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ABSTRACT
There has been a significant amount of excitement and recent work
on column-oriented database systems (“column-stores”). These
database systems have been shown to perform more than an or-
der of magnitude better than traditional row-oriented database sys-
tems (“row-stores”) on analytical workloads such as those found in
data warehouses, decision support, and business intelligence appli-
cations. The elevator pitch behind this performance difference is
straightforward: column-stores are more I/O efficient for read-only
queries since they only have to read from disk (or from memory)
those attributes accessed by a query.

This simplistic view leads to the assumption that one can ob-
tain the performance benefits of a column-store using a row-store:
either by vertically partitioning the schema, or by indexing every
column so that columns can be accessed independently. In this pa-
per, we demonstrate that this assumption is false. We compare the
performance of a commercial row-store under a variety of differ-
ent configurations with a column-store and show that the row-store
performance is significantly slower on a recently proposed data
warehouse benchmark. We then analyze the performance differ-
ence and show that there are some important differences between
the two systems at the query executor level (in addition to the obvi-
ous differences at the storage layer level). Using the column-store,
we then tease apart these differences, demonstrating the impact on
performance of a variety of column-oriented query execution tech-
niques, including vectorized query processing, compression, and a
new join algorithm we introduce in this paper. We conclude that
while it is not impossible for a row-store to achieve some of the
performance advantages of a column-store, changes must be made
to both the storage layer and the query executor to fully obtain the
benefits of a column-oriented approach.
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1. INTRODUCTION
Recent years have seen the introduction of a number of column-

oriented database systems, including MonetDB [9, 10] and C-Store [22].
The authors of these systems claim that their approach offers order-
of-magnitude gains on certain workloads, particularly on read-intensive
analytical processing workloads, such as those encountered in data
warehouses.

Indeed, papers describing column-oriented database systems usu-
ally include performance results showing such gains against tradi-
tional, row-oriented databases (either commercial or open source).
These evaluations, however, typically benchmark against row-orient-
ed systems that use a “conventional” physical design consisting of
a collection of row-oriented tables with a more-or-less one-to-one
mapping to the tables in the logical schema. Though such results
clearly demonstrate the potential of a column-oriented approach,
they leave open a key question: Are these performance gains due
to something fundamental about the way column-oriented DBMSs
are internally architected, or would such gains also be possible in
a conventional system that used a more column-oriented physical
design?

Often, designers of column-based systems claim there is a funda-
mental difference between a from-scratch column-store and a row-
store using column-oriented physical design without actually ex-
ploring alternate physical designs for the row-store system. Hence,
one goal of this paper is to answer this question in a systematic
way. One of the authors of this paper is a professional DBA spe-
cializing in a popular commercial row-oriented database. He has
carefully implemented a number of different physical database de-
signs for a recently proposed data warehousing benchmark, the Star
Schema Benchmark (SSBM) [18, 19], exploring designs that are as
“column-oriented” as possible (in addition to more traditional de-
signs), including:

� Vertically partitioning the tables in the system into a collec-
tion of two-column tables consisting of (table key, attribute)
pairs, so that only the necessary columns need to be read to
answer a query.

� Using index-only plans; by creating a collection of indices
that cover all of the columns used in a query, it is possible
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for the database system to answer a query without ever going
to the underlying (row-oriented) tables.

� Using a collection of materialized views such that there is a
view with exactly the columns needed to answer every query
in the benchmark. Though this approach uses a lot of space,
it is the `best case’ for a row-store, and provides a useful
point of comparison to a column-store implementation.

We compare the performance of these various techniques to the
baseline performance of the open-source C-Store database [22] on
the SSBM, showing that, despite the ability of the above methods
to emulate the physical structure of a column-store inside a row-
store, their query processing performance is quite poor. Hence, one
contribution of this work is showing that there is in fact something
fundamental about the design of column-store systems that makes
them better suited to data-warehousing workloads. This is impor-
tant because it puts to rest a common claim that it would be easy
for existing row-oriented vendors to adopt a column-oriented phys-
ical database design. We emphasize that our goal is not to find the
fastest performing implementation of SSBM in our row-oriented
database, but to evaluate the performance of specific, “columnar”
physical implementations, which leads us to a second question:
Which of the many column-database speci�c optimizations pro-
posed in the literature are most responsible for the signi�cant per-
formance advantage of column-stores over row-stores on warehouse
workloads?

Prior research has suggested that important optimizations spe-
cific to column-oriented DBMSs include:

� Late materialization (when combined with the block iteration
optimization below, this technique is also known as vector-
ized query processing [9, 25]), where columns read off disk
are joined together into rows as late as possible in a query
plan [5].

� Block iteration [25], where multiple values from a column
are passed as a block from one operator to the next, rather
than using Volcano-style per-tuple iterators [11]. If the val-
ues are fixed-width, they are iterated through as an array.

� Column-specific compression techniques, such as run-length
encoding, with direct operation on compressed data when us-
ing late-materialization plans [4].

� We also propose a new optimization, called invisible joins,
which substantially improves join performance in late-mat-
erialization column stores, especially on the types of schemas
found in data warehouses.

However, because each of these techniques was described in a
separate research paper, no work has analyzed exactly which of
these gains are most significant. Hence, a third contribution of
this work is to carefully measure different variants of the C-Store
database by removing these column-specific optimizations one-by-
one (in effect, making the C-Store query executor behave more like
a row-store), breaking down the factors responsible for its good per-
formance. We find that compression can offer order-of-magnitude
gains when it is possible, but that the benefits are less substantial in
other cases, whereas late materialization offers about a factor of 3
performance gain across the board. Other optimizations – includ-
ing block iteration and our new invisible join technique, offer about
a factor 1.5 performance gain on average.

In summary, we make three contributions in this paper:

1. We show that trying to emulate a column-store in a row-store
does not yield good performance results, and that a variety
of techniques typically seen as ”good” for warehouse perfor-
mance (index-only plans, bitmap indices, etc.) do little to
improve the situation.

2. We propose a new technique for improving join performance
in column stores called invisible joins. We demonstrate ex-
perimentally that, in many cases, the execution of a join us-
ing this technique can perform as well as or better than se-
lecting and extracting data from a single denormalized ta-
ble where the join has already been materialized. We thus
conclude that denormalization, an important but expensive
(in space requirements) and complicated (in deciding in ad-
vance what tables to denormalize) performance enhancing
technique used in row-stores (especially data warehouses) is
not necessary in column-stores (or can be used with greatly
reduced cost and complexity).

3. We break-down the sources of column-database performance
on warehouse workloads, exploring the contribution of late-
materialization, compression, block iteration, and invisible
joins on overall system performance. Our results validate
previous claims of column-store performance on a new data
warehousing benchmark (the SSBM), and demonstrate that
simple column-oriented operation – without compression and
late materialization – does not dramatically outperform well-
optimized row-store designs.

The rest of this paper is organized as follows: we begin by de-
scribing prior work on column-oriented databases, including sur-
veying past performance comparisons and describing some of the
architectural innovations that have been proposed for column-oriented
DBMSs (Section 2); then, we review the SSBM (Section 3). We
then describe the physical database design techniques used in our
row-oriented system (Section 4), and the physical layout and query
execution techniques used by the C-Store system (Section 5). We
then present performance comparisons between the two systems,
first contrasting our row-oriented designs to the baseline C-Store
performance and then decomposing the performance of C-Store to
measure which of the techniques it employs for efficient query ex-
ecution are most effective on the SSBM (Section 6).

2. BACKGROUND AND PRIOR WORK
In this section, we briefly present related efforts to characterize

column-store performance relative to traditional row-stores.
Although the idea of vertically partitioning database tables to

improve performance has been around a long time [1, 7, 16], the
MonetDB [10] and the MonetDB/X100 [9] systems pioneered the
design of modern column-oriented database systems and vector-
ized query execution. They show that column-oriented designs –
due to superior CPU and cache performance (in addition to re-
duced I/O) – can dramatically outperform commercial and open
source databases on benchmarks like TPC-H. The MonetDB work
does not, however, attempt to evaluate what kind of performance
is possible from row-stores using column-oriented techniques, and
to the best of our knowledge, their optimizations have never been
evaluated in the same context as the C-Store optimization of direct
operation on compressed data.

The fractured mirrors approach [21] is another recent column-
store system, in which a hybrid row/column approach is proposed.
Here, the row-store primarily processes updates and the column-
store primarily processes reads, with a background process mi-
grating data from the row-store to the column-store. This work
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also explores several different representations for a fully vertically
partitioned strategy in a row-store (Shore), concluding that tuple
overheads in a naive scheme are a significant problem, and that
prefetching of large blocks of tuples from disk is essential to im-
prove tuple reconstruction times.

C-Store [22] is a more recent column-oriented DBMS. It in-
cludes many of the same features as MonetDB/X100, as well as
optimizations for direct operation on compressed data [4]. Like
the other two systems, it shows that a column-store can dramati-
cally outperform a row-store on warehouse workloads, but doesn’t
carefully explore the design space of feasible row-store physical
designs. In this paper, we dissect the performance of C-Store, not-
ing how the various optimizations proposed in the literature (e.g.,
[4, 5]) contribute to its overall performance relative to a row-store
on a complete data warehousing benchmark, something that prior
work from the C-Store group has not done.

Harizopoulos et al. [14] compare the performance of a row and
column store built from scratch, studying simple plans that scan
data from disk only and immediately construct tuples (“early ma-
terialization”). This work demonstrates that in a carefully con-
trolled environment with simple plans, column stores outperform
row stores in proportion to the fraction of columns they read from
disk, but doesn’t look specifically at optimizations for improving
row-store performance, nor at some of the advanced techniques for
improving column-store performance.

Halverson et al. [13] built a column-store implementation in Shore
and compared an unmodified (row-based) version of Shore to a ver-
tically partitioned variant of Shore. Their work proposes an opti-
mization, called “super tuples”, that avoids duplicating header in-
formation and batches many tuples together in a block, which can
reduce the overheads of the fully vertically partitioned scheme and
which, for the benchmarks included in the paper, make a vertically
partitioned database competitive with a column-store. The paper
does not, however, explore the performance benefits of many re-
cent column-oriented optimizations, including a variety of differ-
ent compression methods or late-materialization. Nonetheless, the
“super tuple” is the type of higher-level optimization that this pa-
per concludes will be needed to be added to row-stores in order to
simulate column-store performance.

3. STAR SCHEMA BENCHMARK
In this paper, we use the Star Schema Benchmark (SSBM) [18,

19] to compare the performance of C-Store and the commercial
row-store.

The SSBM is a data warehousing benchmark derived from TPC-
H 1. Unlike TPC-H, it uses a pure textbook star-schema (the “best
practices” data organization for data warehouses). It also consists
of fewer queries than TPC-H and has less stringent requirements on
what forms of tuning are and are not allowed. We chose it because
it is easier to implement than TPC-H and we did not have to modify
C-Store to get it to run (which we would have had to do to get the
entire TPC-H benchmark running).

Schema: The benchmark consists of a single fact table, the LINE-
ORDER table, that combines the LINEITEM and ORDERS table of
TPC-H. This is a 17 column table with information about individual
orders, with a composite primary key consisting of the ORDERKEY
and LINENUMBER attributes. Other attributes in the LINEORDER
table include foreign key references to the CUSTOMER, PART, SUPP-
LIER, and DATE tables (for both the order date and commit date),
as well as attributes of each order, including its priority, quan-
tity, price, and discount. The dimension tables contain informa-

1http://www.tpc.org/tpch/.

tion about their respective entities in the expected way. Figure 1
(adapted from Figure 2 of [19]) shows the schema of the tables.

As with TPC-H, there is a base “scale factor” which can be used
to scale the size of the benchmark. The sizes of each of the tables
are defined relative to this scale factor. In this paper, we use a scale
factor of 10 (yielding a LINEORDER table with 60,000,000 tuples).

LINEORDER

ORDERKEY

LINENUMBER

CUSTKEY

PARTKEY

SUPPKEY

ORDERDATE

ORDPRIORITY

SHIPPRIORITY

QUANTITY

EXTENDEDPRICE

ORDTOTALPRICE

DISCOUNT

REVENUE

SUPPLYCOST

TAX

COMMITDATE

SHIPMODE

CUSTOMER

CUSTKEY

NAME

ADDRESS

CITY

NATION

REGION

PHONE

MKTSEGMENT

SUPPLIER

SUPPKEY

NAME

ADDRESS

CITY

NATION

REGION

PHONE

PART

PARTKEY

NAME

MFGR

CATEGOTY

BRAND1

COLOR

TYPE

SIZE

CONTAINER

DATE

DATEKEY

DATE

DAYOFWEEK

MONTH

YEAR

YEARMONTHNUM

YEARMONTH

DAYNUMWEEK

…. (9 add!l attributes)

Size=scalefactor x 
2,000

Size=scalefactor x 
30,0000

Size=scalefactor x 
6,000,000

Size=200,000 x 
(1 + log2 scalefactor)

Size= 365 x 7

Figure 1: Schema of the SSBM Benchmark

Queries: The SSBM consists of thirteen queries divided into
four categories, or “flights”:

1. Flight 1 contains 3 queries. Queries have a restriction on 1 di-
mension attribute, as well as the DISCOUNT and QUANTITY
columns of the LINEORDER table. Queries measure the gain
in revenue (the product of EXTENDEDPRICE and DISCOUNT)
that would be achieved if various levels of discount were
eliminated for various order quantities in a given year. The
LINEORDER selectivities for the three queries are 1.9×10−2,
6.5× 10−4, and 7.5× 10−5, respectively.

2. Flight 2 contains 3 queries. Queries have a restriction on
2 dimension attributes and compute the revenue for particu-
lar product classes in particular regions, grouped by product
class and year. The LINEORDER selectivities for the three
queries are 8.0×10−3, 1.6×10−3, and 2.0×10−4, respec-
tively.

3. Flight 3 consists of 4 queries, with a restriction on 3 di-
mensions. Queries compute the revenue in a particular re-
gion over a time period, grouped by customer nation, sup-
plier nation, and year. The LINEORDER selectivities for the
four queries are 3.4 × 10−2, 1.4 × 10−3, 5.5 × 10−5, and
7.6× 10−7 respectively.

4. Flight 4 consists of three queries. Queries restrict on three di-
mension columns, and compute profit (REVENUE - SUPPLY-
COST) grouped by year, nation, and category for query 1;
and for queries 2 and 3, region and category. The LINEORDER
selectivities for the three queries are 1.6×10−2, 4.5×10−3,
and 9.1× 10−5, respectively.

969



4. ROWORIENTED EXECUTION
In this section, we discuss several different techniques that can

be used to implement a column-database design in a commercial
row-oriented DBMS (hereafter, System X). We look at three differ-
ent classes of physical design: a fully vertically partitioned design,
an “index only” design, and a materialized view design. In our
evaluation, we also compare against a “standard” row-store design
with one physical table per relation.

Vertical Partitioning: The most straightforward way to emulate
a column-store approach in a row-store is to fully vertically parti-
tion each relation [16]. In a fully vertically partitioned approach,
some mechanism is needed to connect fields from the same row
together (column stores typically match up records implicitly by
storing columns in the same order, but such optimizations are not
available in a row store). To accomplish this, the simplest approach
is to add an integer “position” column to every table – this is of-
ten preferable to using the primary key because primary keys can
be large and are sometimes composite (as in the case of the line-
order table in SSBM). This approach creates one physical table for
each column in the logical schema, where the ith table has two
columns, one with values from column i of the logical schema and
one with the corresponding value in the position column. Queries
are then rewritten to perform joins on the position attribute when
fetching multiple columns from the same relation. In our imple-
mentation, by default, System X chose to use hash joins for this
purpose, which proved to be expensive. For that reason, we exper-
imented with adding clustered indices on the position column of
every table, and forced System X to use index joins, but this did
not improve performance – the additional I/Os incurred by index
accesses made them slower than hash joins.

Index-only plans: The vertical partitioning approach has two
problems. First, it requires the position attribute to be stored in ev-
ery column, which wastes space and disk bandwidth. Second, most
row-stores store a relatively large header on every tuple, which
further wastes space (column stores typically – or perhaps even
by definition – store headers in separate columns to avoid these
overheads). To ameliorate these concerns, the second approach we
consider uses index-only plans, where base relations are stored us-
ing a standard, row-oriented design, but an additional unclustered
B+Tree index is added on every column of every table. Index-only
plans – which require special support from the database, but are
implemented by System X – work by building lists of (record-
id,value) pairs that satisfy predicates on each table, and merging
these rid-lists in memory when there are multiple predicates on the
same table. When required fields have no predicates, a list of all
(record-id,value) pairs from the column can be produced. Such
plans never access the actual tuples on disk. Though indices still
explicitly store rids, they do not store duplicate column values, and
they typically have a lower per-tuple overhead than the vertical par-
titioning approach since tuple headers are not stored in the index.

One problem with the index-only approach is that if a column
has no predicate on it, the index-only approach requires the index
to be scanned to extract the needed values, which can be slower
than scanning a heap file (as would occur in the vertical partition-
ing approach.) Hence, an optimization to the index-only approach
is to create indices with composite keys, where the secondary keys
are from predicate-less columns. For example, consider the query
SELECT AVG(salary) FROM emp WHERE age>40 – if we
have a composite index with an (age,salary) key, then we can an-
swer this query directly from this index. If we have separate indices
on (age) and (salary), an index only plan will have to find record-ids
corresponding to records with satisfying ages and then merge this
with the complete list of (record-id, salary) pairs extracted from

the (salary) index, which will be much slower. We use this opti-
mization in our implementation by storing the primary key of each
dimension table as a secondary sort attribute on the indices over the
attributes of that dimension table. In this way, we can efficiently ac-
cess the primary key values of the dimension that need to be joined
with the fact table.

Materialized Views: The third approach we consider uses mate-
rialized views. In this approach, we create an optimal set of materi-
alized views for every query flight in the workload, where the opti-
mal view for a given flight has only the columns needed to answer
queries in that flight. We do not pre-join columns from different
tables in these views. Our objective with this strategy is to allow
System X to access just the data it needs from disk, avoiding the
overheads of explicitly storing record-id or positions, and storing
tuple headers just once per tuple. Hence, we expect it to perform
better than the other two approaches, although it does require the
query workload to be known in advance, making it practical only
in limited situations.

5. COLUMNORIENTED EXECUTION
Now that we’ve presented our row-oriented designs, in this sec-

tion, we review three common optimizations used to improve per-
formance in column-oriented database systems, and introduce the
invisible join.

5.1 Compression
Compressing data using column-oriented compression algorithms

and keeping data in this compressed format as it is operated upon
has been shown to improve query performance by up to an or-
der of magnitude [4]. Intuitively, data stored in columns is more
compressible than data stored in rows. Compression algorithms
perform better on data with low information entropy (high data
value locality). Take, for example, a database table containing in-
formation about customers (name, phone number, e-mail address,
snail-mail address, etc.). Storing data in columns allows all of the
names to be stored together, all of the phone numbers together,
etc. Certainly phone numbers are more similar to each other than
surrounding text fields like e-mail addresses or names. Further,
if the data is sorted by one of the columns, that column will be
super-compressible (for example, runs of the same value can be
run-length encoded).

But of course, the above observation only immediately affects
compression ratio. Disk space is cheap, and is getting cheaper
rapidly (of course, reducing the number of needed disks will re-
duce power consumption, a cost-factor that is becoming increas-
ingly important). However, compression improves performance (in
addition to reducing disk space) since if data is compressed, then
less time must be spent in I/O as data is read from disk into mem-
ory (or from memory to CPU). Consequently, some of the “heavier-
weight” compression schemes that optimize for compression ratio
(such as Lempel-Ziv, Huffman, or arithmetic encoding), might be
less suitable than “lighter-weight” schemes that sacrifice compres-
sion ratio for decompression performance [4, 26]. In fact, com-
pression can improve query performance beyond simply saving on
I/O. If a column-oriented query executor can operate directly on
compressed data, decompression can be avoided completely and
performance can be further improved. For example, for schemes
like run-length encoding – where a sequence of repeated values is
replaced by a count and the value (e.g., 1; 1; 1; 2; 2 ! 1×3; 2×2)
– operating directly on compressed data results in the ability of a
query executor to perform the same operation on multiple column
values at once, further reducing CPU costs.

Prior work [4] concludes that the biggest difference between
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compression in a row-store and compression in a column-store are
the cases where a column is sorted (or secondarily sorted) and there
are consecutive repeats of the same value in a column. In a column-
store, it is extremely easy to summarize these value repeats and op-
erate directly on this summary. In a row-store, the surrounding data
from other attributes significantly complicates this process. Thus,
in general, compression will have a larger impact on query perfor-
mance if a high percentage of the columns accessed by that query
have some level of order. For the benchmark we use in this paper,
we do not store multiple copies of the fact table in different sort or-
ders, and so only one of the seventeen columns in the fact table can
be sorted (and two others secondarily sorted) so we expect com-
pression to have a somewhat smaller (and more variable per query)
effect on performance than it could if more aggressive redundancy
was used.

5.2 Late Materialization
In a column-store, information about a logical entity (e.g., a per-

son) is stored in multiple locations on disk (e.g. name, e-mail
address, phone number, etc. are all stored in separate columns),
whereas in a row store such information is usually co-located in
a single row of a table. However, most queries access more than
one attribute from a particular entity. Further, most database output
standards (e.g., ODBC and JDBC) access database results entity-at-
a-time (not column-at-a-time). Thus, at some point in most query
plans, data from multiple columns must be combined together into
`rows’ of information about an entity. Consequently, this join-like
materialization of tuples (also called “tuple construction”) is an ex-
tremely common operation in a column store.

Naive column-stores [13, 14] store data on disk (or in memory)
column-by-column, read in (to CPU from disk or memory) only
those columns relevant for a particular query, construct tuples from
their component attributes, and execute normal row-store operators
on these rows to process (e.g., select, aggregate, and join) data. Al-
though likely to still outperform the row-stores on data warehouse
workloads, this method of constructing tuples early in a query plan
(“early materialization”) leaves much of the performance potential
of column-oriented databases unrealized.

More recent column-stores such as X100, C-Store, and to a lesser
extent, Sybase IQ, choose to keep data in columns until much later
into the query plan, operating directly on these columns. In order
to do so, intermediate “position” lists often need to be constructed
in order to match up operations that have been performed on differ-
ent columns. Take, for example, a query that applies a predicate on
two columns and projects a third attribute from all tuples that pass
the predicates. In a column-store that uses late materialization, the
predicates are applied to the column for each attribute separately
and a list of positions (ordinal offsets within a column) of values
that passed the predicates are produced. Depending on the predi-
cate selectivity, this list of positions can be represented as a simple
array, a bit string (where a 1 in the ith bit indicates that the ith
value passed the predicate) or as a set of ranges of positions. These
position representations are then intersected (if they are bit-strings,
bit-wise AND operations can be used) to create a single position
list. This list is then sent to the third column to extract values at the
desired positions.

The advantages of late materialization are four-fold. First, se-
lection and aggregation operators tend to render the construction
of some tuples unnecessary (if the executor waits long enough be-
fore constructing a tuple, it might be able to avoid constructing it
altogether). Second, if data is compressed using a column-oriented
compression method, it must be decompressed before the combi-
nation of values with values from other columns. This removes

the advantages of operating directly on compressed data described
above. Third, cache performance is improved when operating di-
rectly on column data, since a given cache line is not polluted with
surrounding irrelevant attributes for a given operation (as shown
in PAX [6]). Fourth, the block iteration optimization described in
the next subsection has a higher impact on performance for fixed-
length attributes. In a row-store, if any attribute in a tuple is variable-
width, then the entire tuple is variable width. In a late materialized
column-store, fixed-width columns can be operated on separately.

5.3 Block Iteration
In order to process a series of tuples, row-stores first iterate through

each tuple, and then need to extract the needed attributes from these
tuples through a tuple representation interface [11]. In many cases,
such as in MySQL, this leads to tuple-at-a-time processing, where
there are 1-2 function calls to extract needed data from a tuple for
each operation (which if it is a small expression or predicate evalu-
ation is low cost compared with the function calls) [25].

Recent work has shown that some of the per-tuple overhead of
tuple processing can be reduced in row-stores if blocks of tuples are
available at once and operated on in a single operator call [24, 15],
and this is implemented in IBM DB2 [20]. In contrast to the case-
by-case implementation in row-stores, in all column-stores (that we
are aware of), blocks of values from the same column are sent to
an operator in a single function call. Further, no attribute extraction
is needed, and if the column is fixed-width, these values can be
iterated through directly as an array. Operating on data as an array
not only minimizes per-tuple overhead, but it also exploits potential
for parallelism on modern CPUs, as loop-pipelining techniques can
be used [9].

5.4 Invisible Join
Queries over data warehouses, particularly over data warehouses

modeled with a star schema, often have the following structure: Re-
strict the set of tuples in the fact table using selection predicates on
one (or many) dimension tables. Then, perform some aggregation
on the restricted fact table, often grouping by other dimension table
attributes. Thus, joins between the fact table and dimension tables
need to be performed for each selection predicate and for each ag-
gregate grouping. A good example of this is Query 3.1 from the
Star Schema Benchmark.

SELECT c.nation, s.nation, d.year,
sum(lo.revenue) as revenue

FROM customer AS c, lineorder AS lo,
supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND lo.orderdate = d.datekey
AND c.region = 'ASIA'
AND s.region = 'ASIA'
AND d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

This query finds the total revenue from customers who live in
Asia and who purchase a product supplied by an Asian supplier
between the years 1992 and 1997 grouped by each unique combi-
nation of the nation of the customer, the nation of the supplier, and
the year of the transaction.

The traditional plan for executing these types of queries is to
pipeline joins in order of predicate selectivity. For example, if
c.region = 'ASIA' is the most selective predicate, the join
on custkey between the lineorder and customer tables is
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performed first, filtering the lineorder table so that only or-
ders from customers who live in Asia remain. As this join is per-
formed, the nation of these customers are added to the joined
customer-order table. These results are pipelined into a join
with the supplier table where the s.region = 'ASIA' pred-
icate is applied and s.nation extracted, followed by a join with
the data table and the year predicate applied. The results of these
joins are then grouped and aggregated and the results sorted ac-
cording to the ORDER BY clause.

An alternative to the traditional plan is the late materialized join
technique [5]. In this case, a predicate is applied on the c.region
column (c.region = 'ASIA'), and the customer key of the
customer table is extracted at the positions that matched this pred-
icate. These keys are then joined with the customer key column
from the fact table. The results of this join are two sets of posi-
tions, one for the fact table and one for the dimension table, indi-
cating which pairs of tuples from the respective tables passed the
join predicate and are joined. In general, at most one of these two
position lists are produced in sorted order (the outer table in the
join, typically the fact table). Values from the c.nation column
at this (out-of-order) set of positions are then extracted, along with
values (using the ordered set of positions) from the other fact table
columns (supplier key, order date, and revenue). Similar joins are
then performed with the supplier and date tables.

Each of these plans have a set of disadvantages. In the first (tra-
ditional) case, constructing tuples before the join precludes all of
the late materialization benefits described in Section 5.2. In the
second case, values from dimension table group-by columns need
to be extracted in out-of-position order, which can have significant
cost [5].

As an alternative to these query plans, we introduce a technique
we call the invisible join that can be used in column-oriented databases
for foreign-key/primary-key joins on star schema style tables. It is
a late materialized join, but minimizes the values that need to be
extracted out-of-order, thus alleviating both sets of disadvantages
described above. It works by rewriting joins into predicates on
the foreign key columns in the fact table. These predicates can
be evaluated either by using a hash lookup (in which case a hash
join is simulated), or by using more advanced methods, such as a
technique we call between-predicate rewriting, discussed in Sec-
tion 5.4.2 below.

By rewriting the joins as selection predicates on fact table columns,
they can be executed at the same time as other selection predi-
cates that are being applied to the fact table, and any of the predi-
cate application algorithms described in previous work [5] can be
used. For example, each predicate can be applied in parallel and
the results merged together using fast bitmap operations. Alterna-
tively, the results of a predicate application can be pipelined into
another predicate application to reduce the number of times the
second predicate must be applied. Only after all predicates have
been applied are the appropriate tuples extracted from the relevant
dimensions (this can also be done in parallel). By waiting until
all predicates have been applied before doing this extraction, the
number of out-of-order extractions is minimized.

The invisible join extends previous work on improving perfor-
mance for star schema joins [17, 23] that are reminiscent of semi-
joins [8] by taking advantage of the column-oriented layout, and
rewriting predicates to avoid hash-lookups, as described below.

5.4.1 Join Details
The invisible join performs joins in three phases. First, each

predicate is applied to the appropriate dimension table to extract a
list of dimension table keys that satisfy the predicate. These keys

are used to build a hash table that can be used to test whether a
particular key value satisfies the predicate (the hash table should
easily fit in memory since dimension tables are typically small and
the table contains only keys). An example of the execution of this
first phase for the above query on some sample data is displayed in
Figure 2.

Apply region = 'Asia' on Customer table

...3 IndiaAsia
2 FranceEurope ...

Asia China ...1
...nationregioncustkey

nation

...
Asia Russia

Europe Spain

...suppkey region

2
...1

Apply region = 'Asia' on Supplier table

1997 ...

...year
01011997
01021997
01031997

1997 ...

dateid
...1997

Apply year in [1992,1997] on Date table

Hash table
with keys
1 and 3

Hash table
with key 1

Hash table with 
keys 01011997, 
01021997, and 

01031997

Figure 2: The �rst phase of the joins needed to execute Query
3.1 from the Star Schema benchmark on some sample data

In the next phase, each hash table is used to extract the positions
of records in the fact table that satisfy the corresponding predicate.
This is done by probing into the hash table with each value in the
foreign key column of the fact table, creating a list of all the posi-
tions in the foreign key column that satisfy the predicate. Then, the
position lists from all of the predicates are intersected to generate
a list of satisfying positions P in the fact table. An example of the
execution of this second phase is displayed in Figure 3. Note that
a position list may be an explicit list of positions, or a bitmap as
shown in the example.

Hash table
with keys
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1
1
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0
1
1
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matching fact 
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for cust. dim. 

join
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43251010319976 21

010219975 22 45456
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3 12121010219972 1
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4325601011997131
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Fact Table

0
0
0
1
1
0
1Hash table

with key 1

probe
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1
1
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1
1
1
1

probe

=
Hash table with 
keys 01011997,
 01021997, and 

01031997

Bitwise 
And =

0
0
0
1
0
0
1

fact table
tuples that

satisfy all join
predicates

Figure 3: The second phase of the joins needed to execute
Query 3.1 from the Star Schema benchmark on some sample
data

The third phase of the join uses the list of satisfying positions P
in the fact table. For each column C in the fact table containing a
foreign key reference to a dimension table that is needed to answer
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Figure 4: The third phase of the joins needed to execute Query
3.1 from the Star Schema benchmark on some sample data

the query (e.g., where the dimension column is referenced in the
select list, group by, or aggregate clauses), foreign key values from
C are extracted using P and are looked up in the corresponding
dimension table. Note that if the dimension table key is a sorted,
contiguous list of identifiers starting from 1 (which is the common
case), then the foreign key actually represents the position of the
desired tuple in dimension table. This means that the needed di-
mension table columns can be extracted directly using this position
list (and this is simply a fast array look-up).

This direct array extraction is the reason (along with the fact that
dimension tables are typically small so the column being looked
up can often fit inside the L2 cache) why this join does not suffer
from the above described pitfalls of previously published late mate-
rialized join approaches [5] where this final position list extraction
is very expensive due to the out-of-order nature of the dimension
table value extraction. Further, the number values that need to be
extracted is minimized since the number of positions in P is depen-
dent on the selectivity of the entire query, instead of the selectivity
of just the part of the query that has been executed so far.

An example of the execution of this third phase is displayed in
Figure 4. Note that for the date table, the key column is not a
sorted, contiguous list of identifiers starting from 1, so a full join
must be performed (rather than just a position extraction). Further,
note that since this is a foreign-key primary-key join, and since all
predicates have already been applied, there is guaranteed to be one
and only one result in each dimension table for each position in the
intersected position list from the fact table. This means that there
are the same number of results for each dimension table join from
this third phase, so each join can be done separately and the results
combined (stitched together) at a later point in the query plan.

5.4.2 BetweenPredicate Rewriting
As described thus far, this algorithm is not much more than an-

other way of thinking about a column-oriented semijoin or a late
materialized hash join. Even though the hash part of the join is ex-
pressed as a predicate on a fact table column, practically there is
little difference between the way the predicate is applied and the
way a (late materialization) hash join is executed. The advantage

of expressing the join as a predicate comes into play in the surpris-
ingly common case (for star schema joins) where the set of keys in
dimension table that remain after a predicate has been applied are
contiguous. When this is the case, a technique we call “between-
predicate rewriting” can be used, where the predicate can be rewrit-
ten from a hash-lookup predicate on the fact table to a “between”
predicate where the foreign key falls between two ends of the key
range. For example, if the contiguous set of keys that are valid af-
ter a predicate has been applied are keys 1000-2000, then instead
of inserting each of these keys into a hash table and probing the
hash table for each foreign key value in the fact table, we can sim-
ply check to see if the foreign key is in between 1000 and 2000. If
so, then the tuple joins; otherwise it does not. Between-predicates
are faster to execute for obvious reasons as they can be evaluated
directly without looking anything up.

The ability to apply this optimization hinges on the set of these
valid dimension table keys being contiguous. In many instances,
this property does not hold. For example, a range predicate on
a non-sorted field results in non-contiguous result positions. And
even for predicates on sorted fields, the process of sorting the di-
mension table by that attribute likely reordered the primary keys so
they are no longer an ordered, contiguous set of identifiers. How-
ever, the latter concern can be easily alleviated through the use of
dictionary encoding for the purpose of key reassignment (rather
than compression). Since the keys are unique, dictionary encoding
the column results in the dictionary keys being an ordered, con-
tiguous list starting from 0. As long as the fact table foreign key
column is encoded using the same dictionary table, the hash-table
to between-predicate rewriting can be performed.

Further, the assertion that the optimization works only on predi-
cates on the sorted column of a dimension table is not entirely true.
In fact, dimension tables in data warehouses often contain sets of
attributes of increasingly finer granularity. For example, the date
table in SSBM has a year column, a yearmonth column, and
the complete date column. If the table is sorted by year, sec-
ondarily sorted by yearmonth, and tertiarily sorted by the com-
plete date, then equality predicates on any of those three columns
will result in a contiguous set of results (or a range predicate on
the sorted column). As another example, the supplier table
has a region column, a nation column, and a city column
(a region has many nations and a nation has many cities). Again,
sorting from left-to-right will result in predicates on any of those
three columns producing a contiguous range output. Data ware-
house queries often access these columns, due to the OLAP practice
of rolling-up data in successive queries (tell me profit by region,
tell me profit by nation, tell me profit by city). Thus, “between-
predicate rewriting” can be used more often than one might ini-
tially expect, and (as we show in the next section), often yields a
significant performance gain.

Note that predicate rewriting does not require changes to the
query optimizer to detect when this optimization can be used. The
code that evaluates predicates against the dimension table is capa-
ble of detecting whether the result set is contiguous. If so, the fact
table predicate is rewritten at run-time.

6. EXPERIMENTS
In this section, we compare the row-oriented approaches to the

performance of C-Store on the SSBM, with the goal of answering
four key questions:

1. How do the different attempts to emulate a column store in a
row-store compare to the baseline performance of C-Store?
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2. Is it possible for an unmodified row-store to obtain the bene-
fits of column-oriented design?

3. Of the specific optimizations proposed for column-stores (com-
pression, late materialization, and block processing), which
are the most significant?

4. How does the cost of performing star schema joins in column-
stores using the invisible join technique compare with exe-
cuting queries on a denormalized fact table where the join
has been pre-executed?

By answering these questions, we provide database implementers
who are interested in adopting a column-oriented approach with
guidelines for which performance optimizations will be most fruit-
ful. Further, the answers will help us understand what changes need
to be made at the storage-manager and query executor levels to row-
stores if row-stores are to successfully simulate column-stores.

All of our experiments were run on a 2.8 GHz single processor,
dual core Pentium(R) D workstation with 3 GB of RAM running
RedHat Enterprise Linux 5. The machine has a 4-disk array, man-
aged as a single logical volume with files striped across it. Typical
I/O throughput is 40 - 50 MB/sec/disk, or 160 - 200 MB/sec in ag-
gregate for striped files. The numbers we report are the average of
several runs, and are based on a “warm” buffer pool (in practice, we
found that this yielded about a 30% performance increase for both
systems; the gain is not particularly dramatic because the amount
of data read by each query exceeds the size of the buffer pool).

6.1 Motivation for Experimental Setup
Figure 5 compares the performance of C-Store and System X on

the Star Schema Benchmark. We caution the reader to not read
too much into absolute performance differences between the two
systems — as we discuss in this section, there are substantial dif-
ferences in the implementations of these systems beyond the basic
difference of rows vs. columns that affect these performance num-
bers.

In this figure, “RS” refers to numbers for the base System X case,
“CS” refers to numbers for the base C-Store case, and “RS (MV)”
refers to numbers on System X using an optimal collection of ma-
terialized views containing minimal projections of tables needed to
answer each query (see Section 4). As shown, C-Store outperforms
System X by a factor of six in the base case, and a factor of three
when System X is using materialized views. This is consistent with
previous work that shows that column-stores can significantly out-
perform row-stores on data warehouse workloads [2, 9, 22].

However, the fourth set of numbers presented in Figure 5, “CS
(Row-MV)” illustrate the caution that needs to be taken when com-
paring numbers across systems. For these numbers, we stored the
identical (row-oriented!) materialized view data inside C-Store.
One might expect the C-Store storage manager to be unable to store
data in rows since, after all, it is a column-store. However, this can
be done easily by using tables that have a single column of type
“string”. The values in this column are entire tuples. One might
also expect that the C-Store query executer would be unable to op-
erate on rows, since it expects individual columns as input. How-
ever, rows are a legal intermediate representation in C-Store — as
explained in Section 5.2, at some point in a query plan, C-Store re-
constructs rows from component columns (since the user interface
to a RDBMS is row-by-row). After it performs this tuple recon-
struction, it proceeds to execute the rest of the query plan using
standard row-store operators [5]. Thus, both the “CS (Row-MV)”
and the “RS (MV)” are executing the same queries on the same in-
put data stored in the same way. Consequently, one might expect
these numbers to be identical.

In contrast with this expectation, the System X numbers are sig-
nificantly faster (more than a factor of two) than the C-Store num-
bers. In retrospect, this is not all that surprising — System X has
teams of people dedicated to seeking and removing performance
bottlenecks in the code, while C-Store has multiple known perfor-
mance bottlenecks that have yet to be resolved [3]. Moreover, C-
Store, as a simple prototype, has not implemented advanced perfor-
mance features that are available in System X. Two of these features
are partitioning and multi-threading. System X is able to partition
each materialized view optimally for the query flight that it is de-
signed for. Partitioning improves performance when running on a
single machine by reducing the data that needs to be scanned in or-
der to answer a query. For example, the materialized view used for
query flight 1 is partitioned on orderdate year, which is useful since
each query in this flight has a predicate on orderdate. To determine
the performance advantage System X receives from partitioning,
we ran the same benchmark on the same materialized views with-
out partitioning them. We found that the average query time in this
case was 20.25 seconds. Thus, partitioning gives System X a fac-
tor of two advantage (though this varied by query, which will be
discussed further in Section 6.2). C-Store is also at a disadvan-
tage since it not multi-threaded, and consequently is unable to take
advantage of the extra core.

Thus, there are many differences between the two systems we ex-
periment with in this paper. Some are fundamental differences be-
tween column-stores and row-stores, and some are implementation
artifacts. Since it is difficult to come to useful conclusions when
comparing numbers across different systems, we choose a different
tactic in our experimental setup, exploring benchmark performance
from two angles. In Section 6.2 we attempt to simulate a column-
store inside of a row-store. The experiments in this section are only
on System X, and thus we do not run into cross-system comparison
problems. In Section 6.3, we remove performance optimizations
from C-Store until row-store performance is achieved. Again, all
experiments are on only a single system (C-Store).

By performing our experiments in this way, we are able to come
to some conclusions about the performance advantage of column-
stores without relying on cross-system comparisons. For example,
it is interesting to note in Figure 5 that there is more than a factor
of six difference between “CS” and “CS (Row MV)” despite the
fact that they are run on the same system and both read the minimal
set of columns off disk needed to answer each query. Clearly the
performance advantage of a column-store is more than just the I/O
advantage of reading in less data from disk. We will explain the
reason for this performance difference in Section 6.3.

6.2 ColumnStore Simulation in a RowStore
In this section, we describe the performance of the different con-

figurations of System X on the Star Schema Benchmark. We con-
figured System X to partition the lineorder table on order-
date by year (this means that a different physical partition is cre-
ated for tuples from each year in the database). As described in
Section 6.1, this partitioning substantially speeds up SSBM queries
that involve a predicate on orderdate (queries 1.1, 1.2, 1.3, 3.4,
4.2, and 4.3 query just 1 year; queries 3.1, 3.2, and 3.3 include a
substantially less selective query over half of years). Unfortunately,
for the column-oriented representations, System X doesn’t allow us
to partition two-column vertical partitions on orderdate (since
they do not contain the orderdate column, except, of course,
for the orderdate vertical partition), which means that for those
query flights that restrict on the orderdate column, the column-
oriented approaches are at a disadvantage relative to the base case.

Nevertheless, we decided to use partitioning for the base case
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Figure 5: Baseline performance of C-Store “CS” and System X “RS”, compared with materialized view cases on the same systems.

because it is in fact the strategy that a database administrator would
use when trying to improve the performance of these queries on a
row-store. When we ran the base case without partitioning, per-
formance was reduced by a factor of two on average (though this
varied per query depending on the selectivity of the predicate on
the orderdate column). Thus, we would expect the vertical
partitioning case to improve by a factor of two, on average, if it
were possible to partition tables based on two levels of indirec-
tion (from primary key, or record-id, we get orderdate, and
from orderdate we get year).

Other relevant configuration parameters for System X include:
32 KB disk pages, a 1.5 GB maximum memory for sorts, joins,
intermediate results, and a 500 MB buffer pool. We experimented
with different buffer pool sizes and found that different sizes did
not yield large differences in query times (due to dominant use of
large table scans in this benchmark), unless a very small buffer pool
was used. We enabled compression and sequential scan prefetch-
ing, and we noticed that both of these techniques improved per-
formance, again due to the large amount of I/O needed to process
these queries. System X also implements a star join and the opti-
mizer will use bloom filters when it expects this will improve query
performance.

Recall from Section 4 that we experimented with six configura-
tions of System X on SSBM:

1. A “traditional” row-oriented representation; here, we allow
System X to use bitmaps and bloom filters if they are benefi-
cial.

2. A “traditional (bitmap)” approach, similar to traditional, but
with plans biased to use bitmaps, sometimes causing them to
produce inferior plans to the pure traditional approach.

3. A “vertical partitioning” approach, with each column in its
own relation with the record-id from the original relation.

4. An “index-only” representation, using an unclustered B+tree
on each column in the row-oriented approach, and then an-
swering queries by reading values directly from the indexes.

5. A “materialized views” approach with the optimal collection
of materialized views for every query (no joins were per-
formed in advance in these views).

The detailed results broken down by query flight are shown in
Figure 6(a), with average results across all queries shown in Fig-

ure 6(b). Materialized views perform best in all cases, because they
read the minimal amount of data required to process a query. Af-
ter materialized views, the traditional approach or the traditional
approach with bitmap indexing, is usually the best choice. On
average, the traditional approach is about three times better than
the best of our attempts to emulate a column-oriented approach.
This is particularly true of queries that can exploit partitioning on
orderdate, as discussed above. For query flight 2 (which does
not benefit from partitioning), the vertical partitioning approach is
competitive with the traditional approach; the index-only approach
performs poorly for reasons we discuss below. Before looking at
the performance of individual queries in more detail, we summarize
the two high level issues that limit the approach of the columnar ap-
proaches: tuple overheads, and inefficient tuple reconstruction:
Tuple overheads: As others have observed [16], one of the prob-
lems with a fully vertically partitioned approach in a row-store is
that tuple overheads can be quite large. This is further aggravated
by the requirement that record-ids or primary keys be stored with
each column to allow tuples to be reconstructed. We compared
the sizes of column-tables in our vertical partitioning approach to
the sizes of the traditional row store tables, and found that a single
column-table from our SSBM scale 10 lineorder table (with 60
million tuples) requires between 0.7 and 1.1 GBytes of data after
compression to store – this represents about 8 bytes of overhead
per row, plus about 4 bytes each for the record-id and the column
attribute, depending on the column and the extent to which com-
pression is effective (16 bytes× 6× 107 tuples = 960 MB). In
contrast, the entire 17 column lineorder table in the traditional
approach occupies about 6 GBytes decompressed, or 4 GBytes
compressed, meaning that scanning just four of the columns in the
vertical partitioning approach will take as long as scanning the en-
tire fact table in the traditional approach. As a point of compar-
ison, in C-Store, a single column of integers takes just 240 MB
(4 bytes× 6× 107 tuples = 240 MB), and the entire table com-
pressed takes 2.3 Gbytes.
Column Joins: As we mentioned above, merging two columns
from the same table together requires a join operation. System
X favors using hash-joins for these operations. We experimented
with forcing System X to use index nested loops and merge joins,
but found that this did not improve performance because index ac-
cesses had high overhead and System X was unable to skip the sort
preceding the merge join.
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Figure 6: (a) Performance numbers for different variants of the row-store by query �ight. Here, T is traditional, T(B) is traditional
(bitmap), MV is materialized views, VP is vertical partitioning, and AI is all indexes. (b) Average performance across all queries.

6.2.1 Detailed Rowstore Performance Breakdown
In this section, we look at the performance of the row-store ap-

proaches, using the plans generated by System X for query 2.1 from
the SSBM as a guide (we chose this query because it is one of the
few that does not benefit from orderdate partitioning, so pro-
vides a more equal comparison between the traditional and vertical
partitioning approach.) Though we do not dissect plans for other
queries as carefully, their basic structure is the same. The SQL for
this query is:

SELECT sum(lo.revenue), d.year, p.brand1
FROM lineorder AS lo, dwdate AS d,

part AS p, supplier AS s
WHERE lo.orderdate = d.datekey

AND lo.partkey = p.partkey
AND lo.suppkey = s.suppkey
AND p.category = 'MFGR#12'
AND s.region = 'AMERICA'

GROUP BY d.year, p.brand1
ORDER BY d.year, p.brand1

The selectivity of this query is 8.0× 10−3. Here, the vertical parti-
tioning approach performs about as well as the traditional approach
(65 seconds versus 43 seconds), but the index-only approach per-
forms substantially worse (360 seconds). We look at the reasons
for this below.
Traditional: For this query, the traditional approach scans the en-
tire lineorder table, using hash joins to join it with the dwdate,
part, and supplier table (in that order). It then performs a sort-
based aggregate to compute the final answer. The cost is dominated
by the time to scan the lineorder table, which in our system re-
quires about 40 seconds. Materialized views take just 15 seconds,
because they have to read about 1/3rd of the data as the traditional
approach.
Vertical partitioning: The vertical partitioning approach hash-
joins the partkey column with the filtered part table, and the

suppkey column with the filtered supplier table, and then
hash-joins these two result sets. This yields tuples with the record-
id from the fact table and the p.brand1 attribute of the part
table that satisfy the query. System X then hash joins this with the
dwdate table to pick up d.year, and finally uses an additional
hash join to pick up the lo.revenue column from its column ta-
ble. This approach requires four columns of the lineorder table
to be read in their entirety (sequentially), which, as we said above,
requires about as many bytes to be read from disk as the traditional
approach, and this scan cost dominates the runtime of this query,
yielding comparable performance as compared to the traditional
approach. Hash joins in this case slow down performance by about
25%; we experimented with eliminating the hash joins by adding
clustered B+trees on the key columns in each vertical partition, but
System X still chose to use hash joins in this case.
Index-only plans: Index-only plans access all columns through
unclustered B+Tree indexes, joining columns from the same ta-
ble on record-id (so they never follow pointers back to the base
relation). The plan for query 2.1 does a full index scan on the
suppkey, revenue, partkey, and orderdate columns of
the fact table, joining them in that order with hash joins. In this
case, the index scans are relatively fast sequential scans of the en-
tire index file, and do not require seeks between leaf pages. The
hash joins, however, are quite slow, as they combine two 60 mil-
lion tuple columns each of which occupies hundreds of megabytes
of space. Note that hash join is probably the best option for these
joins, as the output of the index scans is not sorted on record-id, and
sorting record-id lists or performing index-nested loops is likely to
be much slower. As we discuss below, we couldn’t find a way to
force System X to defer these joins until later in the plan, which
would have made the performance of this approach closer to verti-
cal partitioning.

After joining the columns of the fact table, the plan uses an index
range scan to extract the filtered part.category column and
hash joins it with the part.brand1 column and the part.part-
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key column (both accessed via full index scans). It then hash
joins this result with the already joined columns of the fact table.
Next, it hash joins supplier.region (filtered through an in-
dex range scan) and the supplier.suppkey columns (accessed
via full index scan), and hash joins that with the fact table. Fi-
nally, it uses full index scans to access the dwdate.datekey
and dwdate.year columns, joins them using hash join, and hash
joins the result with the fact table.

6.2.2 Discussion
The previous results show that none of our attempts to emulate a

column-store in a row-store are particularly effective. The vertical
partitioning approach can provide performance that is competitive
with or slightly better than a row-store when selecting just a few
columns. When selecting more than about 1/4 of the columns, how-
ever, the wasted space due to tuple headers and redundant copies of
the record-id yield inferior performance to the traditional approach.
This approach also requires relatively expensive hash joins to com-
bine columns from the fact table together. It is possible that System
X could be tricked into storing the columns on disk in sorted order
and then using a merge join (without a sort) to combine columns
from the fact table but our DBA was unable to coax this behavior
from the system.

Index-only plans have a lower per-record overhead, but introduce
another problem – namely, the system is forced to join columns of
the fact table together using expensive hash joins before filtering
the fact table using dimension columns. It appears that System X is
unable to defer these joins until later in the plan (as the vertical par-
titioning approach does) because it cannot retain record-ids from
the fact table after it has joined with another table. These giant
hash joins lead to extremely slow performance.

With respect to the traditional plans, materialized views are an
obvious win as they allow System X to read just the subset of
the fact table that is relevant, without merging columns together.
Bitmap indices sometimes help – especially when the selectivity
of queries is low – because they allow the system to skip over
some pages of the fact table when scanning it. In other cases, they
slow the system down as merging bitmaps adds some overhead to
plan execution and bitmap scans can be slower than pure sequential
scans.

As a final note, we observe that implementing these plans in Sys-
tem X was quite painful. We were required to rewrite all of our
queries to use the vertical partitioning approaches, and had to make
extensive use of optimizer hints and other trickery to coax the sys-
tem into doing what we desired.

In the next section we study how a column-store system designed
from the ground up is able to circumvent these limitations, and
break down the performance advantages of the different features
of the C-Store system on the SSBM benchmark.

6.3 ColumnStore Performance
It is immediately apparent upon the inspection of the average

query time in C-Store on the SSBM (around 4 seconds) that it is
faster than not only the simulated column-oriented stores in the
row-store (80 seconds to 220 seconds), but even faster than the
best-case scenario for the row-store where the queries are known in
advance and the row-store has created materialized views tailored
for the query plans (10.2 seconds). Part of this performance dif-
ference can be immediately explained without further experiments
– column-stores do not suffer from the tuple overhead and high
column join costs that row-stores do (this will be explained in Sec-
tion 6.3.1). However, this observation does not explain the reason
why the column-store is faster than the materialized view case or

the “CS Row-MV” case from Section 6.1, where the amount of
I/O across systems is similar, and the other systems does not need
join together columns from the same table. In order to understand
this latter performance difference, we perform additional experi-
ments in the column-store where we successively remove column-
oriented optimizations until the column-store begins to simulate a
row-store. In so doing, we learn the impact of these various op-
timizations on query performance. These results are presented in
Section 6.3.2.

6.3.1 Tuple Overhead and Join Costs
Modern column-stores do not explicitly store the record-id (or

primary key) needed to join together columns from the same table.
Rather, they use implicit column positions to reconstruct columns
(the ith value from each column belongs to the ith tuple in the ta-
ble). Further, tuple headers are stored in their own separate columns
and so they can be accessed separately from the actual column val-
ues. Consequently, a column in a column-store contains just data
from that column, rather than a tuple header, a record-id, and col-
umn data in a vertically partitioned row-store.

In a column-store, heap files are stored in position order (the
ith value is always after the i � 1st value), whereas the order of
heap files in many row-stores, even on a clustered attribute, is only
guaranteed through an index. This makes a merge join (without
a sort) the obvious choice for tuple reconstruction in a column-
store. In a row-store, since iterating through a sorted file must be
done indirectly through the index, which can result in extra seeks
between index leaves, an index-based merge join is a slow way to
reconstruct tuples.

It should be noted that neither of the above differences between
column-store performance and row-store performance are funda-
mental. There is no reason why a row-store cannot store tuple
headers separately, use virtual record-ids to join data, and main-
tain heap files in guaranteed position order. The above observation
simply highlights some important design considerations that would
be relevant if one wanted to build a row-store that can successfully
simulate a column-store.

6.3.2 Breakdown of ColumnStore Advantages
As described in Section 5, three column-oriented optimizations,

presented separately in the literature, all claim to significantly im-
prove the performance of column-oriented databases. These opti-
mizations are compression, late materialization, and block-iteration.
Further, we extended C-Store with the invisible join technique which
we also expect will improve performance. Presumably, these op-
timizations are the reason for the performance difference between
the column-store and the row-oriented materialized view cases from
Figure 5 (both in System X and in C-Store) that have similar I/O
patterns as the column-store. In order to verify this presumption,
we successively removed these optimizations from C-Store and
measured performance after each step.

Removing compression from C-Store was simple since C-Store
includes a runtime flag for doing so. Removing the invisible join
was also simple since it was a new operator we added ourselves.
In order to remove late materialization, we had to hand code query
plans to construct tuples at the beginning of the query plan. Remov-
ing block-iteration was somewhat more difficult than the other three
optimizations. C-Store “blocks” of data can be accessed through
two interfaces: “getNext” and “asArray”. The former method re-
quires one function call per value iterated through, while the latter
method returns a pointer to an array than can be iterated through di-
rectly. For the operators used in the SSBM query plans that access
blocks through the “asArray” interface, we wrote alternative ver-
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Figure 7: (a) Performance numbers for C-Store by query �ight with various optimizations removed. The four letter code indicates
the C-Store con�guration: T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression
enabled, c=disabled; L=late materialization enabled, l=disabled. (b) Average performance numbers for C-Store across all queries.

sions that use “getNext”. We only noticed a significant difference
in the performance of selection operations using this method.

Figure 7(a) shows detailed, per-query results of successively re-
moving these optimizations from C-Store, with averages across all
SSBM queries shown in Figure 7(b). Block-processing can im-
prove performance anywhere from a factor of only 5% to 50% de-
pending on whether compression has already been removed (when
compression is removed, the CPU benefits of block processing is
not as significant since I/O becomes a factor). In other systems,
such as MonetDB/X100, that are more carefully optimized for block-
processing [9], one might expect to see a larger performance degra-
dation if this optimization were removed.

The invisible join improves performance by 50-75%. Since C-
Store uses the similar “late-materialized join” technique in the ab-
sence of the invisible join, this performance difference is largely
due to the between-predicate rewriting optimization. There are
many cases in the SSBM where the between-predicate rewriting op-
timization can be used. In the supplier table, the region, nation, and
city columns are attributes of increasingly finer granularity, which,
as described in Section 5.4, result in contiguous positional result
sets from equality predicate application on any of these columns.
The customer table has a similar region, nation, and city column
trio. The part table has mfgr, category, and brand as attributes of in-
creasingly finer granularity. Finally, the date table has year, month,
and day increasing in granularity. Every query in the SSBM con-
tain one or more joins (all but the first query flight contains more
than one join), and for each query, at least one of the joins is with
a dimension table that had a predicate on one of these special types
of attributes. Hence, it was possible to use the between-predicate
rewriting optimization at least once per query.

Clearly, the most significant two optimizations are compression
and late materialization. Compression improves performance by
almost a factor of two on average. However, as mentioned in Sec-
tion 5, we do not redundantly store the fact table in multiple sort

orders to get the full advantage of compression (only one column –
the orderdate column – is sorted, and two others secondarily sorted
– the quantity and discount columns). The columns in the fact ta-
ble that are accessed by the SSBM queries are not very compress-
ible if they do not have order to them, since they are either keys
(which have high cardinality) or are random values. The first query
flight, which accesses each of the three columns that have order to
them, demonstrates the performance benefits of compression when
queries access highly compressible data. In this case, compression
results in an order of magnitude performance improvement. This
is because runs of values in the three ordered columns can be run-
length encoded (RLE). Not only does run-length encoding yield a
good compression ratio and thus reduced I/O overhead, but RLE is
also very simple to operate on directly (for example, a predicate or
an aggregation can be applied to an entire run at once). The primary
sort column, orderdate, only contains 2405 unique values, and so
the average run-length for this column is almost 25,000. This col-
umn takes up less than 64K of space.

The other significant optimization is late materialization. This
optimization was removed last since data needs to be decompressed
in the tuple construction process, and early materialization results
in row-oriented execution which precludes invisible joins. Late
materialization results in almost a factor of three performance im-
provement. This is primarily because of the selective predicates in
some of the SSBM queries. The more selective the predicate, the
more wasteful it is to construct tuples at the start of a query plan,
since such are tuples immediately discarded.

Note that once all of these optimizations are removed, the column-
store acts like a row-store. Columns are immediately stitched to-
gether and after this is done, processing is identical to a row-store.
Since this is the case, one would expect the column-store to per-
form similarly to the row-oriented materialized view cases from
Figure 5 (both in System X and in C-Store) since the I/O require-
ments and the query processing are similar – the only difference
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Figure 8: Comparison of performance of baseline C-Store on the original SSBM schema with a denormalized version of the schema.
Denormalized columns are either not compressed (“PJ, No C”), dictionary compressed into integers (“PJ, Int C”), or compressed as
much as possible (“PJ, Max C”).

is the necessary tuple-construction at the beginning of the query
plans for the column store. Section 6.1 cautioned against direct
comparisons with System X, but by comparing these numbers with
the “CS Row-MV” case from Figure 5, we see how expensive tuple
construction can be (it adds almost a factor of 2). This is consistent
with previous results [5].

6.3.3 Implications of Join Performance
In profiling the code, we noticed that in the baseline C-Store

case, performance is dominated in the lower parts of the query plan
(predicate application) and that the invisible join technique made
join performance relatively cheap. In order to explore this obser-
vation further we created a denormalized version of the fact table
where the fact table and its dimension table are pre-joined such
that instead of containing a foreign key into the dimension table,
the fact table contains all of the values found in the dimension table
repeated for each fact table record (e.g., all customer information
is contained in each fact table tuple corresponding to a purchase
made by that customer). Clearly, this complete denormalization
would be more detrimental from a performance perspective in a
row-store since this would significantly widen the table. However,
in a column-store, one might think this would speed up read-only
queries since only those columns relevant for a query need to read
in, and joins would be avoided.

Surprisingly, we found this often not to be the case. Figure 8
compares the baseline C-Store performance from the previous sec-
tion (using the invisible join) with the performance of C-Store on
the same benchmark using three versions of the single denormal-
ized table where joins have been performed in advance. In the first
case, complete strings like customer region and customer nation
are included unmodified in the denormalized table. This case per-
forms a factor of 5 worse than the base case. This is because the
invisible join converts predicates on dimension table attributes into
predicates on fact table foreign key values. When the table is de-
normalized, predicate application is performed on the actual string
attribute in the fact table. In both cases, this predicate application is
the dominant step. However, a predicate on the integer foreign key
can be performed faster than a predicate on a string attribute since
the integer attribute is smaller.

Of course, the string attributes could have easily been dictio-
nary encoded into integers before denormalization. When we did

this (the “PJ, Int C” case in Figure 8), the performance difference
between the baseline and the denormalized cases became much
smaller. Nonetheless, for quite a few queries, the baseline case
still performed faster. The reasons for this are twofold. First, some
SSBM queries have two predicates on the same dimension table.
The invisible join technique is able to summarize the result of this
double predicate application as a single predicate on the foreign key
attribute in the fact table. However, for the denormalized case, the
predicate must be completely applied to both columns in the fact
table (remember that for data warehouses, fact tables are generally
much larger than dimension tables, so predicate applications on the
fact table are much more expensive than predicate applications on
the dimension tables).

Second, many queries have a predicate on one attribute in a di-
mension table and group by a different attribute from the same di-
mension table. For the invisible join, this requires iteration through
the foreign key column once to apply the predicate, and again (af-
ter all predicates from all tables have been applied and intersected)
to extract the group-by attribute. But since C-Store uses pipelined
execution, blocks from the foreign key column will still be in mem-
ory upon the second access. In the denormalized case, the predicate
column and the group-by column are separate columns in the fact
table and both must be iterated through, doubling the necessary I/O.

In fact, many of the SSBM dimension table columns that are ac-
cessed in the queries have low cardinality, and can be compressed
into values that are smaller than the integer foreign keys. When
using complete C-Store compression, we found that the denormal-
ization technique was useful more often (shown as the “PJ, Max C”
case in Figure 8).

These results have interesting implications. Denormalization has
long been used as a technique in database systems to improve query
performance, by reducing the number of joins that must be per-
formed at query time. In general, the school of wisdom teaches
that denormalization trades query performance for making a table
wider, and more redundant (increasing the size of the table on disk
and increasing the risk of update anomalies). One might expect
that this tradeoff would be more favorable in column-stores (denor-
malization should be used more often) since one of the disadvan-
tages of denormalization (making the table wider) is not problem-
atic when using a column-oriented layout. However, these results
show the exact opposite: denormalization is actually not very use-
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ful in column-stores (at least for star schemas). This is because the
invisible join performs so well that reducing the number of joins
via denormalization provides an insignificant benefit. In fact, de-
normalization only appears to be useful when the dimension ta-
ble attributes included in the fact table are sorted (or secondarily
sorted) or are otherwise highly compressible.

7. CONCLUSION
In this paper, we compared the performance of C-Store to several

variants of a commercial row-store system on the data warehous-
ing benchmark, SSBM. We showed that attempts to emulate the
physical layout of a column-store in a row-store via techniques like
vertical partitioning and index-only plans do not yield good per-
formance. We attribute this slowness to high tuple reconstruction
costs, as well as the high per-tuple overheads in narrow, vertically
partitioned tables. We broke down the reasons why a column-store
is able to process column-oriented data so effectively, finding that
late materialization improves performance by a factor of three, and
that compression provides about a factor of two on average, or an
order-of-magnitude on queries that access sorted data. We also pro-
posed a new join technique, called invisible joins, that further im-
proves performance by about 50%.

The conclusion of this work is not that simulating a column-
store in a row-store is impossible. Rather, it is that this simu-
lation performs poorly on today’s row-store systems (our experi-
ments were performed on a very recent product release of System
X). A successful column-oriented simulation will require some im-
portant system improvements, such as virtual record-ids, reduced
tuple overhead, fast merge joins of sorted data, run-length encoding
across multiple tuples, and some column-oriented query execution
techniques like operating directly on compressed data, block pro-
cessing, invisible joins, and late materialization. Some of these im-
provements have been implemented or proposed to be implemented
in various different row-stores [12, 13, 20, 24]; however, building a
complete row-store that can transform into a column-store on work-
loads where column-stores perform well is an interesting research
problem to pursue.
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