed [10]. The key idea in King and Reed [10] is that for any ε > 0, a
smallest counterexample to Theorem 1.2 cannot contain an independent set S which hits every
maximal clique. Otherwise one can check that deleting a maximal independent set containing
S produces a smaller counterexample. Thus, by the following result, we may deduce that a
smallest counterexample has small clique number.

Theorem 5.1. [9] Every graph satisfying ω(G) > 2
3 (∆(G) + 1) contains an independent set

hitting every maximum clique.

Using Theorem 1.5 and Theorem 1.6, we deduce a bound on the chromatic number of these
graphs.

Lemma 5.2. Let G be a graph of maximum degree ∆, and clique number ω = (1 − α)(∆ + 1).
There exists ∆6(ε, α) such that if ∆ > ∆6(ε, α), then χ(G) ≤ ⌈(1 − ε)(∆ + 1) + εω⌉, provided
ε ≤ 0.3012α

2 (1− 2ε)2 − 0.1283 α2

2
√
2
(1− 2ε)3.

Proof. Let k = ⌈(1− ε)(∆+1)+ εω⌉. We set ε′ = εα so that k = ⌈(1− ε′)(∆+1)⌉. It suffices to
show that G is k-colourable. To do so, we may first assume that G is a critical graph. Now by
Theorem 1.5, we have that G is δ-sparse where δ = 1

2 (α− 2ε′)2. By Theorem 1.6, such a graph

can be coloured with (1− ε′)(∆+1) colours, provided ε′ ≤ 0.3012δ− 0.1283δ3/2. This simplifies

to ε ≤ 0.3012α
2 (1− 2ε)2 − 0.1283 α2

2
√
2
(1 − 2ε)3, which is satisfied by assumption.

Since the condition in Lemma 5.2 is somewhat involved, Table 1 lists values of α and ε which
satisfy it. Before proving Theorem 1.7, we mention the following result which we require.

Theorem 5.3. [13] There is a constant ∆7 such that any graph G with ∆(G) ≥ ∆7 and ω(G) ≥
(1− 1

7·107 )∆(G) satisfies χ(G) ≤ ∆(G)+ω(G)+1
2 .

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Let ∆2 = max(1.4 · 108 ·∆1,∆7) and let G be a graph with ∆(G) > ∆2.
First note that if ω(G) > ∆(G)−2∆1, then by the choice of ∆2 we have ω(G) ≥ (1− 1

7·107 )·∆(G).
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By Theorem 5.3, the conclusion strongly holds. Therefore, from now on we can assume that
ω(G) ≤ ∆(G) − 2∆1.

If G has clique number ω(G) ≤ 2
3 (∆(G)+1), then we set G′′ = G in what follows. Otherwise,

if ω(G) > 2
3 (∆(G) + 1), then by Theorem 5.1 there is an independent set S ⊆ V (G) which

contains a vertex of every clique of size ω(G). Extend S to a maximal independent set S′ and
set G′ = G−S′. Since S′ is maximal, ∆(G′) ≤ ∆(G)−1, and since S′ contains a vertex in every
maximal clique, ω(G′) = ω(G) − 1. Furthermore, χ(G′) ≥ χ(G) − 1 since S is an independent
set. While ω(G′) > 2

3 (∆(G′) + 1), we repeatedly apply this reduction until we obtain a graph
G′′ with ω(G′′) ≤ 2

3 (∆(G′′) + 1). Since the clique number decreases by precisely one each time,
the process terminates after p steps, where p ≤ ω(G).

Note that ∆(G′′) ≤ ∆(G) − p, ω(G′′) = ω(G) − p and χ(G′′) ≥ χ(G) − p. If ∆(G′′) > ∆1,
then Lemma 5.2 implies that χ(G′′) ≤ 25

26∆(G′′) + 1
26ω(G

′′) provided 1
26 ≤ 0.3012α

2 (1 − 2
26 )

2 −
0.1283 α2

2
√
2
(1 − 2

26 )
3. This is easily seen to hold for all 1/3 ≤ α ≤ 1. We deduce that χ(G) ≤

25
26∆(G′′) + 1

26ω(G
′′) + p ≤ 25

26∆(G) + 1
26ω(G).

Thus we may suppose that ∆(G′′) < ∆1. In this case, we have

χ(G) ≤ ∆1 + p

≤ ∆1 + ω(G)

≤ ∆1 + (1 − ε) · ω(G) + ε · ω(G).

Finally, by the assumption on ω(G), we have

χ(G) ≤ ∆1 + (1− ε) · (∆(G) − 2∆1) + ε · ω(G)

= (1− ε) ·∆(G) + ε · ω(G) + (2ε− 1) ·∆1

≤ (1− ε) ·∆(G) + ε · ω(G),

hence the theorem holds.
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