
Cho et al. EURASIP Journal on Information Security (2016) 2016:2

DOI 10.1186/s13635-015-0027-7

RESEARCH Open Access

Combating online fraud attacks in
mobile-based advertising
Geumhwan Cho1, Junsung Cho1, Youngbae Song1, Donghyun Choi2 and Hyoungshick Kim1*

Abstract

Smartphone advertisement is increasingly used among many applications and allows developers to obtain revenue

through in-app advertising. Our study aims at identifying potential security risks of mobile-based advertising services

where advertisers are charged for their advertisements on mobile applications. In the Android platform, we

particularly implement bot programs that can massively generate click events on advertisements on mobile

applications and test their feasibility with eight popular advertising networks. Our experimental results show that six

advertising networks (75%) out of eight are vulnerable to our attacks. To mitigate click fraud attacks, we suggest three

possible defense mechanisms: (1) filtering out program-generated touch events; (2) identifying click fraud attacks with

faked advertisement banners; and (3) detecting anomalous behaviors generated by click fraud attacks. We also discuss

why few companies were only willing to deploy such defense mechanisms by examining economic misincentives on

the mobile advertising industry.

Keywords: Advertising network, Click fraud, Android

1 Introduction
As smartphones become more popular, the mobile adver-

tisement market is also growing rapidly [1]. Mobile adver-

tisement is a primary business model that offers the

financial incentives for developers to distribute free appli-

cations. In the mobile advertisement market, advertising

networks serve as a single vendor for advertisers and

pay a developer according to the numbers of impres-

sions (the number of times an advertisement has been

served) and/or clicks generated by users [2]; application

developers expect users to “pay” for their applications by

viewing (i.e., impressions) or clicking advertisements (i.e.,

generating clicks) as many as possible.

In those business models, the most important secu-

rity problem is to detect and prevent (artificially created)

fraudulent events, which have no intention of generat-

ing value for advertising [3]. Although this security issue

has been extensively studied, most studies have focused

on preventing click fraud attempts housed on web pages

rather than mobile platforms [4, 5].

*Correspondence: hyoung@skku.edu
1Department of Computer Science and Engineering, Sungkyunkwan

University, Seobu-ro 2066, 16419 Suwon, Republic of Korea

Full list of author information is available at the end of the article

Recently, there have been a few attempts to analyze

the security risks of smartphone advertisement. Crussell

et al. [6] particularly analyzed the prevalence of fraudulent

advertisement behaviors generated by real Android apps.

In this paper, we extend their work by implement-

ing independent bot programs to generate fraudulent

click events in an automatic manner. Unlike the previ-

ous study [6], which is based on emulation results, we

applied our bot programs to the eight real advertising

networks (AdMob, Millennial Media, AppLovin,

AdFit, MdotM, LeadBolt, RevMob, and Cauly Ads)

and found that artificially generated click events were suc-

cessfully approved in the six advertising networks (out of

eight networks). We highlight our key contributions as

follows:

• We design and develop bot programs capable of

automatically generating fraud events to mimic users’

activities on advertisements.
• We particularly show the feasibility of automatic click

generation attacks on eight popular mobile

advertising networks to evaluate their security risks.

Seventy-five percent of the systems that we

experimented (Millennial Media, AppLovin,

© 2016 Cho et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-015-0027-7-x&domain=pdf
http://orcid.org/0000-0002-1605-3866
mailto: hyoung@skku.edu
http://creativecommons.org/licenses/by/4.0/

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 2 of 9

AdFit, MdotM, RevMob, and Cauly Ads) did not

detect our anomalous click attempts.
• We suggest three possible defense mechanisms: (1)

filtering out program-generated touch events (at

client side); (2) identifying click fraud attacks with

faked advertisement banners (at client side); and (3)

detecting anomalous behaviors generated by click

fraud attacks (at server side).
• We discuss the issue of economic misincentives on

the mobile advertising industry to discover an

inherent problem in using countermeasures against

click fraud attacks.

The rest of this paper is organized as follows. The

related work is reviewed in Section 2. In Section 3, we

provide some background on the mobile advertisement

(particularly for the Android platform). In Section 4, we

present how bot programs can be implemented for online

fraud in mobile-based advertising. Then, we evaluate the

feasibility of bot programs against click-based advertise-

ments through intensive experiments with real adver-

tisement services in Section 5. In Section 6, we discuss

three practical defense mechanisms to detect and pre-

vent automated fraudulent clicks. In Section 7, we explore

the misincentive problem that can inherently corrupt ad

networks through false clicking. Our conclusions are in

Section 8.

2 Related work
Over the last few years, online advertisement has been

widely studied because it has become a significant source

of revenue for web-based businesses. However, it also

introduces a new type of cyber criminal activities called

“click fraud”. Click fraud is the practice of deceptively

clicking on advertisements with the intention of either

increasing third-party website revenues or exhausting an

advertiser’s budget [7]. Kshetri [8] examined the mecha-

nisms and processes associated with the click fraud indus-

try from an economics viewpoint.Miller et al. [9] analyzed

the characteristics of real-world click fraud by examining

the operations and underlying economic models of two

modern malware families, Fiesta and 7cy, which are

typically used for click fraud.

To prevent those click frauds, several defense tech-

niques have been introduced. The simplest solution is

to use threshold-based detection. If a website is receiv-

ing a high number of click events with the same device

identifier (e.g., IP address) in a short time interval, those

events can be considered as fraud. However, click fraud

detection is not trivial—clicks can sophisticatedly be gen-

erated to bypass such naive defense schemes. For example,

attackers are behind proxies or globally distributed [10].

Also, device identifiers such as IP address can easily be

modified.

To mitigate such sophisticated attacks, Kitts et al. [11]

discussed how to design a data mining system to detect

large-scale click fraud attacks. Metwally et al. [12] devel-

oped a technique based on the traffic similarity analysis

to discover a type of fraud called coalitions performed by

multiple fraudsters. Another interesting approach is to use

bait advertisements [10, 13]. Xu et al. [14] proposed a sys-

tematic approach by introducing additional tests to check

whether visiting clients are clickbots.

Only a few studies have analyzed the security of mobile

advertising networks although many applications use one

or more advertising services as a source of revenue for the

Android developers. Those studies were mainly focused

on discussing the security concerns about unnecessary

permissions required by advertisement libraries. Pearce

et al. [15] showed that 49 % of Android applications con-

tain at least one advertisement library, and these libraries

overprivilege 46 % of advertising-supported applications.

Shekhar et al. [16] proposed an approach called AdSplit to

separate applications from its advertisement libraries that

might request permissions for sensitive privileges.

When it comes to click fraud in mobile platforms,

Crussell et al. [6] raised the issue about click fraud in

the context of mobile advertising. However, their study

results may not be sufficient to show the real impacts of

click fraud attacks in mobile platforms because their study

mainly focused on analyzing existing mobile applications’

fraudulent behaviors that could be used for advertise-

ment fraud. In contrast, we studied how vulnerable real

mobile advertising networks are to click fraud attacks

by implementing bot programs and testing their feasi-

bility with real advertisement networks. We particularly

extend our preliminary work [17] to generalize click fraud

attacks with various revenuemodels and develop practical

defense mechanisms for mitigating click fraud attacks on

mobile devices. We also discuss the economic aspects of

security failure that might be an inherent problem of click

fraud in mobile advertising.

3 Background
In this section, we explain definitions of the terminologies

used in the remaining of the paper. To provide a bet-

ter understanding of click fraud attacks, we present how

ad networks typically work between entities and explore

business models popularly used for mobile advertising

networks.

3.1 Terminology

We define the following definitions.

• Publisher is an entity which deploys a mobile

application with advertisements.
• Advertiser is an entity which pays the advertising

networks for their advertisements being displayed on

applications.

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 3 of 9

• Advertising network (Ad network) is an entity which

manages publishers and advertisers. They can buy

and sell advertisement traffic through trusted partner

networks.
• Impressions are a metric on counting the number of

times an advertisement has been deployed.
• Clicks are another metric on counting the number of

events that are generated when users click on an

advertisement.
• Advertisement request (Ad request) is the form of

HTTP traffic that is generated from impressions or

clicks. Whenever a valid request message is generated

(i.e., advertisement is shown to a user or clicked by a

user), advertisers have to pay the ad network and a

percentage of amount is also paid to the publisher.

3.2 How ad networks work

Aswe have already explained in Section 3.1, an ad network

acts as a moderator between publishers and advertisers.

In Android, a jar file acts as a moderator, which should

be included in an application to embed advertisements

into the publisher’s applications. When a publisher wants

to display advertisements as a part of its application, she

must sign up with the ad network and download the

advertisement library. That library typically provides an

API for embedding advertisements into the UI of the pub-

lisher’s application and fetching, rendering, and tracking

advertisements. The device identifier is generally used to

uniquely identify the publisher, who wanted to embed

those advertisements.

As shown in Fig. 1, we illustrate how ad networks man-

age publishers, applications, and advertisers with adver-

tisement library. Since an advertiser A wishes to send

advertisements to many Android users, she requests to

distribute her advertisement via an ad network N. After

receiving the request, the ad network adds the advertiser’s

advertisement to the ad network’s software development

kit (SDK) library. Imagine that there is a publisher P who

wants to make money with mobile advertising services.

When the publisher signs up with the ad network, she

downloads the latest ad network’s SDK library and release

her application App with this library.

When a user clicks on the advertisement related to the

advertiser A, the application App delivers the ad request

message containing the user device’s identifier to the ad

network N. The ad network N then sends the response to

the application App running on the user’s device. For that

click-on-the-advertisement banner, the advertiser A pays

the ad network N and the publisher P.

3.3 Revenue models

Mobile advertisement services are dramatically growing

up as the number of smartphone users is also increasing.

In particular, the Android market offers the opportunity

for advertisers and publishers who are interested in the

mobile advertisement business. A publisher (i.e., applica-

tion developer) releases a (free) mobile application with

advertisements so that she canmakemoney through those

advertisements where revenue is typically determined by

the amounts of impressions and/or clicks. The following

revenue models are generally used:

- Cost per click (CPC) is that advertisers charge per

click which is generated by users. It is used for the

number of times a website visitor or a user for an

application clicks on a banner. This measurement is

also popularly used since it can be implemented in a

simple manner.

Fig. 1 How ad networks work to manage publishers, applications, and advertisers with advertisement library

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 4 of 9

- Cost per mile (CPM) is that advertisers charge per a

thousand impressions to publishers with ad networks.

It is also referred as the cost per thousand (CPT)

since it has estimated the cost per thousand views of

the advertisements. This measurement is widely

available for advertisements for Android developers.

- Cost per action (CPA) is that advertisers charge per

specific action such as filling a form, signing up for an

offer, completing a survey, or downloading software.

This model seems advantageous to advertisers since

they only pay for specific actions which are directly

related to their advertisements. However, it is not

easy to implement when it comes to complex actions.

4 Implementation of online fraud attacks
In this paper, we particularly focus on the implementa-

tion of bot programs against the CPC revenue model in

order to test their feasibility with real ad networks (see

Section 4.1). The test results were presented in Section 5.

However, similar automatic attacks can also be imple-

mented for the other revenue models. We will briefly

introduce such attack designs in Section 4.2 and 4.3.

4.1 Attack against CPC

As we can see in Section 3, in the CPC revenue model,

a publisher makes money whenever a user clicks on

the advertisement. Therefore, a malicious publisher may

involve in the act of generating such click events on the

advertisement with the publisher’s profit. In theory, those

events can be simply generated. However, it is still ques-

tionable whether real advertisement networks are vul-

nerable to those attacks since they may provide some

countermeasures to defeat such attacks.

To analyze the risk of real mobile ad networks, we imple-

mented an independent Android app that can automat-

ically generate click events for advertisements displayed

on Android apps. We note that a malicious publisher can

implement such an app (i.e., bot program), and the pub-

lisher can also install the app on his (or her) own device

to generate fake click events within a short time interval

in order to make its own profit. This is a very effective

economic activity for attackers. For example, in the case

of Cauly, a publisher receives only US$0.02 per click

event—if an attack sequence is generated within 7 s on

average, the attacker can earn US$1480.72 in a week by

running a bot program on the attacker’s device.

For simplicity, we used Android Debug Bridge

(ADB) which is a debug support tool to communicate

between a host and an Android device. In other words,

with ADB, we can control an Android device without

any restrictions. To generate a click event on an adver-

tisement embedded in our prototype with a victim ad

network’s SDK library, we send a sendevent command

to the Android app via ADB. Finally, a virtual click event

is generated on an advertisement in the Android app.

Surely, such a bot program can also be implemented as a

stand-alone Android app without ADB support.

However, the generation of click events alone is

not enough. We empirically found that some ad net-

works (e.g., Cauly Ads) have checked the requesting

device’s identifiers such as international mobile equip-

ment identity (IMEI) and/or “Device ID” (also known

as android_id) to limit the number of possible ad

requests from a device during a specific period (e.g., a

day). In our empirical experiments, Cauly Ads limited

the number of click events to 19 per day for a device

(based on the “Device ID” information). If a device gen-

erates click events more than the threshold number (e.g.,

19 per day in Cauly Ads), the device might be black-

listed by an ad network. Therefore, we tried to generate

click events which resembles events generated by multiple

devices associated with multiple users. Figure 2 illustrates

(a) Normal situation with multiple devices (b) Pretending to be normal by a bot program

Fig. 2 Bot programs can generate click events with different device identifiers, respectively, such that those look like click events generated by

multiple devices

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 5 of 9

how a bot program pretends to be a normal one with mul-

tiple devices. Bot programs can generate not only click

events but also (faked) device identifiers to disable device

detection for limiting the number of ad requests from a

single device.

4.1.1 Generation of device IDs

In Android, Device ID (or android_id) is a 64-bit

number (as a hex string) that is randomly generated when

the user first sets up the device and should remain con-

stant for the lifetime of the Android device.1 This infor-

mation can be used for identifying or tracking a device

(particularly for tablet devices that do not have IMEI).

However, we can observe that Device ID is indepen-

dently (and randomly) created from an Android device

itself. Therefore, we can generate new Device IDs for

an Android device without any restrictions.

Our main concern here is how to replace the exist-

ing Device ID with newly generated ones. The simplest

solution is to perform the “factory” reset which is a pro-

cedure that securely erases all user data on the Android

device and returns the device to its initial state. However,

the whole process is time consuming; an Android app with

the victim’s SDK library should be installed again even

when the Android device is successfully initialized.

Alternatively, we can update the Device ID value

without performing the factory reset. Android saves

all device settings including Device ID in a SQLite

database file.2 This database file can be managed by a

program named sqlite3 at runtime. We assume that

sqlite3 is already installed on the Android device. A bot

program can open the settings.db file and modify the

Device ID value via ADB (see Fig. 3) before generating

ad requests.

4.1.2 Generation of ad requests

In order to successfully send ad requests to an ad net-

work, a bot program sequentially generates a series of

pre-defined click events via ADB: (1) the bot program first

starts to run an Android app with the victim’s SDK library,

(2) generates a series of click events on the advertisement

in the app, and then (3) updates Device ID with a new

random 64-bit number. Whenever Device ID is suc-

cessfully changed, the bot program repeats this procedure

from (2). The reason we use a new Device ID for every

request is to avoid detection by the ad network. That is,

when the ad network monitors ad request traffic to detect

click fraud by counting the number of ad requests from

the same device, the bot program can trick the ad net-

work with new Device IDs into believing as if those

requests came from different users (or Android devices)

individually.

4.2 Attack against CPM

To automatically increase the number of impressions on a

mobile application, the most straightforward approach is

to view new advertisements as many as possible.

A typical ad network’s SDK library updates its advertise-

ments periodically (e.g., every 30 s). To reduce this delay

time for updating advertisements, an attacker can make a

targeted app with ad library terminate and restart in an

automatic manner. In fact, a similar technique can also

be needed for attacking CPC when multiple clicks are not

allowed on the same advertisement.

However, since advertisers generally charge per thou-

sand impressions, the effectiveness of such attacks is not

comparable with the attacks against CPC in terms of effi-

ciency. For example, in the case of Cauly, a publisher

receives only $0.09 per thousand impressions.

4.3 Attack against CPA

The CPA model is a generalization of CPC; advertisers

can consider various activities (e.g., watching a video clip,

installing another app, signing up for a website) including

click events.

In general, it is necessary to learn prior knowledge

about specific event sequences for CPA activities in order

to automatically generate those sequences against CPA.

Surely, it seems to be trickier than implementing the

attacks for CPC consisting of touch events with fixed

screen positions.

5 Experiments
We implemented several independent Android apps with

real ad networks’ SDK library for evaluating their poten-

tial security risk against click fraud attacks. We performed

click generation attacks described in Section 4 on eight

popular ad networks (AdMob, Millennial Media,

AppLovin, AdFit, MdotM, LeadBolt, RevMob, and

Cauly Ads), respectively. Those ad networks were

Fig. 3 Example of SQLite commands to update Device ID (also known as android_id)

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 6 of 9

selected by “AppBrain” website that offers the lists of top

500 most installed ad networks.3 We selected those ad

networks which are suitable for testing the CPC revenue

model with a banner. For each ad network, we created

a user account to receive payments and implemented an

Android app with the SDK library for advertisements

of the ad network. We note that a malicious publisher

(as also the app developer) uses his (or her) own device

in order to use those apps on the device without any

restriction.

In our threat model, the attacker’s (i.e., publisher’s) goal

is to successfully deliver ad request messages to a victim

ad network to receive payments for those messages from

the ad network. Therefore, we tested whether ad request

messages can be successfully delivered without any trou-

ble whenever we had attempted to generate a click event

(with a different Device ID) on the victim’s advertise-

ments. Specifically, we assume that the attack is successful

if our bot program generates over 100 ad request mes-

sages without any disruption to receive payments for the

generated clicks.

In our experiments, 75% (Millennial Media,

AppLovin, AdFit, MdotM, RevMob, and Cauly Ads)

of the ad networks that we analyzed failed to prevent

the automated click generation attacks conducted by bot

programs. Probably, this implies that many real-world

ad networks seem to be significantly dangerous due to

click fraud. In this paper, our attack attempts are not

sophisticated but straightforward. However, 75% of the ad

networks are vulnerable to those attempts.

Fortunately, the other two mobile ad networks (AdMob

and LeadBolt) are secure against automated click gen-

eration attacks. When we generate click events even with

uniquely different Device IDs, those networks detect

our attacks only with a small number of attack attempts

and then finally blocked our accounts. For example, our

account used in the experiments for LeadBolt was tem-

porarily paused due to traffic abnormality (see Fig. 4). We

surmise that those networks might have their own defense

mechanisms to detect such abnormal request patterns.

We will discuss such defense mechanisms in detail in the

next section.

The main motivation of our experiments is to analyze

potential risks of mobile advertisement services and sug-

gest reasonable countermeasures to mitigate such risks.

Therefore, we only checked ad networks’ responses for

our click fraud attempts; however, actual money is not

withdrawn from our bank accounts. We also reported

the discovered design flaws to the ad networks, which

acknowledged them. Another ethical concern is related

to Device ID. When we replace Device ID, the used

Device ID may belong to some legitimate user that

might be potentially blamed for our attack experiments.

However, we note that this possibility is very unlikely

because the used Device IDs are randomly generated

ones rather than real Android devices’ Device ID.

6 Countermeasures
In this section, we describe several defense mechanisms

for preventing click fraud (i.e., automatic click generation

on Android’s banner advertisements) attacks.

We extend our previous work [17] with more detailed

implementation designs by fixing incorrect representation

and clarifying some ambiguous parts in the previously

suggested models.

6.1 Distinguishing human-generated touch events from

program-generated touch events

To prevent touch events generated by bot programs

for click fraud attacks, the most straightforward defense

Fig. 4 Our LeadBolt account was temporarily paused due to traffic abnormality

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 7 of 9

mechanism is to effectively distinguish such events from

human-generated touch events and filter out them. To

achieve this goal, we first analyze how Android handles

with touch events and then suggest a possible reference

implementation to filter out program-generated touch

events according to security policies.

We propose a modification of the existing Android

architecture to trace physically generated touch events on

the device screen (see Fig. 5). Android is built on the top

of a Linux kernel and includes a middleware framework

and an application layer. Touch events are gathered at the

/dev/input/event# node called Device Input

Event files regardless of either human-generated or

program-generated events. Next, the InputReader

framework reads those events from Device Input

Event files and the collected events are dispatched by

InputDispatcher to a proper app.

Before touch events are recorded at the Device

Input Event files, human-generated touch events

are processed through Input Driver while program-

generated touch events are handled with the evdev_

write function in the evdev.c file. We can develop a

filter for program-generated events with this difference—

the evdev_write function should be modified. We can

accept or reject program-generated touch events before

writing them on Device Input Event files depend-

ing on the target program’s security policy defined in

its Security Policy files. For example, program-

generated touch events on a specific rectangle region (for

displaying advertisements) can be ignored during the tar-

get program is actively running. We suggest that those

files can be included in the ad network’s SDK library and

installed with the program itself together. We expect that

the existing architecture can be slightly modified to fil-

ter out automatically generated touch events by programs

without significant loss in efficiency.

For using this filtering mechanism at the kernel level,

however, the integrity of the evdev_write function

and security policy files should be protected. In the

legacy Android architecture, if a bot program with root

privileges can be installed, it is not possible to satisfy this

requirement because those files might be easily tampered

by the bot program. Therefore, secure environments

for the suggested technique should also be provided to

protect those files from a malicious root. Hardware-

assisted solutions (e.g., TrustZone-based Real-time

Kernel Protection [18]) might be used to achieve this

security goal.

We implemented a prototype of our defense framework

to filter out program-generated touch events and tested

its effectiveness against click fraud attacks on real mobile

devices. We modified the Android operating system 5.1.1

(i.e., the evdev_write function). To simplify imple-

mentation, we used a naive security policy to ignore all

touch events generated by programs. We tested its feasi-

bility with a Nexus 5 smartphone running the modified

operating system against our own CPC bot implementa-

tion and a popular automatic click event generation tool

called DummySprite (http://www.dummysprite.com) on

Android. Our prototype implementation successfully pre-

vented their attack attempts without incurring significant

performance degradation.

6.2 Honey advertisement

“Honey” is the traditional term used to indicate a “decoy”

or “bait” for attackers in the field of security. For example,

Fig. 5 Physical touch distinguishing model

http://www.dummysprite.com

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 8 of 9

a honeypot is a security resource, which is intended to

be attacked and compromised to gain more information

about an attacker and his attack techniques [19].

To mitigate click fraud, we suggest an advertising sys-

tem for automatic click generation software. We call

this approach “honey advertisement”. Unlike the existing

advertisement systems, ad networks’ SDKs often display

transparent advertisement banners (in a random man-

ner) to deceive malicious bot programs that automatically

generate click events on those banners. A human can-

not see those banners while a machine cannot distinguish

transparent banners from normal banners. Therefore, if

an ad request for a transparent banner was generated, this

request might be triggered by automatic click generation

software rather than a human user and can finally be used

to set off an alarm of an automatic click fraud attack on the

advertising infrastructure. A similar idea was introduced

in the previous work [10].

We implemented a proof-of-concept app to show the

feasibility of honey advertisement (see on Fig. 6). As

shown in this figure, some advertisement banners can be

transparently displayed in a random manner. In a nor-

mal situation, a visible banner image file with a link to

the advertiser’s server is displayed while a transparent

image file is used with a link to the ad network’s server in

honey advertisement. When a transparent advertisement

is clicked, the ad request is delivered to the ad network’s

server. Basically, such events are likely to be triggered by

a bot program rather than a human user because human

users cannot see transparent advertisements. Therefore,

we may detect the bot program’s existence with a low

chance of false alarms.

6.3 Detecting anomalous behaviors

We can see that ad requests generated by bot programs

have significantly different patterns compared with those

generated by human users—for example, the automati-

cally generated requests would be periodically repeated

during a relatively short time. Oentaryo et al. [20] and

Kitts et al. [11] introduced systems, respectively, to

detect click fraud patterns in online advertisement using

server-side event models. Since the existing Android plat-

form can be used without modifications to support this

approach, we highly recommend deploying similar sys-

tems at the server side.

As presented in Section 5, we believe that some of ad

networks (e.g., AdMob and LeadBolt) might already use

such systems to detect abnormal request patterns for click

fraud in mobile platforms.

7 Economic aspects of security failure
In this section, we discuss why a small number of ad net-

works have only detected our straightforward click fraud

attacks.

This might be explained from the economic aspects of

security failure. When we examine the incentives of mar-

ket players for mobile advertising, we might discover an

inherent problem of click fraud.

As discussed in Section 6, several defense mechanisms

fighting against online click fraud can be deployed. But,

who should pay for those mechanisms? We note that click

fraud may directly incur significant losses in advertisers

instead of ad networks.

In theory, those solutions could be deployed by ad

networks who are running mobile advertising platforms.

However, we claim that many ad networks might not

actually be interested in mitigating click fraud.

In the mobile advertising industry, ad networks manage

publishers and advertisers as a moderator (see Section 3).

In general, advertisers paymoney to both ad networks and

publishers for their advertisements. For example, in the

CPC revenue model, whenever advertisements on mobile

applications are clicked, publishers receives money; ad

networks also earn money. That is, ad networks would

rather profit from click fraud attacks than from defenses

to mitigate such attacks.

With those misincentives between players, ad networks

are not motivated enough to detect online fraud attacks.

Fig. 6 Our proof-of-concept implementation for honey advertisement

Cho et al. EURASIP Journal on Information Security (2016) 2016:2 Page 9 of 9

Perhaps this is another example of “negative externality”

[21] in the field of information security, which is an

economic activity that imposes a negative effect on an

unrelated third party.

8 Conclusions
This paper evaluates the potential risk of automated

online fraud attacks in mobile advertising. Our exper-

imental results show that 75 % of those networks

(Millennial Media, AppLovin, AdFit, MdotM,

RevMob, and Cauly Ads) are vulnerable to click fraud

attacks.

To mitigate such automated attacks, we suggest three

possible defense mechanisms: (1) filtering out program-

generated touch events; (2) identifying click fraud attacks

with faked advertisement banners; and (3) detecting

anomalous behaviors generated by click fraud attacks.

We also discuss why few companies were only willing

to deploy such defense mechanisms with the economic

aspects of security failure in the mobile advertising indus-

try.

However, our current results are not enough to gener-

alize our observations because of the limited number of

tested ad networks. As an extension to this paper, we need

to consider performing our tests on a large sample of ad

networks.

In this paper, we only considered the simplest attack pat-

tern where click events were successively generated within

a fixed time interval and finally failed to successfully attack

two ad networks. Therefore, as another extension to this

work, we also plan to test other attack sequences patterns

against secure ad networks.

Endnotes
1http://developer.android.com/reference/android/

provider/Settings.Secure.html;
2/data/data/com.android.providers.settings/databases/

settings.db
3http://www.appbrain.com/stats/libraries/ad?list=

top500

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF)

grant funded by the Korea government (No. 2014R1A1A1003707), ITRC

(IITP-2015-H8501-15-1008) studentships, and ICT R&D program

(2014-044-072-003, “Development of Cyber Quarantine System using SDN

Techniques”) of MSIP/IITP.

Author details
1Department of Computer Science and Engineering, Sungkyunkwan

University, Seobu-ro 2066, 16419 Suwon, Republic of Korea. 2Samsung

Electronics, Samsung-ro 129, 16677 Suwon, Republic of Korea.

Received: 26 October 2015 Accepted: 20 December 2015

References

1. S Dhar, U Varshney, Challenges and business models for mobile

location-based services and advertising. Commun. ACM. 54(5), 121–128

(2011)

2. I Leontiadis, C Efstratiou, M Picone, C Mascolo, in Proceedings of the

Twelfth Workshop onMobile Computing Systems & Applications. Don’t kill

my ads!: balancing privacy in an ad-supported mobile application market

(ACM, 2012)

3. N Immorlica, K Jain, M Mahdian, K Talwar, in Proceedings of TheWorkshop

on Internet and Network Economics. Click fraud resistant methods for

learning click-through rates (Springer Berlin Heidelberg, 2005)

4. N Daswani, C Mysen, V Rao, S Weis, K Gharachorloo, S Ghosemajumder,

Online advertising fraud. Crimeware Underst. New Attacks Defenses.

40(2), 1–28 (2008)

5. B Stone-Gross, R Stevens, A Zarras, R Kemmerer, C Kruegel, G Vigna, in

Proceedings of the 2011 Conference on Internet Measurement Conference.

Understanding fraudulent activities in online ad exchanges (ACM, 2011)

6. J Crussell, R Stevens, H Chen, in Proceedings of the 12th Annual

International Conference onMobile Systems, Applications, and Services.

MAdFraud: investigating ad fraud in android applications (ACM, 2014)

7. KC Wilbur, Y Zhu, Click fraud. Mark. Sci. 28(2), 293–308 (2009)

8. N Kshetri, The economics of click fraud. IEEE Secur. Priv. 8(3), 45–53 (2010)

9. B Miller, P Pearce, C Grier, C Kreibich, V Paxson, in Proceedings of Detection

of Intrusions andMalware, and Vulnerability Assessment. What’s clicking

what? Techniques and innovations of today’s clickbots (Springer Berlin

Heidelberg, 2011)

10. H Haddadi, Fighting online click-fraud using bluff ads. ACM SIGCOMM

Comput. Commun. Rev. 40(2), 21–25 (2010)

11. B Kitts, JY Zhang, G Wu, W Brandi, J Beasley, K Morrill, J Ettedgui, S

Siddhartha, H Yuan, F Gao, et al., Click fraud detection: adversarial pattern

recognition over 5 years at Microsoft. Real World Data Min. Appl. 17(1),

181–201 (2015)

12. A Metwally, D Agrawal, A El Abbadi, in Proceedings of the 16th International

Conference onWorldWideWeb. Detectives: detecting coalition hit inflation

attacks in advertising networks streams (ACM, 2007)

13. V Dave, S Guha, Y Zhang, Measuring and fingerprinting click-spam in ad

networks. ACM SIGCOMM Comput. Commun. Rev. 42(4), 175–186 (2012)

14. H Xu, D Liu, A Koehl, H Wang, A Stavrou, in Proceedings of 19th European

Sysposium on Reseach in Computer Security. Click fraud detection on the

advertiser side (Springer International Publishing, 2014)

15. P Pearce, AP Felt, G Nunez, D Wagner, in Proceedings of the 7th Symposium

on Information, Computer and Communications Security. AdDroid: privilege

separation for applications and advertisers in android (ACM, 2012)

16. S Shekhar, M Dietz, DS Wallach, in Proceedings of USENIX Security

Symposium. AdSplit: separating smartphone advertising from

applications (USENIX, 2012)

17. G Cho, J Cho, Y Song, H Kim, in Proceedings of the International Workshop

on Cyber Crime. An empirical study of click fraud in mobile advertising

networks (IEEE, 2015)

18. AM Azab, P Ning, J Shah, Q Chen, R Bhutkar, G Ganesh, J Ma, W Shen, in

Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security. Hypervision across worlds: real-time kernel

protection from the ARM trustzone secure world (ACM, 2014)

19. L Spitzner, Honeypots: Tracking Hackers. (Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002)

20. R Oentaryo, E-P Lim, M Finegold, D Lo, F Zhu, C Phua, E-Y Cheu, G-E Yap, K

Sim, MN Nguyen, et al., Detecting click fraud in online advertising: a data

mining approach. J. Mach. Learn. Res. 15(1), 99–140 (2014)

21. T Moore, R Clayton, R Anderson, The economics of online crime. J. Econ.

Perspect. 23(3), 3–20 (2009)

http://developer.android.com/reference/android/provider/Settings.Secure.html
http://developer.android.com/reference/android/provider/Settings.Secure.html
/data/data/com.android.providers.settings/databases/settings.db
/data/data/com.android.providers.settings/databases/settings.db
http://www.appbrain.com/stats/libraries/ad?list=top500
http://www.appbrain.com/stats/libraries/ad?list=top500

	Abstract
	Keywords

	1 Introduction
	2 Related work
	3 Background
	3.1 Terminology
	3.2 How ad networks work
	3.3 Revenue models

	4 Implementation of online fraud attacks
	4.1 Attack against CPC
	4.1.1 Generation of device IDs
	4.1.2 Generation of ad requests

	4.2 Attack against CPM
	4.3 Attack against CPA

	5 Experiments
	6 Countermeasures
	6.1 Distinguishing human-generated touch events from program-generated touch events
	6.2 Honey advertisement
	6.3 Detecting anomalous behaviors

	7 Economic aspects of security failure
	8 Conclusions
	Endnotes
	Competing interests
	Acknowledgements
	Author details
	References

