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Brown fat and beige fat are known as thermogenic fat due to their contribution to

non-shivering thermogenesis in mammals following cold stimulation. Beige fat is unique

due to its origin and its development in white fat. Subsequently, both brown fat and

beige fat have become viable targets to combat obesity. Over the last few decades,

most therapeutic strategies have been focused on the canonical pathway of thermogenic

fat activation via the β3-adrenergic receptor (AR). Notwithstanding, administering β3-AR

agonists often leads to side effects including hypertension and particularly cardiovascular

disease. It is thus imperative to search for alternative therapeutic approaches to combat

obesity. In this review, we discuss the current challenges in the field with respect to

stimulating brown/beige fat thermogenesis. Additionally, we include a summary of other

newly discovered pathways, including non-AR signaling- and non-UCP1-dependent

mechanisms, which could be potential targets for the treatment of obesity and its related

metabolic diseases.

Keywords: obesity, brown fat, beige fat, thermogenesis, β-adrenergic signaling, UCP1, calcium cycling, glycolytic
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INTRODUCTION

In recent years, obesity has become an ever-growing public health crisis. Its related diseases include
type 2 diabetes, hypertension, cardiovascular disease, and cancer. The treatments for obesity have
been shown to be minimally effective and often come with a slew of side effects. Generally, the
production of heat is accompanied by a concomitant increase in the lipolysis of triglycerides
and the oxidation of fatty acids (1). Thus, stimulating thermogenesis is a useful tool with which
to combat obesity. In addition to shivering thermogenesis, non-shivering thermogenesis plays
an important role in energy homeostasis. It was originally thought to occur only in newborn
humans as a means to maintain their body temperatures as there exists abundant brown fat in their
body. However, in 2007, brown fat was discovered in adult humans using 18F-fluorodeoxyglucose
positron emission tomography/computed tomography (18FFDG-PET/CT)-based imaging (2).
Importantly, the activity of brown fat in humans is negatively correlated to body mass index (BMI)
and positively correlated to glucose tolerance as well as insulin sensitivity (3). Thus, non-shivering
thermogenesis has become an area of interest as a means to promote more robust basal metabolism
and consequently reduce the prevalence of diseases caused by a surplus of energy stores.
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Canonically, the metabolic effect of brown fat is mediated
by the activation of β-adrenergic signaling and the regulatory
effect of uncoupling protein 1 (UCP1). The former is mediated
by norepinephrine which is released from the sympathetic nerve
terminals, and the latter contributes to the generation of heat
through the mitochondria (4). As a result, most efforts to
induce brown fat thermogenesis in mammals have focused on
developing β3-adrenergic receptor (AR) agonists. However, β3-
AR is not specific to adipose tissue, and its global activation
oftentimes leads to deleterious side effects. For this reason, recent
efforts in the field have focused on better understanding the
mechanisms of brown fat activation that bypass ARs.

BROWN/BEIGE ADIPOSE TISSUE
BIOLOGY

Brown/Beige Adipose Tissue
In a healthy adult human, as much as 20–35% of the body
weight is composed of white adipose tissue (WAT) (5), located
predominantly in the subcutaneous and the visceral regions of
the body. However, during disease states such as obesity, BMI
can be above 30 kg/m2. WAT serves as the main energy store for
the body, while brown adipose tissue (BAT) dissipates energy into
heat via non-shivering thermogenesis (6–8).

In humans, BAT is located primarily in the cervical,
supra-clavicular, supra-adrenal, and para-spinal regions (2).
Morphologically, brown adipocytes are composed ofmultilocular
small droplets and abundant mitochondria, which play a
crucial role in non-shivering thermogenesis. BAT innervation
by the sympathetic nervous system is important for its
development and activation (9). Classically, following cold
exposure, norepinephrine is released from the sympathetic
nervous system. It then binds to the β3-AR in brown adipocytes,
leading to an activation of adenylyl cyclase, an increase in
cAMP levels, and the activation of protein kinase A (PKA).
This, in turn, induces lipolysis in brown adipocytes. Moreover,
UCP1, a mitochondrial membrane protein expressed primarily
in BAT, has been shown to play a key role in the process
of non-shivering thermogenesis. It uncouples the respiratory
chain of oxidative phosphorylation within the mitochondria,
leading to a production of transmembrane proton flow and
generation of heat. Prolonged β3-adrenergic stimulation has
been demonstrated to be necessary for sustained thermogenic
activity (10).

Beige adipocytes were defined by the Spiegelman group
in 2012 (11). However, brown-like adipocytes in mice was
described as early as 1984 by Young et al. (12). The cells
were found to be distributed in WAT after cold exposure or
adrenergic stimulation. Furthermore, beige adipocytes appear
morphologically similar to brown adipocytes, express UCP1, and
also generate heat in the form of non-shivering thermogenesis
(13, 14). They are innervated by the sympathetic nervous
system as well (14). Indeed the density of noradrenergic
fibers dramatically increases in murine WAT depot after cold
stimulation or transgenic overexpression of protein PR domain
containing 16 (PRDM16), which is a main regulator of brown

adipogenesis (15). This indicates the importance of sympathetic
stimulus in the development of beige adipocytes. The presence of
beige adipocytes in humans is supported not only by 18FFDG-
PET/CT imaging but also by anatomical and transcriptome
profiling, revealing that the supra-clavicular region of 18FFDG-
positive depots mainly consists of beige adipocytes (16), while the
cervical region consists of classical brown adipocytes (17).

Targeting Brown/Beige Fat Thermogenesis
While skeletal muscle-mediated shivering thermogenesis
consumes a great deal of energy in cold, non-shivering
thermogenesis contributes to energy expenditure even at low
levels of cold stimulation. It has been shown that both BAT
and skeletal muscle play a role in non-shivering thermogenesis
(18, 19). Undermild cold conditions, UCP1-based thermogenesis
in BAT and sarcolipin-based thermogenesis in skeletal muscle
work synergistically. When either thermogenic processes is
impaired, the other is upregulated to maintain temperature
homeostasis in mice (20). However, the mechanism of this
functional crosstalk between BAT and skeletal muscle remains
unclear. Furthermore, during prolonged cold exposure, muscle
shivering intensity decreases while BAT activity increases (21).
This suggests a pivotal role of BAT in thermogenesis under
thermal stress. Therefore, increasing BAT mass and activity by
stimulating its development and adrenergic response can be
strategies to combat obesity in mammals.

Crucially, scientists have discovered that classical brown
adipocytes share a common progenitor with skeletal myocytes
(22). It has been shown that PRDM16, peroxisome proliferator-
activated receptor γ (PPARγ), and CCAAT/enhancer-binding
protein β (C/EBPβ) are master regulators of brown adipogenesis.
PRDM16 has been shown to control the switch between
skeletal myoblasts and brown adipocytes (22). Moreover, it
binds directly to PPARγ to stimulate brown adipogenesis.
C/EBPβ has been shown to play a crucial role in BAT
development as well (23), binding to PRDM16 and initiating the
switch from myoblast to BAT differentiation (24). Additionally,
data indicate that PRDM16 binds to many other regulatory
factors including peroxisome proliferator-activated receptor γ-
coactivator 1α (PGC1α), PGC1β, euchromatic histone-lysine
N-methyltransferase 1 (EHMT1), C-terminal-binding proteins
(CtBPs), and early B cell factor-2 (EBF2). It likely forms a
complex with these factors to regulate brown/beige adipocyte
development (25–28). Although active BAT has been detected
by 18FFDG-PET/CT imaging in adult humans after cold
stimulation, it has primarily been found in people who are young
and lean, with a lower BMI (3). Numerous studies have indicated
that BAT activity is inversely related to BMI (8, 29–31). This
may also likely be attributed to the increase in cold insulation
and the subsequent protection of heat loss associated with higher
adiposity. This paradox presents a challenge in simply targeting
BAT to treat obese patients.

Since beige fat in humans is gradually recognized (16),
scientists have honed on inducing beige adipogenesis to combat
a variety of metabolic disorders. Unlike white or classic
brown adipocytes, the origin of beige adipocytes is extremely
heterogenous. Beige adipocytes have been reported to be
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TABLE 1 | Molecules promotional for brown and/or beige adipogenesis and their

potential targets.

Molecules Potential targets References

Thiazolidinediones SIRT1-PPARγ (43)

(41)

Melatonin UCP1-PGC-1α (49)

Berberine AMPK-PGC-1α and PRDM16 (50)

(51)

Green tea AMPK (52)

Menthol UCP1 (53)

Irisin p38 MAPK-ERK (54)

(55)

Ginsenoside PPARγ and AMPK (56)

(57)

Retinoic acid p38 MAPK (58)

Resveratrol AMPK (59)

Fenofibrate PPARα (38)

Curcumin β3-AR (60)

(61)

Capsaicin SIRT1-PPARγ-PRDM16 (39)

Artepillin C UCP1 and PRDM16 (62)

Bitter melon seed oil Mitochondrial uncoupling (63)

Omega-3 fatty acid UCP1 (64)

(65)

Butein Prdm4 (66)

Catecholamines β-AR and mTORC1 (67)

Eicosapentaenoic

acid

AMPK, PGC-1α, PPARγ,

PRDM16, and UCP1

(68)

Dietary luteolin AMPK and PGC-1α (69)

AICAR AMPK (70)

Farnesol PPARγ, CEBPα, and AMPK (71)

Cryptotanshinone AMPK and p38 MAPK (72)

Albiflorin AMPK and PI3K/AKT (73)

Trans-anethole AMPK-SIRT1-PPARα-PGC-1α (74)

Magnolol AMPK, PPARγ, and PKA (75)

Xanthohumol AMPK (76)

(-)-Epigallocatechin-

3-gallate

(EGCG)

AMPK (77)

L-Rhamnose β3 -AR, SIRT1, PKA, and p-38 (78)

Grape pomace

extract

PKA, AMPK, p38, and ERK

PGC-1α, PPARγ, PRDM16,

and UCP1

(79)

Phytol AMPK (80)

Raspberry AMPKα1 (81)

Nobiletin AMPK and PKA (82)

Medicarpin AMPK (83)

Olaparib AMPK- SIRT1 (84)

Genistein AMPK (85)

Dietary sea

buckthorn pomace

AMPK-PGC-1α-UCP1 (86)

Zeaxanthin AMPKα1 (87)

Trans-cinnamic Acid AMPK (88)

Metformin AMPK (89)

(Continued)

TABLE 1 | Continued

Molecules Potential targets References

6-Gingerol AMPK (90)

Dietary apple

polyphenols

AMPKα (91)

AMPK, AMP-activated protein kinase; AR, adrenergic receptor; C/EBP, CCAAT/enhancer-

binding protein; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-

regulated protein kinase; mTORC1, mammalian target of rapamycin complex 1; PI3K/AKT,

phosphatidylinositol3kinase/protein kinase B; PPAR, peroxisome proliferator-activated

receptor; PGC-1α, PPARγ coactivator-1α; Prdm, transcription factor positive regulatory

domain; SIRT1, sirtuin 1; UCP, uncoupling protein.

transdifferentiated from white adipocytes (32, 33) or directly
differentiated from distinct progenitors including PDGFRα+

(34), mural (35, 36), or MyoD+ progenitors (37). Numerous
studies indicate that UCP1, one of themain regulators of adaptive
thermogenesis, contributes to beige fat development (38–40).
Moreover, classical beige adipocytes are governed by PRDM16
as well (41, 42). Deacetylation of PRDM16 and PPARγ by sirtuin
1 (SIRT1) stabilizes the PRDM16/PPARγ complex, contributing
to beige adipogenesis (39, 43). Alternatively, SIRT1 is activated
and regulated by Ca2+/calmodulin-dependent protein kinase β

(CaMKKβ) and AMP-activated protein kinase (AMPK) (44–
46), the latter of which plays a role in fatty acid oxidation.
Other positive regulators of beige adipogenesis include bone
morphogenetic proteins (47) and fibroblast growth factor 21 (48).

For years, targeting the β-adrenergic signaling pathway has
been the therapeutic strategy to induce beige adipogenesis and
thereby combat obesity. A variety of natural compounds and
clinical medications used for treating metabolic diseases, shown
in Table 1, have been shown to induce beige fat development.
Of note, irisin and berberine are two molecules which show
stimulatory effects on beige fat and brown fat in humans (51, 55).

POTENTIAL ANTI-OBESITY DRUGS AND
THEIR SAFETY

Adrenergic Receptor Agonists
Adrenergic signaling, in particular β3-AR, is a well-established
pathway for BAT activation and beige fat development in
response to cold temperatures. Common selective β3-AR
agonists and antagonists have been summarized in a 2011 review
by Bhadada et al. (92). Several β3-AR agonists have been shown to
induce thermogenesis (93, 94). However, β3-AR are distributed
throughout the body, including in the central nervous system,
myocardium, blood vessels, smooth gastrointestinal and skeletal
muscles, gallbladder, urinary bladder, prostate, etc. (95). Potential
binding of β3-AR agonists with receptors located elsewhere may
cause unexpected side effects.

Currently, some β3-AR agonists including mirabegron,
vibegron, ritobegron, and solabegron have been extensively
investigated. Some have even been approved for clinical use
to treat overactive bladders and urinary incontinence (96–98).
Although mirabegron has been found to induce BAT activity as
measured by 18FFDG-PET/CT (99), increase non-esterified fatty
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acids by up to 68%, and boost resting energy expenditure by up
to 5.8% (100) in humans, no β3-AR agonists has been approved
to treat metabolic disorders thus far. The most common off-
target binding sites of β3-AR agonists are myocardium and blood
vessels (92, 101–103). Notably, it has been indicated that β3-
AR stimulation is related to heart failure because of the negative
inotropic effect of β3-AR agonists (104, 105). Additionally,
different agonists present inconsistent effects on blood vessels
(92). Some cause vasodilation, whichmay give rise to tachycardia,
while others promote vasoconstriction, which is associated with
high blood pressure. These potentially fatal side effects make β3-
AR agonists unsuitable stimulants for thermogenic activity in
the clinic.

PPARγ Receptor Agonists
PPAR receptors also play a critical role in regulating whole-body
energy homeostasis. These receptors are abundantly expressed in
adipose tissue, liver, and skeletal muscle, in addition to immune
and gastrointestinal systems, and are known to regulate brown
adipogenesis as well as glucose uptake and lipid biosynthesis in
WAT (106, 107). PPARγ receptor agonists, such as troglitazone,
rosiglitazone, and pioglitazone, have been applied to treat

metabolic disorders and type 2 diabetes due to their insulin-
sensitizing effects (108). However, due to side effects such as
hepatotoxicity, myocardial infarction, bladder cancer, and heart
failure, PPARγ receptor agonists have largely been withdrawn
from the market (109). Although some PPARγ receptor agonists,
such as pioglitazone, have been shown to cause weight gain in
humans (110, 111), studies have indicated that rosiglitazone may
induce beige fat development in mice through the activation
of the SIRT1–PRDM16 pathway (41, 43). This suggests that
PPARγ receptor agonists may be leveraged to combat obesity.
Yet due to the potentially fatal side effects mentioned above, their
clinical use remains problematic. Currently, several dual-acting
PPARγ agonists have been synthesized. Promising studies have
shown that certain PPARγ agonists may be beneficial in treating
metabolic disorders with minimal off-target effects (112).

NON-CANONICAL MECHANISMS
INVOLVED IN NON-SHIVERING
THERMOGENESIS

AR activation triggers the process of non-shivering
thermogenesis in response to cold, as shown in Figure 1,

FIGURE 1 | Conventional and unconventional mechanisms of brown/beige thermogenesis (potential approaches to combat obesity). AMPK, AMP-activated protein

kinase; AR, adrenergic receptor; CK, creatine kinase; CLSTN3β, calsyntenin3β; Ehmt1, euchromatic histone-lysine N-methyltransferase 1; GABPα, GA-binding

protein α; g-beige adipocyte, glycolytic-beige adipocyte; MR, mineralocorticoid receptor; NE, norepinephrine; PCr, phosphocreatine; PPARγ, peroxisome

proliferator-activated receptor gamma; PGC-1α, PPARγ coactivator-1α; PRDM16, protein PR domain containing 16; RyR2, ryanodine receptor 2; SERCA2b,

sarco/endoplasmic reticulum Ca2+-ATPase 2b; SIRT1, sirtuin 1; UCP1, uncoupling protein 1.
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while mitochondrial membrane protein UCP1 is the key driver
of heat production in BAT. The UCP1 levels in beige fat are
lower than in BAT. This has previously led to the misconception
that the contribution of beige fat in the regulation of whole-body
energy balance is marginal (113). However, UCP1 knockout
mice without functional BAT can gradually adapt to and survive
cold temperatures by increasing their recruitment of beige
fat (114, 115). This suggests that UCP1 may be dispensable
for beige fat induction. This phenotype suggests that other
UCP1-independent mechanisms are involved in beige fat-
regulated energy homeostasis. Furthermore, several studies have
identified other pathways which activate BAT or induce beige
adipogenesis, independent of ARs signaling (37, 116, 117). Here
we describe a few novel mechanisms that have recently been
implicated in the thermogenic regulation of BAT and beige
fat (Figure 1).

Adenosine–A2A Receptor Signaling
A 2014 paper from the Pfeifer Lab describes adenosine–A2A

receptor signaling in response to sympathetic stimulation,
which reduces levels of diet-induced obesity and improves
glucose tolerance (116). After sympathetic stimulation
by norepinephrine, brown adipocytes themselves release
adenosine, which binds to A2A receptors and contributes
to energy expenditure. A2A receptor knockout mice exhibit
reduced thermogenesis and oxygen consumption in cold
conditions compared to wild-type mice. Conversely, A2A

agonist treatment increases BAT activation and energy
expenditure in mice. This highlights the important role of
A2A receptor in the regulation of energy expenditure in BAT.
Furthermore, A2A stimulation by either its pharmacological
activators or overexpression using lentiviral vector injections
protects mice from diet-induced obesity while inducing beige
fat development.

Mineralocorticoid Receptor Antagonism
In mice, mineralocorticoid receptor antagonists prevent high
fat diet-induced decline in glucose tolerance and induce
beige fat development in visceral and inguinal WAT as
indicated by an upregulation of brown adipocyte-specific
transcripts and increased levels of UCP1. These findings
correspond to the results detected by 18FFDG-PET/CT (117).
Mineralocorticoid receptor antagonists reduce the autophagic
rate in WAT depots. Moreover, when autophagy is repressed
using its repressor bafilomycin A1, the effects mimic that of
mineralocorticoid receptor antagonists. Furthermore, a more
recent study in humans also indicates a positive correlation
between mineralocorticoid receptor antagonism and BAT
thermogenesis (118), suggesting the potential therapeutic benefit
of mineralocorticoid receptor antagonism on obesity.

Calsyntenin3β-S100b Signaling
A recent study from Spiegelman’s group has identified
a thermogenic adipocyte-specific protein [calsyntenin3β
(CLSTN3β)], which is primarily located on the endoplasmic
reticulum. This protein promotes sympathetic innervation in
adipose tissue in mice (119). Knockout or transgenic

overexpression of CLSTN3β in mice impairs or enhances
sympathetic innervation in BAT, respectively. CLSTN3β
activation leads to the secretion of S100b, a trophic factor which
stimulates neurite outgrowth, from the thermogenic adipocytes.
S100b deficiency reduces sympathetic innervation in BAT, while
the forced expression of S100b rescues the phenotype caused by
CLSTN3β ablation. Therefore, selectively targeting CLSTN3β-
S100b in thermogenic adipocytes may minimize the off-target
side effects in other organs and provide a new therapeutic
opportunity for promoting thermogenic anti-obesity effects.

Creatine-Driven Substrate Cycling
Another study from Spiegelman’s group has identified
arginine/creatine metabolism as a beige fat signature using
quantitative mitochondrial proteomics (120). It contributes to
beige fat-mediated energy expenditure and thermal homeostasis
in mice. Cold exposure stimulates the activity of mitochondrial
creatine kinase, which promotes creatine metabolism and in
turn, increases ATP demand and induces ADP-dependent
mitochondrial respiration in beige fat. Notably, in mice lacking
UCP1, creatine metabolism compensatorily induces whole-
body energy expenditure in response to cold. Furthermore,
researchers identified phosphatase orphan 1 as a regulator
of creatine-driven adipocyte respiration. It is concluded that
creatine metabolism could be potentially targeted to increase
basal energy expenditure.

Sarco/Endoplasmic Reticulum
Ca2+-ATPase 2b (SERCA2b)-Mediated
Calcium Cycling
Another UCP1-independent signaling pathway in beige
fat was described by our group. This novel mechanism
involves sarco/endoplasmic reticulum Ca2+-ATPase 2b
(SERCA2b)-mediated calcium cycling, which ultimately
regulates glucose metabolism (121). Unlike brown adipocytes,
beige adipocytes display higher ATP synthesis capacity. In
the absence of UCP1, they gain fuel from glucose through
multiple metabolic ways including glycolysis, TCA metabolism,
and the mitochondrial electron transport chain through the
SERCA2b-ryanodine receptor 2 (RyR2) pathway. Of note, the
transgenic overexpression of PRDM16 is still able to protect mice
from diet-induced obesity in the absence of UCP1. The present
study strongly suggests that UCP1 is dispensable in beige fat
for non-shivering thermogenesis. SERCA2b-mediated calcium
cycling represents an evolutionarily conserved mechanism for
maintaining energy homeostasis.

Glycolytic Beige Fat
Our discovery of a distinct form of thermogenic cell was
revolutionary in the field of fat biology. This cell, which
was termed glycolytic beige adipocyte, exhibits adaptive
thermogenesis and energy homeostasis in cold conditions
in the absence of β-ARs signaling (37). These unique beige
adipocytes are differentiated from MyoD+ progenitors in
inguinal WAT. The process is mediated by GA-binding protein
α through a myogenic intermediate. To better understand the
mechanism by which these cells improved glucose tolerance
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and increased basal metabolism, we created a glycolytic beige
fat-deficient mouse model. We found that glucose uptake, as
detected by 18FFDG-PET/CT, in the inguinal WAT of those
mice is significantly reduced. Moreover, we noticed a decrease
in oxygen consumption rate and extracellular acidification
rate in isolated tissues. Glycolytic beige adipocytes are distinct
from conventional beige adipocytes in their developmental
origin, regulation, and enhanced glucose oxidation. This β-
AR-independent pathway has opened up a new path for the
treatment of obesity.

DISCUSSION AND PROSPECTS

In mammals, brown fat and beige fat play a crucial role in
non-shivering thermogenesis and energy homeostasis. Inducing
their development or activation is a viable approach to combat
obesity. Classic brown fat and beige fat thermogenesis ismediated
by β3-AR signaling and UCP1. Previous research has focused
on the development of β3-AR agonists or PPARγ agonists to
treat metabolic disorders including obesity. However, the clinical
outcomes are unsatisfactory due to their deleterious side effects.
The added stress from these agonists to the cardiovascular
systems is particularly harmful (103, 104, 108).

Alternative pathways which bypass canonical thermogenic
regulators are of great interest. Surprisingly, UCP1 knockout
mice and β-AR knockout mice are able to acclimate to cold
environments (114, 115). This suggests that other compensatory
pathways, independent of UCP1 or β-AR, are involved in
regulating whole-body thermogenesis and energy homeostasis.
Pathways associated with this acclimation, shown in Figure 1,
include: two non-AR-dependent pathways mediated by other
thermogenic cell-expressing receptors, such as A2A receptors and
mineralocorticoid receptors, whose activation by adenosine or
inhibition by its antagonists contribute to energy expenditure;
the thermogenic adipocyte-specific CLSTN3β-S100b signaling

pathway, which regulates thermogenesis through promoting the
sympathetic innervation of the thermogenic adipose tissue; two
distinct UCP1-independent pathways in beige fat, including
creatine-driven substrate cycling and SERCA2b-RyR2 signaling,
which compensate for the loss of UCP1 and contribute to energy
expenditure; and a subtype of beige fat, originating fromMyoD+

progenitors, which is required for thermal regulation in the
absence of β-ARs signaling.

It is important to note that these signaling pathways may
only be a small part of the mechanisms involved in the
regulation of BAT and beige fat on thermogenesis. Particularly,
the role of beige fat in heat generation seems to be extremely
multifaceted and, as such, is an active area of research.
Notably, our group has identified glycolytic beige fat, marking
for the first time that a subtype of beige fat has been
described. We believe that multiple subtypes of beige fat
with distinct origins and unique biological characterizations
may exist. It is likely that there exists a robust crosstalk
between different thermogenic cell types to maintain energy
balance under different conditions. A better understanding of
the plasticity of beige fat as well as of brown fat will likely
provide new discoveries on metabolic adaptation and thus
new therapeutic approaches to combat metabolic disorders
including obesity.
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