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Abstract. In this paper we introduce a technique to encode spatial at-
tributes of dynamic systems using coloured Petri nets and show how it
can be applied to biological systems within the spirit of BioModel Engi-
neering. Our approach can be equally applied to qualitative, stochastic,
continuous or hybrid models of the same physical system, and can be used
as the basis for multiscale modelling. We illustrate our approach with
two case studies, one from the continuous and one from the stochastic
paradigm. In this paper we only discuss the case of finite colours, and by
unfolding our method can take advantage of all the analytical machinery
and simulation techniques that have been developed for the uncoloured
family of Petri net classes.

Keywords: Coloured Petri nets, qualitative, stochastic, continuous, hy-
brid Petri nets, spatial modelling, biomolecular networks, Systems
Biology, BioModel Engineering.

1 The Coloured Framework

In this paper we build on [16,20], where we have introduced our methodology for
the use of a structured family of Petri net classes which enables the investiga-
tion of biological systems using various complementary modelling abstractions
comprising the qualitative and quantitative paradigms. In the following we focus
on the use of the coloured subset of the previously introduced framework [20] –
coloured qualitative Petri nets (QPN C), coloured stochastic Petri nets (SPN C),
coloured continuous Petri nets (CPN C), and coloured hybrid Petri nets (HPN C);
Fig. 1 recalls our coloured framework.

We extend our approach by considering biochemical processes evolving in
space, which we illustrate with two case studies. In our spatial modelling ap-
proach we discretise space using coloured Petri nets, and in this paper we in-
vestigate the use of finite discrete colour sets. This ensures the following three
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Fig. 1. The coloured unifying framework integrating four degrees of abstraction

features which are crucial for our BioModel Engineering principles (uniformity,
reuse and conciseness) [17].

First and most importantly, the spatial modelling principle can be equally
applied to all paradigms (qualitative, stochastic, continuous, and hybrid), i.e.,
once a Petri net model has been enriched with colour-encoded space, it can be
easily transformed into any other net class while preserving all spatial attributes.

Second, all space-related information is encoded in colour and correspond-
ing net annotations, such as colour sets, functions, and guards, which can be
effortlessly reused in many models. Moreover, changing the notion of space or
just some spatial attributes only requires the adaptation of those colour-related
definitions, and the net structure itself needs not to be touched.

Third, the use of a priori finitely discretised space preserves the analysibility of
the models, in particular we retain the discrete state space in both the qualitative
and stochastic settings. All analysis and simulation techniques, which have been
developed for uncoloured Petri nets over the last two decades, can be immediately
reused by automatic unfolding.

The main contributions of our paper are

– a framework to encode space by coloured Petri nets, which can be equally
applied in a qualitative, stochastic, continuous, or hybrid setting,

– a set of basic colour-related definitions which can be easily applied to a wide
range of spatial scenarios,

– two substantial biological case studies illustrating the framework.

This paper is organised as follows. In the next section we recall some related
work to set the background of our contribution. Afterwards we introduce our
modelling approach of colour-encoded space by means of a popular case study
in the continuous paradigm (Section 3), before applying it to a second case
study in the stochastic paradigm (Section 4). We conclude our paper with a
brief overview of the tools used and the summary.
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2 Related Work

In the following we assume basic knowledge of the Petri net terminology; see [19]
for an introduction and formal definitions in the biochemical context.

Existing Uses of Petri Nets in Systems Biology. Petri nets are a natu-
ral and established notation for describing reaction networks – both share the
bipartite property. Petri nets enjoy a formal semantics and are particularly at-
tractive to biologists, because they can ‘buy in’ to the executable representation.
The intuitive visualisation is complemented by a rich set of sophisticated anal-
ysis techniques, supported by reliable tools. Petri nets can serve as an umbrella
formalism comprising a family of related (qualitative, stochastic, continuous,
hybrid) models, sharing structure, but differing in their kinetics [16].

A recent survey [2] has shown how Petri nets can be applied to various types of
biological processes at different abstraction levels, illustrating this with a rich set
of case studies. Most of these focus on the molecular level; however examples at
the multi-cellular level include the signal-response behaviour of an organism [28],
and developmental processes in multi-cellular pattern formation [7, 9, 23].

Current Challenges to Systems Biology Due to Complexity and Mul-
tiscale Issues. A drawback of current modelling approaches, including Petri
nets, are their limitation to relatively small networks. Biological systems can be
represented as networks which themselves typically contain regular (network)
structures, and/or repeated occurrences of network patterns. This organisation
occurs in a hierarchical manner, reflecting the physical and spatial organisation
of the organism. Thus a further challenge is to represent the structure inherent
in biological systems.

Coloured Petri Nets are high-level nets and a well-established modelling
formalism. They have been used for over 20 years for the specification and analy-
sis of communication protocols, distributed systems, automated production sys-
tems, work flows, and VLSI chip design [22]. They allow the description of similar
network structures in a concise and well-founded way, providing a flexible tem-
plate mechanism for network designers, and their combination with hierarchical
structuring mechanisms is extremely powerful [21].

In coloured Petri nets, tokens can be distinguished via their colours. This
allows for the discrimination of species (molecules, metabolites, proteins, sec-
ondary substances, genes, etc.). In addition, colours can be used to distinguish
between sub-populations of a species in different locations (cytosol, nucleus, etc.).

Each place is assigned a colour set, specifying the kind of tokens which can
reside on the place. A guard is associated with each transition, specifying which
coloured tokens are required for firing, and each arc is allocated an inscription
specifying the kind of tokens flowing through it. Coloured Petri nets with finite
colour sets can be automatically unfolded into uncoloured Petri nets, which
then permits the application of all of the existing powerful Petri net analysis
and simulation techniques. Vice versa, uncoloured Petri nets can be folded into
coloured Petri nets, if partitions of the place and transition sets are given. These
partitions of the uncoloured net define the colour sets of the coloured net. As
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with hierarchical Petri nets, the conversion between uncoloured and coloured
Petri nets changes the style of representation, but does not change the actual
net structure of the underlying reaction network.

An attractive advantage of coloured Petri nets is their possibility to easily
increase the size of a model consisting of many similar subnets by just adding
colours, compare Fig. 2. This permits, e.g., concise representations of the un-
coloured multi-cellular models of C. Elegans discussed in [7, 9]. These models
consist of six (almost) identical network patterns, one for each cell. In a coloured
version, the network pattern can be represented only once and the different cells
are reflected in the coloured annotations of the net [23]. Another scenario for
deploying colour to simulate a bacterial infection can be found in [8].

Colouring Space. In this paper we deploy colour to specify (biochemical) pro-
cesses evolving in space. We develop a spatial specification style which can be
equally applied in all modelling paradigms. This facilitates smooth movement
between the modelling paradigms and the qualitative, stochastic, continuous or
hybrid interpretation of the same Petri net. See [23] for more details and formal
definitions of the structured family of coloured Petri net classes used in this
paper, and [26] for all tool-related features.

In the continuous paradigm, our approach using discretised space corresponds
to discretising partial differential equations. An alternative approach to model
and solve partial differential equations using (discrete) Petri nets, based on the
probably simplest time concept possible for this purpose (maximal steps, maxi-
mal auto-concurrency) is discussed in [3,4]. A more elaborated comparison with
other approaches to treat spatial properties is beyond the scope of this paper.
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Fig. 2. The repressilator - a genes regulatory cycle [6]. (a) Schematic diagram for
three genes. (b) Uncoloured Petri net model for three genes using logical transitions.
(c) Folding of similar subnets into a coloured Petri net. (d) Schematic diagram for the
generalised repressilator with nine genes. Modelling is accomplished by adjusting the
colour set.(e) Stochastic simulation plot of the underlying uncoloured stochastic Petri
net. See [20] for the explanation of annotations.
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3 Continuous Paradigm

In this section we focus on the continuous part of the framework, illustrating it
by means of a case study elaborated over two spatial dimensions.

3.1 Case Study 1: Diffusion

Background. We focus here on diffusion, which is a basic process occurring in
biochemical systems with parameters over time and space. It can be regarded as
the simplest form of passive mobility. Diffusion goes from regions of higher con-
centration to regions of lower concentration (Ficks laws) [10] where the diffusion
flux is proportional to the minus gradient of concentrations.

Example 1. One molecular species (here cyclic adenosine monophosphate –
cAMP) diffuses continuously in space; i.e., it evolves simultaneously over time
and space. The state-dependent diffusion rate follows mass/action kinetics, i.e.,
the rate is defined by the product of the species involved times some constant,
summing up all dependencies on pressure, temperature, etc. The observation
shall start with a high concentration (e.g., 100) in the middle of the space, with
all other space positions initially set to 0.

We are going to discuss this example in different scenarios, specifically 1- and
2-dimensional space (1D, 2D), using coloured Petri nets. We use the concept
of colour to efficiently represent repeated structures in a continuous Petri net
- i.e. to encode repeated elements of a set of ODEs. Each repeated element is
associated with a colour, represented by a positive integer; sets of colours are
thus discrete and finite. More specifically, we apply colour to represent spatial
location; thus in a 1D scenario locations (their addresses) are 1-tuples, in a 2D
scenario locations are 2-tuples, and in 3D they are triples.

3.2 Diffusion in One Dimension

We discretise the space and assume an 1-dimensional grid dividing the space
into grid positions; see Fig. 3.

Fig. 3. General scheme of discrete one-dimensional space (1D grid)

A corresponding continuous Petri net is given in Fig. 4 modelling a discrete,
1-dimensional space comprising five grid positions - the five Petri net places
cAMPi, while the Petri net transitions model diffusion between neighbouring
grid positions. The two outer places stand for the equivalence classes of the
boundary space positions and beyond.
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100
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Fig. 4. Continuous Petri net for diffusion in one dimension. The space is discretised
into five positions. The value of the middle position is initially set to 100, all other
positions to zero, which is the default value, usually not given in graphics.

A continuous Petri net uniquely defines a system of Ordinary Differential
Equations (ODEs) [14,31], with one equation for each place (variable). The rates
of pre-transitions increase its value, thus defining plus terms, while the rates of
post-transitions decrease its value, thus defining minus terms. Denoting the rate
of a transition tj by v(tj), and the set of pre-transitions (post-transitions) of a
place c by •c (c •), we get the generating Equation (1).

dci
dt

=
∑

tj∈•ci

v(tj)−
∑

tj∈ci •

v(tj) (1)

Assuming the diffusion rates v(tj) to follow mass/action kinetics with the com-
mon rate parameter k, we get the Equations (2)–(6) for the continuous Petri net
in Fig. 4; for sake of readability we abbreviate cAMPi by ci.

dc1
dt

= k · c2 − k · c1 (2)

dc2
dt

= k · c1 + k · c3 − 2 · k · c2 (3)

dc3
dt

= k · c2 + k · c4 − 2 · k · c3 (4)

dc4
dt

= k · c3 + k · c5 − 2 · k · c4 (5)

dc5
dt

= k · c4 − k · c5 (6)

We obtain a general pattern for an arbitrary, but static size of the discrete, 1-
dimensional space by folding the (continuous) Petri net in Fig. 4 into a coloured
(continuous) Petri net. For this purpose we introduce the following definitions.

const D1 = int with 5 ; // g r i d s i z e
const MIDDLE = int with D1/2+1;
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colorset Grid1D = int with 1−D1 ; // g r i d p o s i t i o n s
var x , y : Grid1D ;

fun bool neighbour1D (Grid1D x , Grid1D xn) {
// xn i s neighbour o f x
( xn=x−1 | xn=x+1) & (1<=xn) & (xn<=D1) } ;

In this paper we consider finite space. Thus grid positions at the border have
fewer neighbours than inner grid positions. We obtain the coloured continuous
Petri net given in Fig. 5, where colours serve as addresses in the spatial grid.
Changing the grid position of a token now just means recolouring the token.

cAMP
100`MIDDLE

Grid1D100
t1

[neighbour1D(x,y)]

x

y

Fig. 5. Coloured continuous Petri net for diffusion in one dimension. The initial mark-
ing assigns the value 100 to the MIDDLE grid position, v(t1) = MassAction(k).

Unfolding the coloured Petri net in Fig. 5 with D1 = 5 yields exactly the
continuous Petri net given in Fig. 4, and thus in turn the ODEs (2)–(6). Changing
the constant D1 adapts the model pattern to a specific grid size, which permits
convenient model scaling, e.g., to increase the spatial resolution.

3.3 Diffusion in Two Dimensions

The generalisation to the 2-dimensional case using a Cartesian grid, see Fig. 6,
is rather straightforward. We basically need to extend the definitions required
for annotating the coloured Petri net while keeping the Petri net structure as it
is.

We start off with a neighbourhood relation where inner grid positions have
four neighbours, see Fig. 6(a), which is encoded in the function neighbour2D4.
The corresponding coloured Petri net is given in Fig. 7(a), and its unfolding for
D1 = D2 = 5 in Fig. 8. All transitions follow the same kinetic rate pattern.

const D1 = int with 5 ; // g r i d s i z e f i r s t dimension
const D2 = D1 ; // g r i d s i z e second dimension
const MIDDLE = int with D1/2+1;

colorset CD1 = int with 1−D1 ; // row index
colorset CD2 = int with 1−D2 ; // column index
colorset Grid2D = product with CD1 x CD2; // 2D gr i d
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var x , a : CD1;
var y , b : CD2;

fun bool neighbour2D4 (CD1 x , CD2 y , CD1 xn , CD2 yn) {
// ( xn , yn ) i s one o f the up to f our ne i ghbours o f ( x , y )

( xn=x & yn=y−1) | ( xn=x & yn=y+1)
| ( yn=y & xn=x−1) | ( yn=y & xn=x+1)
& (1<=xn & xn<=D1) & (1<=yn & yn<=D2) } ;

Next we consider a variation of the neighbourhood relation where each inner
grid position has eight neighbours; see Fig. 6(b). We introduce three functions.

fun bool neighbour2D8 (CD1 x ,CD2 y ,CD1 xn ,CD2 yn ) {
// ( xn , yn ) i s one o f the up to e i g h t ne i ghbours o f ( x , y )

( xn=x−1 | xn=x | xn=x+1 ) & (yn=y−1 | yn=y | yn=y+1)
& ( ! ( xn=x & yn=y) )
& (1<=xn & xn<=D1) & (1<=yn & yn<=D2) } ;

fun bool l a t e r a l (CD1 x ,CD2 y ,CD1 xn ,CD2 yn) {
( xn=x & yn=y−1) | ( xn=x & yn=y+1)

| ( yn=y & xn=x−1) | ( yn=y & xn=x+1) } ;

fun bool d iagona l (CD1 x ,CD2 y ,CD1 xn ,CD2 yn) {
( xn=x−1 & yn=y−1) | ( xn=x+1 & yn=y−1)

| ( xn=x−1 & yn=y+1) | ( xn=x+1 & yn=y+1) } ;

The latter two functions are used to appropriately set the rate functions, assum-
ing that it takes longer to reach a diagonal neighbour than a lateral one:

v(t1) =

{
lateral(x, y, a, b) : MassAction(k)

diagonal(x, y, a, b) : MassAction(k/DIAGONAL) ,
(7)

with DIAGONAL =
√
2. The corresponding coloured Petri net is given in

Fig. 7(b), and its unfolding for D1=D2=5 in Fig. 8.

(a) four neighbours (2D4 grid) (b) eight neighbours (2D8 grid)

Fig. 6. General scheme of discrete two-dimensional space with two different neighbour-
hood relations
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cAMP

100`(x=MIDDLE & y=MIDDLE)

Grid2D
100

t1
[neighbour2D4(x,y,a,b)]

(x,y)

(a,b)

(a) four neighbours

cAMP
100`(x=MIDDLE & y=MIDDLE)

Grid2D
100

t1
[neighbour2D8(x,y,a,b)]

(x,y)

(a,b)
(b) eight neighbours

Fig. 7. CPN C for diffusion in two dimensions with two different neighbourhood rela-
tions. The difference consists of the neighbour function used as transition guard and
the rate functions; (a) v(t1) = MassAction(k), (b) see Equation (7).

Remarks: The coloured Petri nets in Fig. 5 and 7 all share the same structure,
they differ in their colour-related annotations. It is obvious how to adjust the
definitions to other neighbourhood relations.

cAMP__1_1_ cAMP__1_5_

100

cAMP__5_1_ cAMP__5_5_

Fig. 8. Continuous Petri nets for diffusion in two dimensions with four neighbours
(white transitions only), and eight neighbours (including grey transitions). These Petri
nets have been generated by unfolding the two CPN C in Fig. 7 with D1 = D2 = 5.
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3.4 Computational Experiments

For the time being, all computational experiments are undertaken by unfolding
coloured Petri nets which is automatically performed in the background, and nu-
merically solving the underlying ODEs which again are generated automatically.
Both transformation steps and the continuous simulation itself are features of
Snoopy, the tool used in this paper, see also Section 5. In other words, the CPN C

serve as a kind of very high-level description of ODEs. Note that the mapping
from CPN C to ODEs is unique but not vice-versa [31].

The key challenge when unfolding coloured Petri nets is to compute all tran-
sition instances, which suffers from combinatorial explosion. However, when the
number of transition instances is only determined by guards (logical expres-
sions), which is the case in our scenario, a constraint satisfaction approach [32]
can be employed. As each coloured transition can be considered separately, the
unfolding can be easily parallelised by multiple threads to take advantage of
state-of-the-art multi-core computer architectures. We have used the efficient
search strategies of Gecode [12] to substantially improve the unfolding efficiency
of coloured Petri nets; for more details see [23, 27].

The unfolding of any CPN C version of our gradient example yields extremely
large continuous Petri nets. It is easy to see that in the 2-dimensional case the
number of places always equals D1D2, while the number of transitions amounts
to 4D1D2 − 2(D1 + D2) for a 2D4 grid, and 8D1D2 − 6(D1 + D2) + 4 for a
2D8 grid, respectively. To give an example, the unfolding of an 120×120 2D4
grid (used in Fig. 10, last row) generates 14,400 places and 57,120 transitions,
with an unfolding time of about 25 seconds (on a standard laptop computer).
The generated continuous Petri net in turn is transformed into ODEs according
to formula (1), i.e., the number of places determines the number of ordinary
differential equations, and the number of transitions the total number of terms
in these equations to be simulated.

The actual simulation, i.e., the numerical integration of the generated ODEs
takes a couple of seconds and yields time traces for each unfolded place, see
Fig. 9. These traces are converted into heat maps, one for each time step, i.e., a
sequence of heat maps eventually visualises the evolution in time and space, see
Fig. 10.

We performed a couple of experiments to test the scalability of our model.
Model scaling also usually requires adjustments of the initial marking and rate
parameters. To maximise the flexibility of our model we slightly changed the
specification style of the initial marking. We introduced a couple of constants
(including LB – lower bound, UB – upper bound to specify a rectangle) which
eventually permit the specification of the range of grid positions set to 100 in
the initial marking in a better adjustable manner:

100 ‘ ( (LB <=x & x <= UB) & (LB <=y & y <= UB) ) .

To reach equivalent states in the same simulation time, we need to scale the
parameters by the square of the resolution factor; see Fig. 10 for some results.
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Fig. 9. Simulation plot of the ODEs generated from a CPN C, illustrating approaching
to the future steady state where all concentrations will be equal
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Fig. 10. Continuous simulation results for diffusion in two dimensions with four neigh-
bours in space resolutions 15×15, 60×60, and 120×120. The three snapshots given
for each resolution are taken at simulation time 25 (left), 50 (middle), and 100 (right
column).
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4 Stochastic Paradigm

In this section we focus on the stochastic part of the framework, reusing the
colour definitions which we introduced in the previous section. Diffusion can be
treated stochastically using the laws of Brownian motion, for example embodied
in the Gilllespie algorithm [15]. However, the mapping is straightforward and
instead we present a more sophisticated and challenging biological example.

4.1 Case Study 2: Bacterial Colony Growth – Phase Variation

We study phase variation in bacterial cell colonies which grow in space. We de-
veloped a Coloured Stochastic Petri Net which allows us to substantially extend
the method applied in [30] to computationally predict the sector-like patterning
characteristic of such colonies, see e.g., Figure 1 in [1].

Background. A common microbial stochastic mechanism is phase variation,
in which gene expression is controlled by a reversible genetic mutation, re-
arrangement, or modification. Phase variation has traditionally been consid-
ered in the context of ‘contingency genes’ in which a sub-population is contin-
uously generated which is pre-adapted to repeated environmental transitions,
often to immune selective changes. However recent re-consideration, in the light
of stochastic processes in genes under other forms of regulation, suggests an
important potential role in bacterial specialization and differentiation, and the
generation of structured bacterial populations.

Example 2. We consider a colony of bacteria with two phenotypes A and B,
which develop over time by cell division. Cell division may involve cell mutation,
and back-mutation alternates phenotypes; see Fig. 11. The observation should
start with one bacterium of phenotype A. We are interested in the proportion
of phenotypes in the cell generations, and how their spatial distribution evolves
over time.

! "

!

!

Fig. 11. Phase variation within bacterial colonies - basic scheme. Mutation from A to
B happens at rate α, and backward mutation at rate β.

4.2 Step-Wise Modelling

In the following we describe the step-wise approach which we have employed to
construct our SPN C model. We start off with a basic model of phase variation
between two states in bacterial colonies as discussed in [30] which did not model
spatial aspects, and encode this as a stochastic Petri net. Next we enrich the
basic model with a 2D8 grid, where the parent remains in-situ, and the child is
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displaced by one grid position. Finally, we refine our model by controlling colony
spreading and thickness. Our stochastic spatial model permits us to describe
the development of sector-like pattering typical of phase variation in bacterial
colonies.

Step 1 – Basic Model of Phase Variation.We start with the equations taken
from the previous deterministic model of phase variation [30], which describe
synchronous growth in cell colonies with two phenotypes A and B, modelled
here by two corresponding variables indexed by the discrete time steps. These
equations include the assumption that “if phase variation occurs, the progeny
consists of one A and one B.”

An+1 = 2dA(1− α)An + dAαAn + dBβBn (8)

Bn+1 = 2dB(1− β)Bn + dBβBn + dAαAn (9)

Here, dA and dB specify the fitness, i.e., the proportions of A or B, respectively,
that survive to division.

Previously [30], behaviour was explored by iterating the equations on a spread-
sheet. We develop a Petri net model that is directly executable by playing the
token game which facilitates its comprehension, and permits the exploration
of the behaviour by standard analysis and simulation techniques. Our initial
stochastic Petri net, see Fig. 12, corresponds to Equations (8)–(9), but adopts
an asynchronous modelling approach so that cells divide individually.

A B

A2B

B2A

A2A B2B

2

2

v(A2B) = dAαA, v(A2A) = dA(1− α)A
v(B2A) = dBβB, v(B2B) = dB(1− β)B

Fig. 12. Stochastic Petri net (SPN ) corresponding to Equations (8)–(9)

Model parameters (taken from [30])

– mutation rates α (forward), and β (backward): in the range of 10−2 − 10−5;
e.g. high: α = β = 0.0025, medium: α = β = 0.0005, low: α = β = 0.00005;
α and β could also take different values;

– relative fitness f – ratio of phenotype survival probability:
f = dA/dB; typical values: f = 1.0 (no fitness difference), 0.99, 0.9, 0.5.
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Derived Measures of Interest

– Total number of bacteria. The n-th generation in a synchronous model yields
2n bacteria. Vice versa, if we know the total number total of bacteria gen-
erated by asynchronous cell division, then we can obtain the corresponding
synchronous generation counter n by

n = log2 total (10)

For example, 26 synchronous generations (which may develop in about 24
hours) end up with a total population size of approximately 67 · 106.

– Proportion of A and B.

propA =
A

A+B
; propB =

B

A+B
(11)

Simulating the stochastic model allows us to observe asynchronous population
growth such that cells divide individually. Each event (firing of a transition)
corresponds to the division of one cell. Consequently, the size of the population
will grow in steps by 1, see Fig. 13, in contrast with the synchronous model.
Depending on the setting for the output steps of the simulator we may not be
able to observe all events in the simulation trace.
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Fig. 13. Two single stochastic simulation runs, and one continuous run; α = β =
0.0025, dA = dB = 1, i.e., no fitness advantage

Observations

– Keeping a relative fitness of 1 while extending the simulation time allows
us to observe that the variables A and B will finally be almost identical,
meaning their proportions will finally approach 50%.

– Likewise, keeping the mutation rates equal and giving one mutant a fitness
advantage over the other, e.g. using a fitness ratio of 0.9, then the mutants
with the greater fitness will finally outnumber the mutants with lower fitness
and the proportion of the latter ones in the total population approaches zero
over time.

Starting from simulation traces like the ones given in Fig. 13, all diagrams pre-
sented and discussed in [30] can be derived by some post-processing.
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To prepare for the modelling of cell colonies in space we fold our first (un-
coloured) Petri net. For this purpose we introduce two colour sets, Phenotype =
{a, b}, and DivisionType = {replicate,mutate}. These definitions allow us to
fold the two places A and B into one coloured place cell with the colour set
Phenotype, and to fold the four transitions into the coloured transition division.
We obtain the basic model given in Fig. 14.

cell1
1`A

Phenotype

division [div=replicate](2`c)++
[div=mutate](c++
(+c))

c

Fig. 14. SPN C as SPN short-hand notation; unfolding this SPN C generates the
SPN in Fig. 12. See listing in Fig 15 for the related definitions.

The derivation of our final model, see Fig. 15, from the basic model, see
Fig. 14, requires three further steps: adding space, controlling colony spreading,
and controlling thickness. We deliberately ignore some complexities, e.g. nutri-
tion and oxygen which are responsible for the vertical structure of the bacterial
colony, to design a simple, but powerful model.

Step 2 – Adding Space. We assume that the 3D colony is represented by a 2D
grid with a finite capacity on each grid position, and there is an equal maximal
height over all of the cell colony, i.e., all grid positions have the same capacity.
We derive a colour set from the cross product of the Grid2D and Phenotype
colour sets. Adding space requires making a decision regarding the destination
of the offspring. Initially, we assume that the offspring always goes to one of the
neighbouring positions which is chosen stochastically.

In this case study we are concerned with mutation rates and their influence on
the system behaviour. So their total values have to be kept constant. Introducing
space means technically to multiply transitions (basically one for each direction
per grid position). To counterbalance this effect, we scale the transition rates by
dividing them by the number of grid positions and by N, with N being the number
of neighbours. With other words, all transitions (which we get by unfolding)
make four equivalence classes, and the sum of all rates in one equivalence class
is kept constant, independent of the grid size and the neighbourhood relation.
Thus, the total rates in the phase variation model with space are the same as in
the phase variation model without space.

Step 3 – Controlling Colony Spreading. Cells do not actively move; as a
result of cell division they can either pile up on the parent’s grid position or
be displaced to a neighbouring position. To model this phenomenon, we add an
alternative transition which allows an offspring to stay with its parent. Thus,
the rate functions need now to be scaled by N+1.



Colouring Space – Application Paper 245

To control the tendency between staying with the parent (division1) or going
to a neighbouring position (division2), we introduce a preference factor γ, which
may vary between 0 and γmax without changing the total division rate (sum of
rates of division1 and division2). For this purpose, we define γH = γ/γmax,
and γN = (γmax− γ)/γmax to further scale the rate functions correspondingly.

Increasing γ increases the preference to stay with the parent, while decreasing
γ increases the preference to displace. Setting γ to γmax precludes the ability
to go to a neighbour, thus the size of the colony is restricted by the capacity
of one grid position. Setting γ to zero precludes staying with the parent. Cells
then have the tendency to first occupy all grid positions, before the thickness
increases simultaneously over the whole colony patch.

Step 4 – Controlling Thickness. The bacteria generated by cell division can
pile up on top of each other and thus increase the colony thickness at that grid
position. This thickness is limited because of the cells’ requirements for access to
oxygen and nutrients. In order to control the thickness we introduce a constant
POOLSIZE, which limits the maximum number of cells at a certain grid position.
We set POOLSIZE to give room for 26 generations. See the listing in Fig. 15 for
a summary of all required colour-related definitions.

4.3 Computational Experiments

All computational experiments are done on the automatically unfolded Petri
nets. Unfolding our coloured Petri net for a 101×101 grid yields an uncoloured
Petri net with 30,603 places and 362,404 transitions with an unfolding time
of 630 seconds. The unfolded Petri net is simulated using the Gillespie algo-
rithm [15]. One stochastic simulation run takes about 40 minutes. The output
comprises a pair of simulation traces for each grid position, corresponding to the
two phenotypes A and B, similar to Fig. 9, with each run behaving differently.

The analysis considers the development over time of the proportion of the
given genotype in the total population, and the patterning into characteristic
segments. This requires converting the stochastic simulations into 2D represen-
tations, see Fig. 16, and analysing the development of the 2D sector-like patterns
over time. We expect that the model will finally permit the prediction of mu-
tation rates and fitness by counting and measuring pattern segments, which in
the future could give new insights into the population dynamics of mutation.
Currently, our model predicts behavior which has not been measured so far in
the wet lab — the model generates a time series description of the evolution of
the patterns in cell colony (indicated in Fig. 16), while wet lab data just give a
snapshot of the final state.

5 Tools

All Petri nets in this paper were constructed with Snoopy [29], recently extended
to support coloured Petri nets [20, 23]. Simulations were done with Snoopy’s
built-in stochastic simulator and Marcie [18]. Simulation traces have been further
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const D1 = int with 101 ;
const D2 = D1 ;
const MIDDLE = int with D1/2+1;
const POOLSIZE = int with 7000;
const POOLSIZE 1 = int with POOLSIZE−1;

colorset Phenotype = enum with A, B;
colorset DivisionType = enum with r e p l i c a t e , mutate ;
colorset CD1 = int with 1−D1 ;
colorset CD2 = int with 1−D2 ;

colorset Grid2D = product with CD1 x CD2;
colorset Grid = product with Grid2D x Phenotype ;

var c : Phenotype ;
var div : Divis ionType ;
var x , xn : CD1;
var y , yn : CD2;

fun bool neighbour2D8 (CD1 x ,CD2 y ,CD1 xn ,CD2 yn ) { . . . } ;
fun bool l a t e r a l (CD1 x ,CD2 y ,CD1 xn ,CD2 yn) { . . . } ;
fun bool d iagona l (CD1 x ,CD2 y ,CD1 xn ,CD2 yn) { . . . } ;

cell
1

1`(x=MIDDLE)&(y=MIDDLE)&(c=A)Grid

pool

71406999

POOLSIZE`(1<=x&x<=D1) & (1<=y&y<=D2) & (x<>MIDDLE|y<>MIDDLE)++
POOLSIZE_1`(x=MIDDLE & y=MIDDLE)

Grid2D

division2
[neighbour2D8(x,y,xn,yn)]

division1

[div=replicate]((xn,yn),c)++
[div=mutate]((xn,yn),(+c))

(xn,yn)

[div=replicate]((x,y),c)++
[div=mutate]((x,y),(+c))

(x,y)

((x,y),c) ((x,y),c)

Fig. 15. SPN C for the final spatial model of phase variation. The integers on the
places give the total number of tokens of any colour.
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Fig. 16. 2D representation of a single stochastic run showing the development of binary
phase variation in a cell colony over time and space, and illustrating the development
of sector-like patterns. Density of the two phenotypes is represented by yellow and dark
blue, respectively. Each run looks differently due to the built-in stochasticity.

processed by customised Java (Python) programs, and finally visualised with
Gnuplot (matplotlib). Snoopy and the models in Snoopy format can be obtained
from http://www-dssz.informatik.tu-cottbus.de. Thus, all our results can
be easily reproduced by the interested reader.

6 Summary

In this paper we have deployed colour to specify biochemical processes evolving
in time and space. The spatial modelling style presented can be applied to a wide
range of biological and also technical application scenarios. The framework we
have introduced covers qualitative, stochastic, continuous and hybrid modelling
paradigms It exploits existing simulation techniques and analytical machinery
by unfolding to uncoloured nets.

Due to page restrictions we have only presented continuous and stochastic
case studies, but it is obvious how to apply our spatial modelling approach to
qualitative and hybrid examples. It is also straightforward how to extend the
colouring principle to a 3-dimensional space, or how to adapt it to different
notions of space; e.g., using polar coordinates.

The coloured Petri nets which we have presented might give an impression
of simplicity, which just underlines the power of abstraction by folding into
coloured models. Crucially, this technique enables a new approach to multiscale
modelling, and we have elsewhere illustrated this by using coloured stochastic
and continuous Petri nets to model planar cell polarity in Drosophila fly wing [11,
13,17]. A 2-dimensional space is organised as a regular honeycomb lattice of cells
which is interpreted over a regular grid by tuning the neighbourhood functions.
Each position in the grid contains a subgrid describing the intracellular level.
Further case studies deploying coloured Petri nets for spatial modelling problems
can be found in [5, 13, 24, 25].

Our modelling style supports BioModel engineering by the established sep-
aration of concerns principle. Changing the notion of space just requires the
appropriate adaptation of the definition of the colour sets, the functions spec-
ifying the neighbourhood relation, and the transition rate functions. The net

http://www-dssz.informatik.tu-cottbus.de
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structure itself needs not to be altered. All colour-related definitions can be
reused via Snoopy’s export/import functionality.

Our current ongoing work includes the development of visualisation and model
checking over spatial patterns in multiple dimensions and scales, as well as non-
rectangular geometries. Future work will address computational challenges due
to the fact that currently simulations must be performed at the unfolded level
rather than at the coloured level.
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