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Abstract: All commonly used, general purpose algorithms for constructing exper-

imental designs work design point by design point-rowwise. We introduce an al-

gorithm that works columnwise, that is, factor by factor. In common with other

algorithms, ours requires an optimality criterion with respect to a specified model.

Among its advantages are its ability to accommodate a priori notions of symmetry

and balance, to adapt experiments with sequentially processed factors, and to in-

corporate goodness-of-fit considerations. Through a series of problems, we explore

the properties and utility of this approach, comparing its solutions to those of other

design algorithms in terms of D-optimality, design yield, and level balance.

Key words and phrases: Balance, covariates, missing values, optimal design, semi-

conductor industry.

1. Introduction

Mainstream experimental design practice centers on factorial and fractional

factorial designs and orthogonal arrays. Box and Hunter (1961) introduce two-

level fractional factorials for industrial applications, and Box, Hunter and Hunter

(1978), chapter 12 provide classical instruction on the confounding relationships

incumbent in such designs. Franklin (1985) provides extensions to fractional

factorial experiments of prime powers. To construct two-level fractional factorials

when only a subset of interactions is of interest, Taguchi (1987), volume I, chapter

7, Kacker and Tsui (1990), and Wu and Chen (1992) adapt linear graphs as

teaching aids. Sun and Wu (1994) extend these methods to three level designs.

Characteristic of the interaction graph approach is its restriction to orthogonal

arrays, trial-and-error flavor and application in stages, each step adding one more

factor (column) to a tentative solution.

General algorithms for constructing experimental designs operate differently,

using optimality criteria with respect to particular models in order to select points

(rows) from the design space. Silvey (1980), chapter 2 and Atkinson and Donev

(1993), chapter 10 review various criteria for design optimality. Of these, the

most common is the easy-to-compute determinant of the coefficients’ variance-

covariance matrix, D-optimality, which is asymptotically equivalent to minimum

prediction error. Proposals by Van Schalkwyk (1971), Mitchell and Miller (1970),
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Wynn (1970), Mitchell (1974a, 1974b), and Galil and Kiefer (1980) all present

criterion-optimizing algorithms that act by alternately adding and deleting design
points to and from a tentative solution. Fedorov (1972), Cook and Nachtsheim

(1980), Johnson and Nachtsheim (1983), and Atkinson and Donev (1989) describe

various exchange algorithms, in which current design points are replaced by other

candidate points. Algorithmic approaches incorporating covariates or blocks are
particularly relevant to the present work. Key references are Harville (1974),

Jones (1976), Cook and Nachtsheim (1989), Nachtsheim (1989), and Atkinson

and Donev (1989), discussed further in section 4. A succinct survey of optimal

design algorithms can be found in Atkinson and Donev (1993), chapter 15.
The advantages of such algorithms include their flexibility with regard to the

total number of observation points, the form of the model, the size of blocks, and

constraints in the design space. These advantages result in simplified user inter-

faces, which in turn make such algorithms good supplements to designs based
on orthogonal arrays. Of the algorithmic approach, Box and Draper (1987),

chapter 14 are critics, first, for its inflexibility in accommodating subject mat-

ter expertise, secondly, for its overdependence on single models, thirdly, for the
poor handling of model goodness-of-fit issues (e.g. centerpoints, rotatability, and

resolution IV concepts).

In this paper, we present an experimental design method–algorithm DR,

below–that combines elements of the orthogonal array and algorithmic ap-
proaches. In common with the algorithmic approach, our method requires an

optimality criterion and a specified model. In common with other orthogonal ar-

ray methods, ours invites user-specified subarrays whose symmetry and balance

characteristics are preserved. As a side benefit, our approach gives new flexibility
for assessing model goodness-of-fit.

We classify our algorithm by the term “columnwise”. This is to contrast

it to the algorithmic approaches listed above, which operate rowwise, adding,

deleting, and exchanging points in the design space, that is, rows of the design
matrix. The term “columnwise” is chosen also to establish a certain sympathy

our algorithm shares with the constructive interaction graph methods of Kacker

and Tsui (1990), Wu and Chen (1992), and Sun and Wu (1994). These orthogo-

nal array-based methods also construct solutions by joining one or more factors
(columns) to a partial solution. Our use of the term is consistent with that made

by Li and Wu (1997), who apply similar ideas to construct supersaturated de-

signs, and Li (1995), to two-level designs. In addition, Park (1994) proposes a

columnwise construction of Latin hypercubes for computer experiments.
Our algorithm seems a natural solution to certain experimental design prob-

lems, and these we present in section 2. From these problems, we abstract perti-

nent data structures in section 3, and in section 4 we describe four algorithms–

three rowwise, one columnwise–that we use to solve them. The details to the
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solutions are described in section 5, but we reserve most commentary until sec-

tion 6.

2. Examples

In this section, we introduce selected design problems from the semiconduc-

tor industry. Known as integration experiments, the problems are intrinsically

interesting, and not easily solved by existing techniques.

Integration experiments are to be distinguished from experimental charac-

terizations of the individual processing steps, typical of the work performed by

SEMATECH and other equipment-oriented development efforts. For single-step

characterizations, typical responses involve physical dimensions and deposited

particles, the factors comprise process recipe values, and mainstream experi-

mental methods work satisfactorily. In contrast, integration experiments involve

batches of material processed over multiple fabrication steps. Responses are typi-

cally electronic properties of transistors, resistors, capacitors, circuits, and so on,

quantities not measurable until the end of processing, while the factors consist

of process recipe settings, with two to three levels for each of several steps.

A defining property of integration experiments is the time order in which

the experimental material–silicon wafers–is processed. At a given experimental

step, the batch of wafers is divided into two or three groups corresponding to the

levels of the factor for that step; after all wafers are processed at their assigned

levels, the batch is combined again for subsequent processing. At the next step at

which multiple levels are investigated, the wafer batch is again divided into groups

according to the factor levels associated with that step, the wafers processed, the

batch recombined and sent on. The time of processing thus parallels the column

order or the factor sequence of the experimental plan, as opposed to the row order

encountered in conventional, single-step characterizations. (Secondarily, there

are interesting time-order and batching effects–split plot issues, randomization,

and so on–implied by the processing orders within each step. These are beyond

the scope of the present paper.)

2.1. Problem WLR: Wafer loss and repair

Table la shows the experimental design planned for one such integration

experiment. The 24 rows denote the original layout for each of the silicon wafers

of the 24-wafer batch. There are four factors: p-well implant dose, threshold

voltage adjustment implant dose, and n-channel lightly doped drain dose and

energy.

After the second factor was completed but before the third and fourth ones

are, three wafers are broken; the 24-wafer design is now a 21-wafer design. We

can at least contemplate that the assigned levels for factors three and four could
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be modified to some benefit. The two solutions in Tables 1b and 1c are described

in section 5.1.

Table 1. For problem WLR, (a) the original design before experimental units

wafers 2, 12, and 18 were lost, the solution for the subarray X (b) by the

columnwise algorithm DR, and (c) by the rowwise algorithm D2.

wafer W : X : NLDD X : NLDD X : NLDD
p-well Vta dose, energy dose, energy dose, energy

01 − − 0 + − + − +

02 lost + 0 − −

03 − + − + + + + 0

04 0 − − 0 + − + −
05 − 0 − 0 + + + +

06 + + + + 0 + + +

07 + − − − + 0 − −
08 + − 0 − − 0 − +

09 + − + + − + + +

10 − 0 + − − − − −

11 + + + + − − − −

12 lost − − − +

13 + 0 0 − − + + −

14 − + 0 + 0 + − +

15 + − − + 0 − 0 −
16 − + 0 0 − 0 0 −

17 − 0 + 0 0 0 + −

18 lost 0 − − 0

U:
19 0 + + − (b) (c)

20 0 + + −

21 0 + + −

92 0 0 0 0
23 0 0 0 0

24 0 0 0 0

(a)

Wafer breakage is not the only reason this kind of problem might arise.

Heavlin and Finnegan (1993) give an example where two previous manufacturing

steps introduce covariates; no longer identical, and in spite of likely interactions,

the wafers must still be assigned to planned experimental conditions, even though

the wafers are not homogeneous. In addition, the natural flow of material through
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the factory implies a pipeline of experiments under way. As information from one

experiment becomes known, plans for other, partially completed experiments can

and should change. Further, there is a delay between designing an experiment

and its execution; during that interval experimenters have new ideas. Some

of these come from deeper thinking on the part of the experimenter, others

are the consequences of encountering unexpected phenomena in other batches.

Certain new ideas are not destructive or non-destructive with any certainty, but

they are high risk. Finally, occasionally a factor is misprocessed—the wafers

intended for certain levels receive others instead. For all these reasons, one may

wish to modify the original experiment, taking into account the factors already

executed, the experimenter’s current knowledge, and the development effort’s

foremost priorities.

2.2. Problem NPC: Simultaneous n-channel, p-channel, and circuit

models

The most common technology in use for fabricating contemporary integrated

circuits is CMOS (which stands for complementary metal oxide semiconductor).

CMOS circuits combine two kinds of transistors, p-channel and n-channel, which

carry signals with positive and negative charges, respectively. The p- and n-

channel transistors are spatially separate, and, with a few exceptions, they are

defined by separate, but analogous, manufacturing steps.

A common practice in designing CMOS characterization experiments is to

confound certain factors (e.g. the n-channel specific ones) with certain others

(e.g. the p-channel specific ones). For example, the (−, 0,+)-levels of the p-

channel transistor’s n-well implant dose are identical to the (−, 0,+)-levels of

the n-channel transistor’s p-well implant dose. For work early in a technol-

ogy’s development, such confounding is acceptable, since the focus is to optimize

and stabilize each type of transistor. For later work, however, this practice has

unattractive consequences. Responses measured of the CMOS circuit as a whole,

speed and power consumption for instance, result from n- and p-channel devices

working together. For these circuit-oriented studies, confounded designs are no

longer acceptable.

Table 2 lists the eight factors and their relation to the three response cate-

gories, p-channel transistors, n-channel transistors, and circuit properties. The

two transistor types share only one factor, the threshold voltage adjustment im-

plant dose, but the factors affecting the circuit responses are nearly a union of

those of the two transistors. (Indeed, this is literally true; however, for physical

reasons, the n-well and p-well doses are thought to have only a second-order effect

on circuit behavior.) Consistent with mainstream experimental design practice,

and feasible with four or five factors and 24 wafers, the designs for the p- and
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n-channel responses are desired to fit the full quadratic models, including all
second-order interactions. For the circuit model, with six to eight factors, the
experimenter recognizes that some interactions need to be given priority over
others and has listed eight physically plausible interactions.

Table 2. The relationship among the eight factors for problem NPC across
the three response sets. The circuit model also includes the following eight
interactions: (i) Vta × PLDD1 dose, (ii) Vta × PLDD1 energy, (iii) PLDD1

dose×PLDD2 dose, (iv) PLDD1 energy×PLDD2 dose, (v) Vta ×NLDD dose,
(vi) Vta × NLDD energy, (vii) PLDD1 dose×PLDD2 energy, (viii) NLDD
dose×NLDD energy.

response n-well Vta PLDD1 PLDD1 PLDD2 p-well NLDD NLDD model

dose energy dose energy

p-channel • • • • • full quadratic
circuit • • • • • • 8 interactions

n-channel • • • • full quadratic

Were the circuit-specific responses not of interest, the solution is straight-
forward: Obtain a D-optimal design for the p-channel factors and its five-factor
response surface model. This determines also the levels of n-channel’s thresh-
old voltage adjustment dose. Then associate n-channel’s p-well factor with p-
channel’s n-well, and its NLDD dose and energy levels with those of PLDD1. One
referee correctly notes that such a four-factor subset of a D-optimal five-factor
design is not necessarily D-optimal with respect to the corresponding four-factor
model subset. Of course, the more pressing consideration is that such an ap-
proach solution does not allow the circuit model to be estimated. Solutions for
all three response sets are in section, 5.2.

2.3. Problem 24W: 24-row designs

Underlying problems WLR and NPC is a batch size of 24 wafers. At this
writing, this is the size for most advanced semiconductor manufacturing lines,
and designs of this size are of interest to our clients and those of many of our
colleagues. Also, 24 is an experiment size of some intrinsic interest: Five-factor-
three-level full quadratic models (with 21 terms) and six-factor-two-level reso-
lution V models (with 22 terms) both fit within an experiment of 24 units. In
contrast to three- and four-factor designs, five- and six-factor designs are large
enough to not be easily visualized. Experiments with about five or six factors
are also of considerable interest for integration experiments. Finally, 24 is not
a power of two, yet rich in small prime numbers, giving plenty of opportunities
for symmetry. 24 is larger than 16, a well characterized world in experimen-
tal designs, yet smaller than 32, a domain of experiments outside mainstream
practice.
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For all these reasons, it is attractive to develop a standard set of experi-

mental designs with five or six factors and 24 experimental units, for all models

with second-order interaction and quadratic terms. Let us introduce the self-

explanatory notation 2k3F−k(n) to denote an experiment with n experimental

units, F factors, of which k are at two levels and F − k are at three levels. Note

that a response surface model for a 2k3F−k design has 1 + F (F + 1)/2 + (F − k)

terms: 1 (constant)+F (linear)+F (F − 1)/2 (interactions)+(F − k) (quadratic).

The standard set of designs we seek is therefore {2k35−k(24) : k = 0, . . . , 5} ∪

{2k36−k(24) : k = 4, 5, 6}, a set which has nine elements and whose models

contain 16 to 24 terms. However, as indicated by problem WLR, we have consid-

erable interest in design properties after random loss of some experimental units.

Therefore, we confine our attention to {2k35−k(24) : k = 0, . . . , 5} ∪ {26(24)},

which allows for the loss of at least two units in each case. We describe the

solutions in section 5.3.

3. General Problem Statement

In this section, we abstract key elements of problems WLR, NPC, and 24W.

3.1. Matrix structures

Let the design matrix H be partitioned as
[

W |X
U

]

, where the matrices W

and U are given and X is to be determined. (A typical use of U is to force into

the solution one or more centerpoints.) This partitioning is manifestly part of

problem WLR, but we acknowledge that its value for problems NPC and 24W is

less apparent.

These data structures can be used to represent the covariates and blocking

variables, so our three problems resemble those addressed by Harville (1974),

Cook and Nachtsheim (1989), Atkinson and Donev (1989), Nguyen (1994), and

Radson and Herrin (1995), for instance. An important distinction, developed

next, is that our models permit interactions among the factors comprising W

and X. In contrast, the latter authors focus on additive models, which they are

able to exploit for computational efficiency.

3.2. Models

From H, whose ith row is Hi, we have one or more model matrices M j,

indexed by j and whose ith row is given by the vector-valued function mj(Hi).

For example, when H is a two-column matrix, and m corresponds to a full

quadratic model, m(u1, u2) returns the row vector (1, u1, u
2
1, u2, u1u2, u

2
2). The

row-by-row transformation of H into M j we abbreviate to the expression M j =

mj(H). Problem NPC presents us with three m-models, while problems WLR

and 24W require but one.
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3.3. Criteria

In our solutions to problems WLR, NPC, and 24W, we consider three mea-

sures, D-optimality, design yield, and level balance, defined here.

(a) primary criterion, D-optimality: Our goal is to find the best X, or at

least a good one, so that we can estimate by least squares the linear coefficients

of M j. Different criteria for design optimality have been proposed, the most

common of which is the larger-is-better criterion called D-optimality: D(H) =

ln(det(MT M)), when M = m(H) is non-singular; otherwise, D(H) = −∞.

Among the advantages of D(·) is the ease with which it is computed. A review

of alternative criteria can be found in Silvey (1980), chapter 2 and Atkinson and

Donev (1993), chapter 10.

When there are multiple models mj, the definition of D(·) is naturally gen-

eralized as D(H) =
∑

j ln(det(M jT M j)), for all M j = mj(H) non-singular;

D(H) = −∞, otherwise. This multiple model version of D-optimality, sometimes

referred to as S-optimality, has been studied by Läuter (1976) and Atkinson and

Cox (1974); Cook and Nachtsheim (1982) do so using as criteria linear functionals

of (M jT M j)−1.

(b) secondary criterion, design yield: Given that exactly w of n experimental

units are lost, and lost at random with equal probability, we define design yield

(w,mj) as the probability that the remaining n − w rows of M j comprise a

non-singular design. For example, in the case of Table 1a, 21 wafers remain.

Breaking any one of these, we can still support the four-factor quadratic model,

and the design yield (1) is 100 percent. If two wafers are broken, however,

78 of the 210 possible pairs give singular designs, and the design yield (2) is

(210 − 78)/210 = 62.9 percent; for three wafers, 923 of 1330 possible triples are

singular, the design yield (3) is 30.6 percent; for four wafers, 11.6 percent. As a

function of w, we usually present design yield(w) either graphically as in Figure

2 or numerically as in Table 3.

Table 3. For the three solutions to problem WLR after wafers 2, 12 and 18
are lost, the number of singular designs that would occur assuming random
wafer breakage of 1 to 6 more wafers. Design yield is 1 minus the tabled
value divided by the first column. For example, for the original design and
two wafers, the design yield is 1 − (78/210) = 62.9 percent.

original DR D2

of 21 1-wafer losses 0 0 0
of 210 2-wafer losses 78 2 1

of 1330 3-wafer losses 923 467 461

of 5985 4-wafer losses 5291 4125 4112

of 20349 5-wafer losses 19718 18264 18252

of 54264 6-wafer losses 53993 53246 53243
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Herzberg and Andrews (1976) and Andrews and Herzberg (1979) formulate
design yield as follows: Let {di : i = 1, . . . , n} denote independent, identically

distributed Bernoulli random variables; di takes value 0 when wafer i is missing
and value 1 when wafer i is present. Define D = diag(di). These authors con-
sider the criteria Pr{det(MT DM) �= 0} and E{n−1 det(MT DM)1/p}, where p
denotes the number of columns of M . Using this notation, design yield(w) is the

conditional probability Pr{det(MT DM) �= 0 |
∑

di = n − w}, which we note is
free of the Bernoulli parameter Pr{di = 1}.

(c) constraint, level balance: Let H(f) denote column f of the design matrix

H. We say that a column or factor f is level balanced (or has balanced levels)
if the unique scalar elements in column H(f) occur with equal frequency. The
relevance of level balance is discussed further in section 5.

In applications, based on a random start, the algorithm DR maximizes crite-
rion (a) to identify a candidate solution. The algorithm is repeated three to ten
times. These solutions are all evaluated by criterion (b), and the “best” solution
is selected with both criteria in mind. We take this approach because criterion

(b) is both too slow to make it the primary objective function for algorithm DR,
yet also too important for our clients to disregard entirely.

4. Algorithms

In this section, we introduce four algorithms for solving the problems WLR,

NPC, and 24W. All algorithms seek to optimize criterion D(·), although the

fourth, DR, does so over a restricted domain.

4.1. Algorithm JN

This is the implementation of the algorithm of Johnson and Nachtsheim

(1983) with k = 3. Due to its computational efficiency, JN is the most commonly

available D-optimal algorithm. In particular, we utilize the implementation found

in RS/Discover, described further by Bolt, Beranek, and Newman (1992), ap-

pendix 3. According to Johnson and Nachtsheim (1983), and confirmed by Li

and Wu (1997), algorithm JN is equivalent to the Fedorov algorithm with k = n.

4.2. Algorithm D1

D1 is the Fedorov algorithm, replacing one design point at a time to maximize

the D-optimality criterion. It has been suitably modified to leave W intact.

Let q = dim(X) and let X = {−1, 0,+1}q . Given some starting design X0,

we update it with X1, with the following properties: (a) X1 is the same as X0

except in row i∗. (b) row i∗ of X1 is replaced with some q-dimensional point x∗

in X . (c) D(·) is larger for (i∗, x∗) than for any other choice (i, x). This algorithm

is repeated until no further improvement can be made.
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4.3. Algorithm D2

D2 is similar to algorithm D1 except that it changes up to two points at a

time: Given some starting design X0, we update it with X1 with the following

properties: (a) X1 is the same as X0 except in row i∗ and perhaps row j∗. (b)

row i∗ of X1 is replaced with some q-dimensional point x∗
i in X ; row j∗ of X1

by x∗
j . (c) D(·) is larger for (i∗, j∗, x∗

i , x
∗
j ) than for any other choice (i, j, x1, x2).

This algorithm is repeated until no further improvement can be made.

4.4. Algorithm DR

DR stands for “design repair.” Let X denote some matrix selected by the

experimenter, and let Wi and Xj denote the ith and jth rows of W and X

respectively. Let π denote a permutation of the row indices (1, . . . , n), where n

here denotes the number of rows of W and X. For any given permutation π,

we associate row i of W with row π(i) of X, so each row of W is associated

with one and only one row of X. Criterion D(·) is used to guide choosing which

permutation to use.

Let Πall denote the set of all permutations, and let Π1(π) denote the subset

of permutations formed by transposing at most one pair of indices of π; Π1(π)

consists of 1+n(n−1)/2 elements. For example, Π1((1, 2, 3)) = {(1, 2, 3), (2, 1, 3),

(3, 2, 1), (1, 3, 2)} but not the two cyclic permutations (2,3,1) and (3,1,2).

Algorithm DR has two steps, a random starting point from Πall (called R-

step) and a deterministic search over the exchanges or transpositions from Π1

(called E-step). R-step: π is selected at random from Πall for nR iterations and

that with the largest D-value is selected. Denote this permutation πR. E-step:

Let π0 = πR. The k + 1st step of E-step takes that permutation π from Π1(πk)

that maximizes D(·). E-step continues until the stopping condition πk+1 = πk is

obtained. (A referee notes that E-step corresponds precisely to Harville’s (1974)

interchange step.) Specification of nR: The derivation deferred to the appendix,

we take nR from the following relation: log10(nR)=̇− 0.70850+2.12105 log10(n).

Except for the initial choice of X, this specifies the DR algorithm completely.

In practice, algorithm DR’s ultimate solution depends on the starting point

found by R-step, and the different solutions often achieve different values of D(·).

In contrast, the rowwise algorithms, particularly JN, are more repeatable. As

a matter of practice, the authors run algorithm DR somewhere between three

and ten times, and the final solution is selected by reviewing both the D-values

achieved and their design yields. The DR solutions of this paper are selected

from the best of ten alternatives.

Because DR is run up to 10 times, a referee raised the issue of whether the

comparison of DR to the other algorithms is fair. We believe it is, for the following
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reasons: (a) On the criterion of D(·), the initial design is always algorithm DR’s

solution. All the rowwise algorithms easily improve upon it by dropping a few

points with 0-levels in favor of those with values ±1. (b) On the criterion of

design yield, we emphasize the average design yield across the 10 DR solutions,

not the best of 10.

Harville (1974) first considered the problem of assigning covariates into a

design with qualitative variables. His algorithm consists of two phases. The first

(“exchange”) replaces the treatment to a given experimental unit with a different

treatment. The second (“interchange”, equivalent to E-step above) switches the

assignment of treatments between two experimental units. Jones (1976) devel-

ops a blocking algorithm for a weighted trace; its flexibility for response surface

models is less apparent. Nachtsheim (1989) develops the asymptotic theory for

covariate assignment in experimental designs. Atkinson and Donev (1989) for-

mulate the KL-exchange algorithm for blocking response surface models. To

the same problem, Cook and Nachtsheim (1989) adapt Galil and Kiefer’s (1980)

proposal for the starting design, and Harville’s algorithm for the refinement.

All these approaches gain computational efficiency by assuming the absence of

interactions between covariates and blocks on one hand (W -structures) and ex-

perimental conditions (X-structures) on the other.

A few comments are in order. First, none of these algorithms for designing

experiments carries any guarantee of being truly optimum. Second, all are de-

pendent on some starting layout for X. We find it convenient to use the solution

from DR as starting points for D1 and D2. Third, algorithm DR mandates more

care in choosing its initial X than do JN, D1, and D2, for its rows are never

replaced, only permuted. Fourth, algorithms JN, Dl, and D2 all comprise row-

wise algorithms, making selections and exchanges of design points from the space

X ; this same property allows constraints in the design space. DR, depending as

it does on the experimenter’s initial choice of X, we describe as a columnwise

algorithm. In the solutions discussed next, we treat algorithms JN, Dl, and D2

as representatives of the class of rowwise algorithms, select whichever is the most

suitable, and compare its performance to DR.

Finally, note that none of the four algorithms makes use of design yield as an

optimization criterion. Andrews and Herzberg (1979) develop a recursive rela-

tionship for calculating the determinant with one row missing given the complete

determinant and design matrix; Akhtar and Prescott (1986) apply this recursion

to determine designs optimizing E{det(MT DM)λ}, for 0 < λ < 1. For our

problems, this criterion appears impractical: Problem WLR, our smallest, has

a model of 15 terms and 21 experimental units; a single criterion evaluation

involves potentially 82,160 combinations.
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5. Solutions to Problems

5.1. Solutions to WLR

Algorithm DR’s solution is displayed in Table 1b. Implicit in Table 1b is the

experimenter’s choice of rows for DR to permute, and close inspection reveals

that enforcing level balance underlies that choice.

Since the X -space consists only of 9 points, we can use algorithm D2 to good

effect. Its solution is presented in Table 1c; as a starting design algorithm D2

used Table 1b. By construction, therefore, D2’s has a superior D-value to DR,

as can be seen in Table 4.

Table 4. D-optimality criterion values achieved different algorithms for the

three design problems. Higher values are better. Symmetry designs refer to

the 3/4, 1/2 and 1/3 fractional factorials.

original columnwise rowwise symmetry

problem WLR 24.76 27.75 31.17

problem NPC

n-channel 33.91 34.24 35.64

circuit −∞ 44.17 45.58
p-channel 45.67 45.67 48.88

problem 24W

26 65.92 68.01

35 45.67 49.23

2134 46.66 50.79
2233 48.06 50.81

2332 48.51 50.54 49.27

2431 49.84 50.25 50.14

25 49.91 49.91 49.91

Observe that D2’s solution is not at all balanced: The third factor has 6 −1’s,

5 0’s, and 10 + 1’s, the fourth 11, 4, and 6 − 1’s, 0’s and +1’s, respectively.

A comparison of design yields is in Table 3, where the solutions perform

comparably. Both improve over Table 1a by the equivalent of around one exper-

imental unit, an improvement typical of the authors’ experience with an experi-

ment of about this size. Note that when two wafers are lost, D2’s design yield is

0.995, versus DR’s value of 0.99.

5.2. Solutions to NPC

For NPC, the X -space consists of (−1, 0,+1)8, which has 6561 distinct points.

For computational reasons, the rowwise solution uses algorithm D1 and optimizes
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the sum of D-values of the three models presented in Table 2. The solution from

algorithm DR is used as a starting design.

Algorithm DR’s solution to problem NPC is sequential; at each step, only

one model is used. In step 1, the 35(24) design from problem 24W is assigned to

the p-channel factors.

In step 2, to complete the circuit model, the p-channel design is augmented

with the two factors of n-channel lightly doped drain (NLDD) dose and energy.

For calculating D-values, the model consists of constant, linear, and quadratic

terms of all seven factors, and the interactions as listed in Table 2–in effect, a

superset of Table 2’s specification. The X-matrix is almost a three-times repli-

cated 32 factorial; enforcing level balance, only the points (−1, 0), (0,+1), and

(+1,−1) are deleted. To ensure that the solution includes a centerpoint, the

matrix U consists of a row of zeros.

In step 3, to complete the n-channel model, the design needs only to be aug-

mented by the factor corresponding to p-well dose implant. The model consists

again of a superset–constant, linear and quadratic terms for all eight factors, and

the n-channel model’s interactions as listed in Table 2.

The latter two stages are illustrated in Figure 1. The three matrix portions

corresponding to W , X, and U are implied by the left-hand panels, with row

and column dimensions in their respective lower right-hand corners. The models

are displayed in the panels on the right. In the model glyphs, the (1, 1)-cell is

the constant term; its inclusion is implied when the cell holds a “C”. The first

row indicates the linear terms of the model; their inclusion is implied by an “L”.

The main diagonal corresponds to the quadratic terms, which, when included,

are denoted by a “Q”. Any other cell represents the interaction of the factors of

that row and column, and the term is active when an “I” occupies it.

Let us denote the construction sequence implemented–p-channel, then cir-

cuit, lastly n-channel–as PCN. Though admittedly problem dependent, PCN

seems the natural one to the authors. First, the solution to 24W gives a p-channel

design associated with a full quadratic model as a starting point. Second, PCN

first adds two factors (for “C”), then only one factor (for “N”), modest DR ap-

plications of decreasing ambition. In contrast, the construction sequence NCP

awkwardly would add three factors (for “C”), then one (for “P”). PNC and NPC

are impossible construction sequences, because p- and n-channel factors form a

superset of circuit factors. Construction sequences CPN and CNP are awkward

at best. They require four steps, not three, because an initial six-factor circuit

design would need to be constructed. Further, the six-factor circuit model is not

full quadratic, indeed cannot be for a 24-run design, and therefore seems an odd

choice for an initial design.
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Figure 1. Representation of the two-step solution to problem NPC by the
columnwise algorithm DR. (a) In the first step, algorithm DR associates
with the p-channel design the two additional factors NLDD dose and energy,
completing the circuit model. (b) In the second step, algorithm DR associates
the result of step one with the factor p-well implant dose, completing the n-
channel model.

Again, as seen in Table 4, algorithm D1 achieves larger D-value for all three
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models, while DR’s solution ensures the levels are balanced. Across the eight

factors, the number of 0-levels ranges from 4 to 6, and only for two factors does

the number of −1’s equal the +1’s. One factor of D1’s solution, n-channel lightly

doped drain dose, has 11 + 1’s but only 8 − 1’s.

As indicated by Table 5, for both algorithms and all three models the design

yields are quite satisfactory. The design yields of the n-channel model distin-

guishes most between the two algorithms, and shows DR’s solution to be more

resistant to random observation loss.

Table 5. For the solutions to problem NPC, the number of singular designs

assuming random wafer breakage. Values have same interpretation as in

Table 3. The rowwise algorithm is D1, the columnwise algorithm is DR, and

the original design is 35(24) from problem 24W.

original columnwise rowwise

p-channel model
of 24 1-wafer losses 0 0 0

of 276 2-wafer losses 0 0 0

of 2024 3-wafer losses 0 0 0

circuit model

of 24 1-wafer losses 24 0 0

of 276 2-wafer losses 276 0 0

of 2024 3-wafer losses 2024 0 0

n-channel model

of 24 1-wafer losses 0 0 0
of 276 2-wafer losses 0 0 0

of 2024 3-wafer losses 0 0 0

of 10626 4-wafer losses 0 0 1

of 42504 5-wafer losses 0 0 23

of 134596 6-wafer losses 6 1 262
of 346104 7-wafer losses 179 52 2119

5.3. Solutions to 24W

Design problems with 24 experimental units, five and six factors, and con-

ventional response surface models, are in the realm of commercial D-optimal

software. In our case, we use RS/Discover algorithm, which implements algo-

rithm JN.

Three of these designs can be developed using more traditional fractional

factorial methods. John (1971), cited by McLean and Anderson (1984), appendix

4, has formulated a 25 3/4 fractional factorial. This design joins the 16-run 25−1

half-fraction and the 8-run 24−1 half-fraction with one factor fixed. For the

2431 and 2332 there exist 24-run half- and third-fractions, respectively; these are
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obtained by coding levels 0, 1 and 2, and taking the fractions whose row sums

equal 0 modulo 2, for 2431 and 0 modulo 3, for 2332. As a group, we refer to

these designs as “symmetry” designs.

For the DR algorithm, each of the nine designs requires specifying the ma-

trices W , X, and U . Underlying these choices is an interest in symmetry, mani-

fested in the following rules of thumb: (a) Where possible, designate W and X

(including U) as full factorials. W and X represent projections into subsets of

the factor space. By designating them as full factorials, we are covering these

two subspaces as well as possible. (b) Enforce balanced levels. Balanced lev-

els minimize the correlation of effects to a model’s intercept term, facilitate the

estimation of the “additive effects” model, and aid in forming useful goodness-

of-fit diagnostic plots. (c) Avoid excluding a point with zeros on more than one

factor. (d) Avoid including points with zeros on more than one factor. These

latter two criteria minimize the concentration of points at only a few radii. As

with level balance, the “additive effects” model and goodness-of-fit tests both

benefit. (e) Partition the factors so that W has as many factors as possible (and

therefore X has as few as possible). For example, to use algorithm DR to solve

for a resolution V 25(16), a natural partition is for W as the 24 full factorial and

X as a single column of 8 + 1s and 8 − 1s. The alternative partition into 3

and 2 factors seems less attractive. A detailed review of the implementation for

24W reveals that these rules of thumb are not equally enforced; the latter order

indicates something of their relative priority.

Table 4 compares the solutions from algorithm JN and DR with the symme-

try designs. For the 25 designs, all approaches achieve exactly the same D-value.

For all other design problems, the JN solutions, unconstrained by the level bal-

ance requirement, achieves uniformly larger D-values, and the symmetry designs

for 2431 and 2332 also have marginally better D-values than what is achieved

by DR. The disparity in D-values increases as the number of three-level factors

increases.

A review of the level balance across the problem sets reinforces this inter-

pretation.

Performance with respect to design yield, however, is more varied. Figure

2 compares the design yield curves for all the five-factor designs and 26. Only

for two designs, 2431 and 26, does algorithm JN demonstrate superior design

yields over DR’s average performance; for five designs algorithm DR’s best-of-

10 solutions show better performance; for 26 the results are mixed. All three

symmetry design perform poorly.
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Figure 2. Design yields for the solutions to problem 24W. Symbols: • denotes the

solution from the rowwise algorithm JN, �(�) the best (average) of 10 columnwise

solutions from algorithm DR, ◦ the 3/4, 1/2 and 1/3 fractional factorials. The

arrows compare the magnitude and direction of the rowwise design yield to that of

the algorithm DR.
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6. Comments

The forte of optimal design theory is solving irregular design issues. Its abil-

ity to solve problems WLR, NPC, and 24W we attribute to the judicious choice

of data structures: (a) W can consist of previously processed factors, covariates

associated with experimental material, and dummy variables indicating block

structure, as well as factorial designs to be fractionated algorithmically. (b) U

can consist of centerpoints, replicated corner control points, previous designed

and complementary blocks, and other conditions that support secondary exper-

imental objectives. (c) The multiple models {mj} capture the experimenter’s

physical knowledge and primary purposes. With software that supports multiple

models, the experimenter is able to specify ambiguous models. (For example,

one can represent the resolution IV concept by a series of models, each of which

consists of one factor’s interactions with all others.) (d) The design points to

be, as indicated either by the factorial space X or the rows of the X-matrix,

provide alternative forms for posing design problems. The rowwise algorithms’

X -representation emphasizes the optimality objective and easily accommodates

design space constraints; the columnwise algorithm’s X-representation gives the

experimenter more latitude in specifying solutions that are constrained by sym-

metry relations, sensitive to model goodness-of-fit, and adapted to less formal

considerations. Suppliers of commercial optimal design software are well advised

to support data structures (a)-(d).

It is intriguing that algorithm DR can construct a solution to problem NPC

through a sequence of one-model-at-a-time steps. This we interpret as further

evidence of the strength of the W -U -X data structures, not as a reason to avoid

supporting multiple models. One reviewer asks whether DR’s success at a se-

quential construction for NPC is related somehow to the fact that a 24-trial was

attempted. Our experience with NPC-type problems is not broad, but it seems

likely that problem NPC is near the outer limits of what experimenters in semi-

conductor development attempt. In addition, for reasons listed in section 2.3,

24-trial experiments seem a natural domain for the application of DR.

Across problems, the rowwise D-optimal algorithms achieve superior values

for the D-optimality criterion. Primarily, this is because their solutions are not

constrained to have balanced levels. Their disfavor for mid-points (0-levels) is

easily explained: Consistent with design practice with two-level designs, the cor-

ner vertices give maximal information about both linear and interaction effects,

while the 0-levels give new information about the quadratic terms–and there are

more of the former than of the latter. The absence of balance between the −1

and +1 levels among the rowwise solutions is more problematic, however, and

some practitioners are uncomfortable using such solutions for these reasons. The

intuition, we believe, is that symmetric designs are more robust to alternative
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model specifications, and more supportive of model-free and model-diagnostic

data analyses.

In this context, it is noteworthy to observe that the three fractional factorial

designs–John’s 3/4 25, the half-fraction of 2431, and the third-fraction of 2332–

show good D-values yet demonstrate relatively poor design yields. Caution is

therefore advised in assuming that robustness accrues automatically from de-

sign symmetry. From the solutions of problem 24W, the following trends are

worth noting, if only speculatively: (1) Level balancing, per se, does not seem

to improve design yields. Otherwise, the half-fraction 2431(24) and the third-

fraction 2431(24) would have performed better. (2) Increasing the number of

three-level factors improves design yields–albeit the 2431(24) designs constitute

an important exception. (3) One can improve the design yields of algorithm DR

by picking the best of several solutions. In view of (1), it seems the success of DR

on the design yield criterion is more easily attributable to its substantial random

component (R-step) than to its use of balanced levels. This opens the door to

improving the design yields of rowwise algorithms by making their solutions less

repeatable.

For all design yield curves presented in this paper, if one design becomes

superior to another at one value of w, it remains superior for larger values.

(The authors have observed exceptions; this is a only a rule of thumb, not a

theorem.) This presents the possibility of adapting the proposals of Andrews

and Herzberg (1979) and Akhtar and Prescott (1986) to a more computationally

feasible, conditional criterion, such as E{det(MT DM)λ|
∑

di = n − w0}, for

0 < λ < 1 and w0 = 1 or 2. Were w0 = 1 chosen, the criterion would take at

most only n times longer to calculate.

We conclude with some remarks on model goodness-of-fit. Traditional ex-

perimental design methods associate goodness-of-fit with resolution IV designs,

which designate parts of the model ambiguously. Scientific practitioners tend to

associate model goodness-of-fit with the consistency of experimental observations

with a physically-based functional form, often made in a single factor’s direction.

With the exception of the nonparametric approach of Sacks, Welch, Mitchell, and

Wynn (1989), optimal design theory typically neglects goodness-of-fit issues. Al-

gorithm DR offers an approach to accommodating model goodness-of-fit: the user

restricts the solutions, forcing in three, four, or even more levels. In so doing, the

experimenter has the flexibility to consider model goodness-of-fit directly. The

approach of Sacks, Welch, Mitchell, and Wynn (1989) manages goodness-of-fit

indirectly through the optimality criterion; algorithm DR does so through user

choices, where our experience indicates it belongs. These comments echo the un-

derlying thesis of Cook and Nachtsheim (1989)–that optimal design theory both

broadens useful options and further aligns statistical theory to applications.
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Appendix: Derivation of nR

Let Πk(π) denote the set of permutations within k transpositions of the
permutation π. Thus Π0(π) = {π} and Πk(π) = ∪{Π1(π

′) : π′ ∈ Πk−1(π)}. For
any π, the sets Πk(π) are nested: Πk−1(π) ⊆ Πk(π). Note that (Πall = Πn−1(π)
for all permutations π. Define d(π0, π1) as the minimum number of transpositions
needed to transform π0 to π1; d(π0, π1) is the smallest number d such that π0 ∈
Πd(π1); d(π, π) = 0. d(·, ·) is a metric: non-negative, symmetric, and satisfying
the triangle inequality.

In the context of algorithm DR, let π∗ denote the “best” permutation and let
π denote some permutation chosen randomly from Πall with uniform probability.
Our heuristic assumes (a) π∗ to be unique, and (b) that the maximization of D(·)
is similar to the minimization of d(·, π∗). Since nR involves the relative balance
of computation time for R- and E-steps, we judge these heuristics adequate for
our purpose.

Define the cumulative distribution function Fn(d) to be Pr{d(π, π∗) ≤ d},
where π is the random variable. Let Fn(d) = 1−Fn(d). From combinatorial the-

ory, for example, Riordan (1958), chapter 4 Fn(d) =
∑d

i=1 |S
(i)
n |/n!, where {S

(i)
n }

are (signed) Stirling numbers of the first kind. The basic ideas for this result are
two: (1) The number of transpositions required to transform one permutation
into the identity permutation equals n minus the number of cycles. (2) A cycle
of order i factors into i − 1 transpositions. (Stirling numbers of the first kind

are such that Πn−1
j=0 (x − j) =

∑n
i=1 S

(i)
n xi. Subject to the boundary conditions

S
(0)
n = S

(n)
n = 0, they can be computed recursively: S

(i)
n = S

(i−1)
n − (n − 1)S

(i)
n−1.

In this notation, (−1)n−iS
(i)
n is the number of permutations of n objects that

have exactly i cycles. See Abramowitz and Stegun (l970), section 24.1.3.)
Let π∗ represent the particular permutation maximizing D(·) over Πall. After

nR random permutations, the distribution of that closest in the d-metric is 1 −
Fn(d)nR . Let πR denote this solution from R-step. Our heuristic is that πR

has a similar distribution, and that E-step moves ever closer in the d-metric.
Such ideas allow us to write down the expected number of D-evaluations until
convergence:

nR +

(

n

2

)

E(d(πR, π)|nR). (A.1)

Here E(·) denotes the expectation with respect to the distribution 1− Fn(d)nR .
For any non-negative, integer-valued distribution G(d), its expectation is
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∑∞
d=0 Gn(d). Applied to (A.1), E(d(πR, π)|nR) =

∑n−1
d=0 Fn(d)nR . Because Fn

can be calculated, for each choice of n we can minimize (A.1) with respect to

nR; this minimizing value we denote by n∗
R. The relationship between n and

n∗
R is nearly linear on log-log scale. Disregarding a slight concavity, and to ex-

cessive precision, a least squares fit on log-log scale through the evaluations at

n = 6, 12, 24, 48, 96 and 192 gives this approximation: log10(n
∗
R)=̇ − 0.70850 +

2.1205 log10(n). In the region of greatest interest, n = 12 or 24, this expression

underestimates n∗
R by 5 or 6 percent.
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Läuter, E. (1976). Optimal multipurpose designs for regression models. Math. Oper. Statist.

7, 51-68.
Li, W. W. and Wu, C. F. J. (1997). Columnwise-pairwise algorithms with applications to the

construction of supersaturated designs. Technometrics 39, 171-179.
Li, W. W. (1995). An algorithmic approach for the construction of optimal balanced designs.

Technical Report, Carlson School of Management, University of Minnesota.
McLean, R. A. and Anderson, V. L. (1984). Applied Factorial and Fractional Factorial Designs.

Marcell Dekker, New York.
Mitchell, T. J. (1974a). An algorithm for the construction of “D-optimal” experimental designs.

Technometrics 16, 203-210.
Mitchell, T. J. (1974b). Computer construction of “D-optimal” first-order designs. Technomet-

rics 16, 211-220.
Mitchell, T. J. and Miller, F. L. (1970). Use of design repair to construct designs for special linear

models. Report ORNL-4661. Oak Ridge National Laboratories, Oak Ridge, Tennessee.
Nachtsheim, C. J. (1989). On the design of experiments in the presence of fixed covariates. J.

Statist. Plann. Inference 22, 203-212.
Nguyen, N.-K. (1994). Construction of optimal block designs by computer. Technometrics 36,

300-307.
Park, J. S. (1994). Optimal Latin-hypercube designs for computer experiments. J. Statist.

Plann. Inference 39, 95-111.
Radson, D. and Herrin G. D. (1995). Augmenting a factorial experiment when one factor is an

uncontrollable random variable: a case study. Technometrics 37, 70-81.
Riordan, J. (1958). An Introduction to Combinatorial Analysis. Wiley, New York.
Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer

experiments. Statist. Science 4, 409-435.
Silvey, S. D. (1980). Optimal Design. Chapman and Hall, New York.
Sun, D. X. and Wu, C. F. J. (1994). Interaction graphs for three-level fractional factorial

designs. J. Quality Technology 26, 297-307.
Taguchi, G. (1987). System for Experimental Design: Engineering Methods to Optimize Quality

and Minimize Cost. UNIPUB/Kraus International, White Plains, New York.
Van Schalkwyk, D. J. (1971). On the design of mixture experiments. Ph.D. Thesis, University

of London.
Wu, C. F. J. and Chen, Y. (1992). A graph-aided method for planning two-level experiments

when certain interactions are important. Technometrics 34, 162-175.
Wynn, H. P. (1970). The sequential generation of D-optimum experimental designs. Ann.

Math. Statist. 41, 1655-1664.

Advanced Micro Devices, MS 117, P. O. Box 3453, Sunnyvale, CA 94088-3453, U.S.A.

E-mail: bill.heavlin@amd.com

E-mail: paul.finnegan@amd.com

(Received September 1995; accepted September 1997)


