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Abstract

By leveraging semantic (label) information, supervised
hashing has demonstrated better accuracy than unsuper-
vised hashing in many real applications. Because the
hashing-code learning problem is essentially a discrete
optimization problem which is hard to solve, most ex-
isting supervised hashing methods try to solve a relaxed
continuous optimization problem by dropping the dis-
crete constraints. However, these methods typically suf-
fer from poor performance due to the errors caused by
the relaxation. Some other methods try to directly solve
the discrete optimization problem. However, they are
typically time-consuming and unscalable. In this paper,
we propose a novel method, called column sampling
based discrete supervised hashing (COSDISH), to di-
rectly learn the discrete hashing code from semantic in-
formation. COSDISH is an iterative method, in each it-
eration of which several columns are sampled from the
semantic similarity matrix and then the hashing code
is decomposed into two parts which can be alternately
optimized in a discrete way. Theoretical analysis shows
that the learning (optimization) algorithm of COSDISH
has a constant-approximation bound in each step of the
alternating optimization procedure. Empirical results on
datasets with semantic labels illustrate that COSDISH
can outperform the state-of-the-art methods in real ap-
plications like image retrieval.

Introduction

Although different kinds of methods have been proposed
for approximate nearest neighbor (ANN) search (Indyk and
Motwani 1998), hashing has become one of the most pop-
ular candidates for ANN search because it can achieve
better performance than other methods in real applica-
tions (Weiss, Torralba, and Fergus 2008; Kulis and Grau-
man 2009; Zhang et al. 2010; Zhang, Wang, and Si 2011;
Zhang et al. 2012; Strecha et al. 2012; Zhen and Yeung 2012;
Rastegari et al. 2013; Lin et al. 2013b; Xu et al. 2013;
Jin et al. 2013; Zhu et al. 2013; Wang, Zhang, and Si 2013;
Zhou, Ding, and Guo 2014; Yu et al. 2014).

There have appeared two main categories of hashing
methods (Kong and Li 2012; Liu et al. 2012; Zhang et
al. 2014): data-independent methods and data-dependent
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methods. Representative data-independent methods include
locality-sensitive hashing (LSH) (Andoni and Indyk 2006)
and its variants. The data-dependent hashing can be further
divided into unsupervised hashing and supervised hashing
methods (Liu et al. 2012; Zhang et al. 2014). Unsupervised
hashing methods, such as iterative quantization (ITQ) (Gong
and Lazebnik 2011), isotropic hashing (IsoHash) (Kong and
Li 2012), discrete graph hashing (DGH) (Liu et al. 2014)
and scalable graph hashing (SGH) (Jiang and Li 2015), only
use the feature information of the data points for learning
without using any semantic (label) information. On the con-
trary, supervised hashing methods try to leverage seman-
tic (label) information for hashing function learning. Rep-
resentative supervised hashing methods include sequential
projection learning for hashing (SPLH) (Wang, Kumar, and
Chang 2010b), minimal loss hashing (MLH) (Norouzi and
Fleet 2011), supervised hashing with kernels (KSH) (Liu et
al. 2012), two-step hashing (TSH) (Lin et al. 2013a), latent
factor hashing (LFH) (Zhang et al. 2014), FastH (Lin et al.
2014), graph cuts coding (GCC) (Ge, He, and Sun 2014) and
supervised discrete hashing (SDH) (Shen et al. 2015).

Supervised hashing has attracted more and more atten-
tion in recent years because it has demonstrated better ac-
curacy than unsupervised hashing in many real applica-
tions. Because the hashing-code learning problem is es-
sentially a discrete optimization problem which is hard to
solve, most existing supervised hashing methods, such as
KSH (Liu et al. 2012), try to solve a relaxed continuous
optimization problem by dropping the discrete constraints.
However, these methods typically suffer from poor perfor-
mance due to the errors caused by the relaxation, which
has been verified by the experiments in (Lin et al. 2014;
Shen et al. 2015). Some other methods, such as FastH (Lin
et al. 2014), try to directly solve the discrete optimization
problem. However, they are typically time-consuming and
unscalable. Hence, they have to sample only a small subset
of the entire dataset for training even if a large-scale training
set is given, which cannot achieve satisfactory performance
in real applications.

In this paper, we propose a novel method, called column
sampling based discrete supervised hashing (COSDISH), to
directly learn the discrete hashing code from semantic infor-
mation. The main contributions of COSDISH are listed as
follows:
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• COSDISH is iterative, and in each iteration column sam-
pling (Zhang et al. 2014) is adopted to sample several
columns from the semantic similarity matrix. Different
from traditional sampling methods which try to sample
only a small subset of the entire dataset for training, our
column sampling method can exploit all the available data
points for training.

• Based on the sampled columns, the hashing-code learn-
ing procedure can be decomposed into two parts which
can be alternately optimized in a discrete way. The dis-
crete optimization strategy can avoid the errors caused by
relaxation in traditional continuous optimization methods.

• Theoretical analysis shows that the learning (optimiza-
tion) algorithm has a constant-approximation bound in
each step of the alternating optimization procedure.

• Empirical results on datasets with semantic labels illus-
trate that COSDISH can outperform the state-of-the-art
methods in real applications, such as image retrieval.

Notation and Problem Definition

Notation

Boldface lowercase letters like a denote vectors, and the ith
element of a is denoted as ai. Boldface uppercase letters like
A denote matrices. I denotes the identity matrix. Ai∗ and
A∗j denote the ith row and the jth column of A, respec-
tively. Aij denotes the element at the ith row and jth col-
umn in A. A−1 denotes the inverse of A, and AT denotes
the transpose of A. | · | denotes the cardinality of a set, i.e.,
the number of elements in the set. ‖ · ‖F denotes the Frobe-
nius norm of a vector or matrix, and ‖ · ‖1 denotes the L1

norm of a vector or matrix. sgn(·) is the element-wise sign
function which returns 1 if the element is a positive number
and returns -1 otherwise.

Problem Definition

Suppose we have n points {xi ∈ R
d}ni=1 where xi is the

feature vector of point i. We can denote the feature vectors
of the n points in a compact matrix form X ∈ R

n×d, where
XT

i∗ = xi. Besides the feature vectors, the training set of
supervised hashing also contains a semantic similarity ma-
trix S ∈ {−1, 0, 1}n×n, where Sij = 1 means that point i
and point j are semantically similar, Sij = −1 means that
point i and point j are semantically dissimilar, and Sij = 0
means that whether point i and point j are semantically sim-
ilar or not is unknown. Here, the semantic information typ-
ically refers to semantic labels provided with manual effort.
In this paper, we assume that S is fully observed without
missing entries, i.e., S ∈ {−1, 1}n×n. This assumption is
reasonable because in many cases we can always get the se-
mantic label information between two points. Furthermore,
our model in this paper can be easily adapted to the cases
with missing entries.

The goal of supervised hashing is to learn a binary code
matrix B ∈ {−1, 1}n×q , where Bi∗ denotes the q-bit code
for training point i. Furthermore, the learned binary codes
should preserve the semantic similarity in S. Although the
goal of supervised hashing can be formulated by different

optimization problems, the commonly used one is as fol-
lows:

min
B∈{−1,1}n×q

‖qS−BBT ‖2F , (1)

where ‖qS−BBT ‖2F =
∑n

i=1

∑n
j=1(qSij −Bi∗BT

j∗)
2.

The main idea of (1) is to adopt the inner product, which
reflects the opposite of the Hamming distance, of two bi-
nary codes to approximate the similarity label with the
square loss. This model has been widely used in many su-
pervised hashing methods (Liu et al. 2012; Lin et al. 2013a;
Zhang and Li 2014; Lin et al. 2014; Xia et al. 2014;
Leng et al. 2014). LFH (Zhang et al. 2014) also uses the
inner product to approximate the similarity label, but it uses
the logistic loss rather than the square loss in (1).

Problem (1) is a discrete optimization problem which is
hard to solve. Most existing methods optimize it by dropping
the discrete constraint (Liu et al. 2012; Lin et al. 2013a).
To the best of our knowledge, only one method, called
FastH (Lin et al. 2014), has been proposed to directly solve
the discrete optimization problem in (1). Due to the difficulty
of discrete optimization, FastH adopts a bit-wise learning
strategy which uses a Block Graph-Cut method to get the
local optima and learn one bit at a time. The experiments
of FastH show that FastH can achieve better accuracy than
other supervised methods with continuous relaxation.

It is easy to see that both time complexity and storage
complexity are O(n2) if all the supervised information in S
is used for training. Hence, all the existing methods, includ-
ing relaxation-based continuous optimization methods and
discrete optimization methods, sample only a small subset
with m (m < n) points for training where m is typically
several thousand even if we are given a large-scale training
set. Because some training points are discarded, all these ex-
isting methods cannot achieve satisfactory accuracy.

Therefore, to get satisfactory accuracy, we need to solve
the problem in (1) from two aspects. On one hand, we need
to adopt proper sampling strategy to effectively exploit all
the n available points for training. On the other hand, we
need to design strategies for discrete optimization. This mo-
tivates the work in this paper.

COSDISH

This section presents the details of our proposed method
called COSDISH. More specifically, we try to solve the two
aspects stated above, sampling and discrete optimization, for
the supervised hashing problem.

Column Sampling

As stated above, both time complexity and storage complex-
ity are O(n2) if all the supervised information in S is used
for training. Hence, we have to perform sampling for train-
ing, which is actually adopted by almost all existing meth-
ods, such as KSH, TSH, FastH and LFH. However, all exist-
ing methods except LFH try to sample only a small subset
with m (m < n) points for training and discard the rest
training points, which leads to unsatisfactory accuracy.

The special case is LFH, which proposes to sample sev-
eral columns from S in each iteration and several iterations
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are performed for training. In this paper, we adopt the same
column sampling method as LFH (Zhang et al. 2014) for our
COSDISH. Unlike LFH which adopts continuous relaxation
for learning, in COSDISH we propose a novel discrete opti-
mization (learning) method based on column sampling.

More specifically, in each iteration we randomly sam-
ple a subset Ω of N = {1, 2, . . . , n} and then choose the
semantic similarity between all n points and those points
indexed by Ω. That is to say, we sample |Ω| columns of
S with the column numbers being indexed by Ω. We use
S̃ ∈ {−1, 1}n×|Ω| to denote the sampled sub-matrix of sim-
ilarity.

We can find that there exist two different kinds of points
in each iteration, one being those indexed by Ω and the
other being those indexed by Γ = N − Ω. We use S̃Ω ∈
{−1, 1}|Ω|×|Ω| to denote a sub-matrix formed by the rows of
S̃ indexed by Ω. S̃Γ ∈ {−1, 1}|Γ|×|Ω|, BΩ ∈ {−1, 1}|Ω|×q

and BΓ ∈ {−1, 1}|Γ|×q are defined in a similar way.
According to the problem in (1), the problem associated

with the sampled columns in each iteration can be reformu-
lated as follows:
min

BΩ,BΓ
‖qS̃Γ −BΓ[BΩ]T ‖2F + ‖qS̃Ω −BΩ[BΩ]T ‖2F . (2)

Alternating Optimization

We propose an alternating optimization strategy, which con-
tains several iterations with each iteration divided into two
alternating steps, to solve the problem in (2). More specifi-
cally, we update BΓ with BΩ fixed, and then update BΩ with
BΓ fixed. This two-step alternating optimization procedure
will be repeated for several times.

Update BΓ with BΩ Fixed When BΩ is fixed, the objec-
tive function of BΓ is given by:

f2(B
Γ)

BΓ∈{−1,1}|Γ|×q

= ‖qS̃Γ −BΓ[BΩ]T ‖2F .

Minimizing f2(·) can be viewed as a discrete least square
problem. By relaxing the BΓ into continuous values, it is
easy to get the optimal continuous solution. However, after
we quantize the continuous solution into discrete solution,
the error bound caused by quantization cannot be guaran-
teed. Hence, even if the continuous solution is optimal for
the relaxed continuous problem, the discrete solution might
be far away from the optimal solution of the original prob-
lem.

Here, we design a method to solve it in a discrete way with
a constant-approximation bound. Let’s consider the follow-
ing problem f1(·) which changes the loss from Frobenius
norm in f2(·) to L1 norm:

f1(B
Γ)

BΓ∈{−1,1}|Γ|×q

= ‖qS̃Γ −BΓ[BΩ]T ‖1. (3)

It’s easy to find that when BΓ = sgn(S̃ΓBΩ), f1(·)
reaches its minimum. Furthermore, we have the following
theorem.
Theorem 1. Suppose that f1(F∗1) and f2(F

∗
2) reach their

minimum at the points F∗1 and F∗2, respectively. We have
f2(F

∗
1) ≤ 2qf2(F

∗
2).

The proof of Theorem 1 can be found in the supplemen-
tary material1.

That is to say, if we use the solution of f1(·), i.e., BΓ =

F∗1 = sgn(S̃ΓBΩ), as the solution of f2(·), the solution is
a 2q-approximation solution. Because q is usually small, we
can say that it is a constant-approximation solution, which
means that we can get an error bound for the original prob-
lem.

Because the elements of S̃ΓBΩ can be zero, we set BΓ
(t) =

e sgn(S̃ΓBΩ,BΓ
(t−1)) in practice:

e sgn(b1, b2) =

{
1 b1 > 0
b2 b1 = 0
−1 b1 < 0

where t is the iteration number, and e sgn(·, ·) is applied in
an element-wise manner.

Update BΩ with BΓ Fixed When BΓ is fixed, the sub-
problem of BΩ is given by:

min
BΩ∈{−1,1}|Ω|×q

‖qS̃Γ−BΓ[BΩ]T ‖2F+‖qS̃Ω−BΩ[BΩ]T ‖2F .

Inspired by TSH (Lin et al. 2013a), we can transform the
above problem to q binary quadratic programming (BQP)
problems. The optimization of the kth bit of BΩ is given by:

min
bk∈{−1,1}|Ω|

[bk]TQ(k)bk + [bk]Tp(k) (4)

where bk denotes the kth column of BΩ, and

Q
(k)
i,j
i �=j

=− 2(qS̃Ωi,j −
k−1∑
m=1

bmi bmj ), Q
(k)
i,i = 0,

p
(k)
i =− 2

|Γ|∑
l=1

BΓ
l,k(qS̃

Γ
l,i −

k−1∑
m=1

BΓ
l,mBΩ

i,m).

Note that the formulation in (4) is not the same as that in
TSH due to the additional linear term. More details about
the above derivation can be found in the supplementary ma-
terial.

Then, we need to turn the problem in (4) into a standard
BQP form in which the domain of binary variable is {0, 1}
and there are no linear terms.

First, we transform the domain of bk from {−1, 1}|Ω| to
{0, 1}|Ω|. Let b

k
= 1

2 (b
k + 1), we have:

[bk]TQ(k)bk + [bk]Tp(k)

=4

|Ω|∑
m=1

|Ω|∑
l=1

b
k
mb

k
l Q

(k)
m,l + 2

|Ω|∑
m=1

b
k
m(p(k)m −

|Ω|∑
l=1

(Q
(k)
m,l +Q

(k)
l,m))

+ const,

where const is a constant.
Hence, problem (4) can be reformulated as follows:

min
b

k∈{0,1}|Ω|
[b

k
]TQ

(k)
b
k
+ [b

k
]Tp(k), (5)

1The supplementary material can be downloaded from http://cs.
nju.edu.cn/lwj/paper/COSDISH sup.pdf.
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where Q
(k)

= 4Q(k), p(k)i = 2[p
(k)
i −∑|Ω|

l=1(Q
(k)
i,l +Q

(k)
l,i )].

More details about the above derivation can be found in the
supplementary material.

Furthermore, BQP can be turned into an equivalent form
without linear terms (Yang 2013). That is to say, the problem
in (5) can be rewritten as follows:

min [b̃k]T Q̃(k)b̃k

s.t. b̃k ∈ {0, 1}|Ω|+1, b̃k|Ω|+1 = 1
(6)

where

b̃k =

(
b
k

1

)
, Q̃(k) =

(
Q
(k) 1

2
p(k)

1
2
[p(k)]T 0

)
.

A method proposed by (Yang 2013) can solve the problem
in (6) with an additional constraint

∑|Ω|+1
i=1 b̃ki = �(|Ω| +

1)/2�. We also add this constraint to our problem to get a
balanced result for each bit which has been widely used in
hashing (Liu et al. 2014). So we reformulate problem (6)
with the constraint as follows:

min [b̃k]T Q̃(k)b̃k

s.t. b̃k ∈ {0, 1}M , b̃kM = 1

M∑
i=1

b̃ki = H

(7)

where M = |Ω|+ 1, and H = �M/2�.
As in (Yang 2013), we transform the problem in (7) to an

equivalent clustering problem: given a dataset U = {ui ∈
R

M}Mi=1, we want to find a subset U ′ of size H that the sum
of square of the distances within the subset U ′ is minimized.
It can be formulated as:

min
∑
u∈U ′

‖u− 1

H

∑
v∈U ′

v‖2

s.t. U ′ ⊆ U , |U ′| = H, uM ∈ U ′
(8)

Then, we have the following theorems.
Theorem 2. Let us use a matrix U of size M ×M to denote
the dateset U with U∗i = ui, and if UTU = λI−Q̃(k) � 0,
then (7) and (8) are equivalent.

Proof. We can use similar method in (Yang 2013) to prove
it.

According to (Yang 2013), we can always find such U

and λ to satisfy λI − Q̃(k) � 0 in Theorem 2. In practice,
we can take a sufficiently large number as λ, and perform
Cholesky decomposition on λI− Q̃(k) to get U.
Theorem 3. Assuming U ′∗ is the global solution of (8) and
f(U ′) = ∑

u∈U ′ ‖u − 1
H

∑
v∈U ′ v‖2 is the objective func-

tion of (8), there exists an algorithm which can find a solu-
tion U ′1 where

f(U ′1) ≤ 2f(U ′∗).
That is to say, there exists a 2-approximation algorithm
for (8).

Proof. Please refer to (Yang 2013) for the proof and algo-
rithm.

The Whole Algorithm The whole learning (optimization)
algorithm is summarized in Algorithm 1.

Algorithm 1 Discrete optimization in COSDISH
Input: S ∈ {−1, 1}n×n, q, Tsto, Talt, |Ω|
Initialize binary code B by randomization
for iter = 1 → Tsto do

Sample |Ω| columns of S to get S̃.
Let Ω be the set of sampled column indices and Γ = N − Ω,
with N = {1, 2, . . . n}.
Split S̃ into S̃Ω and S̃Γ .
Split B into BΩ

(0) and BΓ
(0) .

for t = 1 → Talt do
for k = 1 → q do

Construct problem (4) from BΓ
(t−1) , S̃Ω , S̃Γ and the

first k − 1 columns of BΩ
(t).

Construct problem (5) from problem (4).
Construct problem (7) from problems (5) and (6).
Construct problem (8) from problem (7) by performing
Cholesky decomposition.
Using the 2-approximation algorithm (Yang 2013) to
solve problem (8) and acquire the kth column of BΩ

(t).
end for
BΓ
(t) = e sgn(S̃ΓBΩ

(t),B
Γ
(t−1)).

end for
Recover B by combining BΩ

(t) and BΓ
(t).

end for
Output: B ∈ {−1, 1}n×q

In general, 10 ≤ Tsto ≤ 20 , 3 ≤ Talt ≤ 10 and |Ω| ≥ q
is enough to get satisfactory performance. Unless otherwise
stated, we set Tsto = 10, Talt = 3 and |Ω| = q in our
experiments. Furthermore, in our experiments we find that
our algorithm is not sensitive to the initialization. Hence, we
adopt random initialization in this paper.

Remark 1. Unlike other hashing methods such as
TSH (Lin et al. 2013a) which try to solve the whole problem
as q BQP problems, our alternating optimization strategy
decomposes the whole problem into two sub-problems. Typ-
ically, |Ω| 
 |Γ|, i.e., the number of variables in BΩ is far
less than that in BΓ. Furthermore, the cost to get a solution
for problem (3) is much lower than that to get a solution
for BQP. Hence, the key idea of our alternating optimiza-
tion strategy is to adopt a faster solution for the larger sub-
problem, which makes our strategy much faster than TSH.
Moreover, the faster solution of our strategy can also guar-
antee accuracy, which will be verified in the experiments.

TSH adopts LBFGSB to solve the BQP problem in a
continuous-relaxation way. We found that if LBFGSB is used
to solve the BQP problem in our method (i.e., problem (6)),
the accuracy of our method will be dramatically deterio-
rated. The reason is that the the solution of LBFGSB will
hurt the quality of the solution of BΓ.

In addition, the graph-cut method used in FastH cannot
be adapted to solve our problem (6), because problem (6)
doesn’t satisfy the sub-modular property required by the
graph-cut method.
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Soft Constraints

As mentioned in (Leng et al. 2014), when we can only get
a subset of the semantic information, pushing two dissim-
ilar points to have maximum Hamming distance may lead
to over-fitting and unexpected result. Moreover, the number
of dissimilar labels is typically far more than that of similar
labels. Hence, we can also view it as a class-imbalance prob-
lem between positive and negative labels. Inspired by (Leng
et al. 2014), we change the element -1 in our similarity ma-
trix S̃ to a real value 0 < β < 1. More specifically, we take
β = the number of 1 in ˜S

the number of −1 in ˜S
empirically.

Please note that although soft constraints can further im-
prove performance, the superior performance of our method
mainly comes from the learning procedure rather than the
soft constraints. Empirical verification about this can be
found in the supplementary material.

Out-of-Sample Extension

Many supervised hashing methods can be viewed as two-
step methods (Lin et al. 2013a): learn binary code in the first
step, and then train q binary classifiers based on the feature
matrix X and the learned code matrix B in the second step
with each bit corresponding to one classifier (Zhang et al.
2014; Lin et al. 2013a; 2014; Xia et al. 2014). Besides those
methods using linear classifiers (Wang, Kumar, and Chang
2010a; Zhang et al. 2014), some other methods use more
powerful nonlinear classifiers, such as SVM with RBF ker-
nel (Lin et al. 2013a), deep convolutional network (Xia et
al. 2014) and boosted decision trees (Lin et al. 2014) and
so on. In general, the more powerful classifiers we use for
out-of-sample extension, the better accuracy we can achieve
and also the more training time will be consumed (Lin et al.
2013a; 2014). FastH (Lin et al. 2014) adopts an efficient im-
plementation of boosted decision trees for out-of-sample ex-
tension, which shows better accuracy and less training time
than other methods like KSH and TSH with nonlinear clas-
sifiers.

Our COSDISH is also a two-step method. For out-of-
sample extension, COSDISH chooses linear classifier and
boosted decision trees in FastH to get two different variants.
We will empirically evaluate these two variants in our exper-
iments.

Complexity Analysis

The time complexity to construct problem (4) is O(|Γ| ×
|Ω| + |Ω|2). Both the time complexity to construct prob-
lem (5) and that for problem (7) are O(|Ω|2). Performing
Cholesky decomposition on λI − Q̃(k) need O(|Ω|3). The
2-approximation algorithm to solve the clustering problem
need O(|Ω|3 + |Ω|2 log |Ω|). For the BΩ-subproblem, we
need to solve q BQP problems. Hence, the complexity of
BΩ-subproblem is O(q × (|Γ| × |Ω| + |Ω|3)). In addition,
the time complexity of BΓ-subproblem is O(q× |Γ| × |Ω|).
Therefore, the total time complexity is O(Tsto × Talt × q ×
(|Γ| × |Ω| + |Ω|3)), and the space complexity is O(|Γ| ×
|Ω| + |Ω|2). If we take |Ω| = q, then time complexity is

O(Tsto × Talt × (nq2 + q4)), which is linear to n. Typi-
cally, q is very small, e.g., less than 64. Hence, our method
is scalable.

Experiment

We use real datasets to evaluate the effectiveness of our
method. All the experiments are conducted on a workstation
with 6 Intel Xeon CPU cores and 48GB RAM.

Dataset

Two image datasets with semantic labels are used to
evaluate our method and the other baselines. They are
CIFAR-10 (Krizhevsky 2009) and NUS-WIDE (Chua et al.
2009). Both of them have been widely used for hashing eval-
uation (Lin et al. 2013a; Zhang et al. 2014). Each instance
in CIFAR-10 has a single label, and each instance in NUS-
WIDE might have multi-labels.

CIFAR-10 contains 60,000 images. Each image is repre-
sented by a 512-dimension GIST feature vector extracted
from the original color image of size 32 × 32. Each image
is manually labeled to be one of the ten classes. Two images
are considered to be semantically similar if they share the
same class label. Otherwise, they are treated as semantically
dissimilar.

NUS-WIDE includes 269,648 images crawled from
Flickr with 81 ground-truth labels (tags). Each image is rep-
resented by a 1134-dimension feature vector after feature ex-
traction. Each image might be associated with multi-labels.
There also exist some images without any label, which are
not suitable for our evaluation. After removing those images
without any label, we get 209,347 images for our experi-
ment. We consider two images to be semantically similar if
they share at least one common label. Otherwise, they are
semantically dissimilar.

For all the datasets, we perform normalization on feature
vectors to make each dimension have zero mean and equal
variance.

Experimental Settings and Baselines

As in LFH (Zhang et al. 2014), for all datasets we ran-
domly choose 1000 points as validation set and 1000 points
as query (test) set, with the rest of the points as training set.
All experimental results are the average values of 10 inde-
pendent random partitions.

Unless otherwise stated, COSDISH refers to the vari-
ant with soft constraints because in most cases it will out-
perform the variant without soft constraints (refer to the
supplementary material). We use COSDISH to denote our
method with linear classifier for out-of-sample extension,
and COSDISH BT to denote our method with boosted de-
cision trees for out-of-sample extension.

Because existing methods (Lin et al. 2013a; Zhang et al.
2014) have shown that supervised methods can outperform
unsupervised methods, we only compare our method with
some representative supervised hashing methods, including
SPLH (Wang, Kumar, and Chang 2010b), KSH (Liu et al.
2012), TSH (Lin et al. 2013a), LFH (Zhang et al. 2014),
FastH (Lin et al. 2014) and SDH (Shen et al. 2015).
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Table 1: Accuracy in terms of MAP. The best MAPs for each category are shown in boldface.
Method CIFAR-10 NUS-WIDE

8-bits 16-bits 32-bits 64-bits 8-bits 16-bits 32-bits 64-bits
COSDISH 0.4986 0.5768 0.6191 0.6371 0.5454 0.5940 0.6218 0.6329

SDH 0.2642 0.3994 0.4145 0.4346 0.4739 0.4674 0.4908 0.4944
LFH 0.2908 0.4098 0.5446 0.6182 0.5437 0.5929 0.6025 0.6136
TSH 0.2365 0.3080 0.3455 0.3663 0.4593 0.4784 0.4857 0.4955
KSH 0.2334 0.2662 0.2923 0.3128 0.4275 0.4546 0.4645 0.4688
SPLH 0.1588 0.1635 0.1701 0.1730 0.3769 0.4077 0.4147 0.4071
COSDISH BT 0.5856 0.6681 0.7079 0.7346 0.5819 0.6316 0.6618 0.6786

FastH 0.4230 0.5216 0.5970 0.6446 0.5014 0.5296 0.5541 0.5736

All the baselines are implemented by the source code pro-
vided by the corresponding authors. For LFH, we use the
stochastic learning version with 50 iterations and each iter-
ation sample q columns of the semantic similarity matrix as
in (Zhang et al. 2014). For SPLH, KSH and TSH, we cannot
use the entire training set for training due to high time com-
plexity. As in (Liu et al. 2012; Lin et al. 2013a), we randomly
sample 2000 points as training set for CIFAR-10 and 5000
points for NUS-WIDE. TSH can use different loss functions
for training. For fair comparison, the loss function in KSH
which is also the same as our COSDISH is used for training
TSH. The SVM with RBF-kernel is used for out-of-sample-
extension in TSH. For KSH, the number of support vec-
tors is 300 for CIFAR-10, 1000 for NUS-WIDE. For FastH,
boosted decision trees are used for out-of-sample extension.
We use the entire training set for FastH training on CIFAR-
10, and randomly sample 100,000 points for FastH training
on NUS-WIDE. All the other hyperparameters and initial-
ization strategy are the same as those suggested by the au-
thors of the methods. In our experiment, we choose |Ω| = q
for COSDISH which is the same as that in LFH. Actually,
our method is not sensitive to |Ω|.

Accuracy

The mean average precision (MAP) is a widely used metric
for evaluating the accuracy of hashing (Zhang et al. 2014;
Lin et al. 2014). Table 1 shows the MAP of our method
and baselines. The eight methods in Table 1 can be divided
into two different categories. The first category contains the
first (top) six methods in Table 1 which use relatively weak
classifiers for out-of-sample extension, and the second cat-
egory contains the last (bottom) two methods in Table 1
which use a relatively strong classifier (i.e., boosted decision
trees) for out-of-sample extension.

By comparing COSDISH to SPLH, KSH, TSH, LFH,
SDH and FastH, we can find that COSDISH can out-
perform the other baselines in most cases. By comparing
COSDISH BT to COSDISH, we can find that the boosted
decision trees can achieve much better accuracy than lin-
ear classifier for out-of-sample extension. By comparing
COSDISH BT to FastH which also uses boosted deci-
sion trees for out-of-sample extension, we can find that
COSDISH BT can outperform FastH, which verifies the ef-
fectiveness of our discrete optimization and column sam-
pling strategies. In sum, our COSDISH and COSDISH BT

can achieve the state-of-the-art accuracy.

Scalability

We sample different numbers of training points from
NUS-WIDE as the training set, and evaluate the scalabil-
ity of COSDISH and baselines by assuming that all meth-
ods should use all the sampled training points for learn-
ing. Table 2 reports the training time, where the symbol ‘-
’ means that we can’t finish the experiment due to out-of-
memory errors. One can easily see that COSDISH, COS-
DISH BT, SDH and LFH can easily scale to dataset of size
200,000 (200K) or even larger, while other methods either
exceed the memory limit or consume too much time. LFH
is more scalable than our COSDISH. However, as stated
above, our COSDISH can achieve better accuracy than LFH
with slightly increased time complexity. Hence, COSDISH
is more practical than LFH for supervised hashing.

Table 2: Training time (in second) on subsets of NUS-WIDE
Method 3K 10K 50K 100K 200K

COSDISH 5.6 8.0 33.7 67.7 162.2
SDH 3.9 11.8 66.2 126.9 248.2
LFH 14.3 16.3 27.8 40.8 85.9
TSH 922.2 27360 >50000 - -
KSH 1104 4446 >50000 - -
SPLH 25.3 185 - - -

COSDISH BT 60.2 69.1 228.3 422.6 893.3
FastH 172.3 291.6 1451 3602 -

Conclusion

In this paper, we have proposed a novel model called
COSDISH for supervised hashing. COSDISH can directly
learn discrete hashing code from semantic labels. Experi-
ments on several datasets show that COSDISH can outper-
form other state-of-the-art methods in real applications.
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