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Abstract

Spam campaigns spotted in popular product review
websites (e.g., amazon.com) have attracted mounting
attention from both industry and academia, where a
group of online posters are hired to collaboratively craft
deceptive reviews for some target products. The goal is
to manipulate perceived reputations of the targets for
their best interests. Many efforts have been made to de-
tect such colluders by extracting pointwise features from
individual reviewers/reviewer-groups, however, pairwise
features which can potentially capture the underlying
correlations among colluders are either ignored or just
explored insufficiently in the literature. We observed
that pairwise features can be more robust to model the
relationships among colluders since they, as the ingre-
dients of spam campaigns, are correlated in nature. In
this paper, we explore multiple heterogeneous pairwise
features in virtue of some collusion signals found in re-
viewers’ rating behaviors and linguistic patterns. In ad-
dition, an unsupervised and intuitive colluder detecting
framework has been proposed which can benefit from
these pairwise features. Extensive experiments on real
dataset show the effectiveness of our method and satis-
factory superiority over several competitors.

1 Introduction

Online product reviews nowadays have become increas-
ingly valuable for consumers to make their purchase de-
cisions, which has largely motivated a group of paid
professionals to fabricate “sound genuine” reviews for
product reputation manipulation. It is reported that
the volume of possibly fictitious reviews on yelp.com
rose from 5% in 2006 to 20% in 2013 [9]; remarkably
about 1/3 of consumer reviews are estimated to be sus-
picious, if not forged, on the Internet [15]. A growing
number of online businesses have been driven by the
desire to achieve positive public impression through re-
ceiving online praises from their consumers, causing the
formation of a huge shady market for crafting phony
online product reviews.

Review spammers today are increasing in sophisti-
cation for evading detection, e.g., by forming collabora-
tive coalitions. By penetrating into a real spam cam-
paign, Chen et al. [2] found some online paid posters
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forming professional organizations where participants
have their own roles, e.g., project managers, trainers,
and posters. Mukherjee et al. [11] spotted spammer
groups in amazon.com who collaboratively write fake re-
views to promote/demote some target products. Xu et
al. [18] revealed analogous behaviors in Chinese review
websites; they found that such group spammers tend
to establish tiny collusive groups to further evade de-
tection. It is worth noting that spam coalitions should
be more harmful than individual spammers; not only
can they easily dominate the sentiments towards tar-
get products via flooding deceptive opinions, but they
can also “hide” their suspicious behaviors by balancing
workload within spam campaigns.

This paper also focuses on detecting group colluders
in online product review spam campaigns. However,
unlike previous studies [11, 18] which hinge on pointwise
features applicable to individual reviewers/reviewer-
groups only, we adopt a different path where pairwise
relationships among colluders are best explored and
leveraged for detection. For example, the comparison of
two colluders from the same spam campaign may reveal
their affinitive behaviors such as explicitly reviewing the
same items, expressing similar opinions on these items,
or implicitly leaving proximate temporal traces incurred
by their following up the campaign schedule. Compared
to group-based pointwise features, pairwise features
are more fine-grained to directly reflect the relations
among colluders. Hence instead of detecting individual
spammers/spam groups, we propose to detect spam
pairs. The proposed heterogeneous pairwise features
can also complement each other in practice, producing
a more robust model for correlating colluders.

In a nutshell, this paper offers the following con-
tributions: 1) to the best of our knowledge, pairwise
features are first explicitly utilized to detect group col-
luders in online product review spam campaigns, which
can reveal collusions in spam campaigns from a more
fine-grained perspective; 2) a novel detecting framework
named FraudInformer is proposed to cooperate with
the pairwise features which is (i) intuitive - the detec-
tion task is formulated as an autonomous process of
mutual disclosure at a virtual trial where colluders are
supposed to be capable of report each other by them-
selves, (ii) unsupervised - no prior knowledge of spam
annotations is needed; 3) our method has been evalu-
ated on real dataset and extensive experimental results



show that it outperforms both baselines and existing
unsupervised colluder detection approaches.

2 The Proposed Framework - FraudInformer

This section elaborates the proposed unsupervised
framework for colluder detection. Given a typical review
website (e.g., amazon.com) containing a set of products
P = {pk} with each commented by a list ℓk of review-
ers in chronological order, the goal is to rank all the
reviewers V in the website globally so that top-ranked
ones are more likely to be colluders. For each reviewer
v ∈ V we associate a global spam score or spamicity
s which specifies the suspectedness of his/her engaging
in the collusion of spam campaigns. The spamicities of
colluders are supposed to be higher than those of non-
colluders which are used for producing the ranking.

2.1 Mutual Disclosure Modeling The basis of
FraudInformer relies on the idea of mutual disclosure
inspired by the concept of criminal trials where a suspect
is asked to give his/her accomplices away. Similarly in
our context, colluders participating in a spam campaign
are also accomplices of each other. Given the behavioral
clues collected from the reviews created by colluders
as the evidence against their collusions, it is possible
to expose them all at once by proceeding with proper
“criminal trials” against them.

Specifically, we propose the “criminal trial” scheme
that for each product pk reviewed by a chronological
list ℓk of nk reviewers, each reviewer vi located at
position ℓk(i) on ℓk is asked to accuse other surrounding
reviewers on ℓk within an investigating range ζ, based
on the temporal locality property of spammers [3].
The set of reviewers to be accused by vi on ℓk is
Rk,i(ζ) = {vj ||ℓk(i) − ℓk(j)| ≤ ζ, j 6= i}. For generality
purpose, ζ can be any functional realization of the
temporal locality, e.g., ζ can be a function of nk:
ζ(nk) =

√
nk. One merit of this scheme is that it

avoids the computation of all possible pairs of reviewers
in a website in which case most of the pairs can hardly
be colluders if they have not co-reviewed any common
product; the computational complexity has thus been
reduced from O(|V|2) to O(2ζ|V|).

On the other hand, the amount of the evidence
gathered during the accusation should also be consid-
ered and reflected, as the collusion evidence gathered
from colluder pairs should be stronger than that from
non-colluder pairs; the more intensively two reviewers
collude with each other, the more evidence of their col-
lusion can be gathered. Here we model the amount of
collusion evidence (or we call collusiveness) gathered
from a reviewer pair (vi, vj) as a real-valued symmet-
ric function Φ(i, j). It is worth noting that the col-
lusiveness is crucial to the whole detection framework
since it serves as the only testimony during the entire
judgement. Then the mutual disclosure based “criminal
trial” regarding all reviewers of a site can be computa-

tionally formalized as a process of collusiveness propa-
gation. Specifically, the spamicity si of reviewer vi ∈ V
is computed as the sum of the product of the amount
of evidence Φ(i, j) provided by all surrounding reviewers
vj ∈ Rk,i(ζ) and their own spamicities, over all products
k ∈ Pi reviewed by vi:

(2.1) si =
∑

k∈Pi

∑

vj∈Rk,i(ζ)

sj · Φ(i, j)

During the propagation, the spamicity of a true colluder
will increase for accumulating more collusiveness from
his/her accomplices while a non-colluder will gain less
collusiveness as (s)he is not supposed to collude with
neither colluders nor other legitimate reviewers.

2.2 Confidence Weighting Despite being derived
from external collusion facts (the review data), the col-
lusion evidence provided by a particular reviewer about
others may not be equally convincing internally. For
example, a colluder may expect the reviews posted by
his/her accomplices to be near his/her own postings
due to their synchronous engagements in the same spam
campaign, thus the confidence should be higher for the
evidence provided about nearby reviewers. In Fraud-
Informer, this semantic is captured by the confidence
function Ωj(i, R): to what degree the evidence provided
by vj about vi ∈ R·,j(ζ) should be trusted from the
perspective of vj . We consider two classes of confidence
functions here, i.e., symmetric and asymmetric.

Symmetric confidence functions Ω†
j(i, R) of vj as-

sume his/her equally distributed belief in the evidence
about nearby reviewers vi ∈ R·,j(ζ). The simplest re-
alization can be based on the uniform kernel function
[14] which assigns identical confidence to the evidence
about each nearby reviewer:

(2.2) Ω†U
j (i, R) =

1

2
I{vi∈R·,j(ζ)}

where I{·} is the identity function. A more sophisti-
cated case that encodes the concentration of spam re-
views can be based on the Epanechnikov kernel function:

(2.3) Ω†E
j (i, R)=

3

4

(

1−

(

|ℓ·,i − ℓ·,j |
ζ(·)

)2
)

I{vi∈R·,j(ζ)}

which posits that evidence about closer reviewers on
product reviewer lists matters more than remote ones.

Asymmetric confidence functions Ω∗
j (i) on the other

hand treat the confidence of vj in each surrounding
reviewer differently. An example can be a function that
only trusts the evidence about those who have the top
K collusiveness Φ(i, j) with vj :

(2.4) Ω∗K
j (i, R) =

1

K
I{Φ(i,j)≥Φ(K) , vi∈R·,j(ζ)}

where Φ(K) is the Kth largest collusiveness in the set.
The intuition is that stronger evidence itself to some
extent implies higher possibility of true collusion and
thus should gain higher confidence.



Finally, to account for the impact of confidence
weighting, the original expression (Eq. 2.1) for comput-
ing the spamicity of reviewer vi can be modified to:

(2.5) si =
∑

k∈Pi

∑

vj∈Rk,i(ζ)

sj · Φ(i, j) · Ωj(i, Rk,j(ζ))

2.3 Global Ranking To obtain a final ranking of re-
viewers, a propagation-based ranking algorithm is pro-
posed based on the mutual disclosure model (Eq.(2.5)).
Recall that at the end of mutual disclosure, a colluder
will gain high spamicity for accumulating high collu-
siveness from the accomplices who also have high spam-
icities, and a non-colluder’s spamicity will be low for
the low collusiveness received from either colluders or
other non-colluders. In other words, reviewers who pro-
vide strong evidence of their collusion with other high-
spamicity reviewers tend also to have high spamicities
(i.e., giving themselves away). Inspired by this ob-
servation, we consider to extend the Markov random
walk model [13] to obtain a stabilized ranking of re-
viewer spamicities for its convergence property, where
the spamicities of reviewers can be interpreted as the
“authorities” of web pages in hyperlink structure. In the
context of MRW, each directed reviewer pair < vi, vj >
is associated with a collusion weight f(i → j) which
is equal to the sum of the product of the collusiveness
between vi and vj , Φ(i, j) and the corresponding confi-
dence of vi in the evidence about vj , Ωi(j, R), over all
products Pi reviewed by vi:

(2.6) f(i → j) =
∑

k∈Pi

Φ(i, j) · Ωi(j, Rk,i(ζ))

The transition probability from vi to vj is defined by
normalizing the corresponding collusion weight as:

(2.7) p(i → j) =

{

f(i→j)
∑|V|

j′=1
f(i→j′)

if
∑

f 6= 0

0 otherwise

Recall that V is the set of all reviewers in the site. The
row-normalized transition matrix is M = [Mi,j ]|V|×|V|

where Mi,j = p(i → j). To meet the conditions of M
being a stochastic matrix and guarantee the existence
of a stationary distribution, the rows with all zeros are
substituted by a smoothing vector with each element
set to 1/|V|. Finally, the spamicity si of vi can be
formulated in a recursive manner as follows:

(2.8) si = η
∑

j:i→j

sj ·Mi,j + (1− η)
1

|V|

where η ∈ [0, 1] is a damping factor to control the prob-
ability of teleportation, which is set to 0.85 in our case.
The ranking of reviewers by their spamicities is obtained
by running Eq.(2.8) iteratively until convergence.

3 Collusiveness Measure: Pairwise Features

In this section, we present multiple heterogeneous pair-
wise features to measure the collusiveness between re-
viewer pairs, i.e., Φ(i, j) in Eq. (2.5). Multiple observ-

able and retrievable review data such as ratings, times-
tamps, text, and products/brands being reviewed are
considered. It is worth noting that each dimension can
only cover a portion of colluding behaviors (e.g., not all
the pairs having similar ratings would necessarily im-
ply the occurrence of collusion), a final combination is
needed for robustness and comprehensiveness purpose.
Product-based Sentiment Deviation (PSD): hav-
ing the same spamming goal of promoting/demoting the
reputations of the targets, colluders tend to express sim-
ilar opinions by giving similar ratings, which can lead
to lower rating deviation among them. Given a pair of
reviewers vi and vj , PSD computes the degree of rating
deviation towards their commonly reviewed products:

(3.9) φpsd =
2

1 + ed
P
r̄ (i,j)

· αij

where αij =
|Pi∩Pj |
|Pi∪Pj |

is a damping factor accounting

for the bias induced by the absolute difference between
their respectively reviewed products; Pi(j) is the set

of products reviewed by vi(j). dPr̄ (i, j) is the average
rating deviation of (vi, vj) over their commonly reviewed
products Pi ∩ Pj : dPr̄ (i, j) = avgpk∈Pi∩Pj

(|rpk

i − rpk

j |)
where rpk

i(j) is the rating given by vi(j) for the commonly

reviewed product pk.
Product-based Time Deviation (PTD): following
the same predefined spam schedule, colluders prone
to behave in a lockstep manner. In other words, the
temporal traces of their postings tend to be close on the
commonly reviewed products. Given a pair of reviewers
vi and vj , φptd evaluates the reviewing time gap on their
commonly reviewed products:

(3.10) φptd =
1

1 + dP
t̄
(i, j)λ

· αij

where λ ≥ 1 is a parameter to accelerate the rate of
decay for the average reviewing time deviation of (vi, vj)
over Pi ∩ Pj , d

P
t̄
(i, j) = avgpk∈Pi∩Pj

(|tpk

i − tpk

j |) where

tpk

i(j) is the reviewing timestamp for pk ∈ Pi∩Pj by vi(j).

Product-based Review Text Similarity (PTS):
previous studies [8, 10, 11] observed that review spam-
mers are inclined to write fake reviews with similar con-
tents not only for saving efforts but also for expressing
similar opinions. To capture this signal, given a pair of
reviewers vi and vj , φpts is formulated as the maximum
cosine similarity between their review texts over Pi∩Pj :

(3.11) φpts = max
pk∈Pi∩Pj

(cosine(v
pk
i , v

pk
j )) · αij

where vpk

i(j) is the review text written by vi(j) for pk ∈
Pi ∩Pj . Each review text is represented by a bag of bi-
grams and cosine(v, v′) computes the cosine similarity
of the bi-gram TF-IDF vectors of v and v′.
Brand-based Sentiment Deviation (BSD): brand
information has been shown to be helpful [5, 7, 18].
In [18] the author found that instead of targeting at
commonly reviewed products, colluders nowadays have
been assigned different sets of products for reviewing.



However, all the compromised products may still have
the same brands. Here we consider this “higher level”
information. Given a pair of reviewers vi and vj , φbsd

computes the degree of average rating deviation towards
their commonly reviewed brands:

(3.12) φbsd =
2

1 + ed
B
r̄ (i,j)

· βij

where βij =
|Bi∩Bj |
|Bi∪Bj |

is a damping factor corresponding

to brand; Bi(j) is the set of brands reviewed by vi(j).

dBr̄ (i, j) is the average rating deviation between vi and vj
over Bi ∩Bj : d

B
r̄ (i, j) = avgbk∈Bi∩Bj

(|rbki − rbkj |) where
rbk
i(j) = avgpk′∈Pi(j) ,brand(pk′)=bk

(r
pk′

i(j)) is the average

rating given by vi(j) for bk ∈ Bi ∩Bj .
Brand-based Time Deviation (BTD): similar to
the “product” version PTD, BTD computes the degree
of reviewing time gap between reviewers vi and vj at
brand level:

(3.13) φbtd =
1

1 + dB
t̄
(i, j)λ

· βij

where dB
t̄
(i, j) measures the average deviation of the

reviewing time intervals for Bi ∩ Bj , between vi and

vj : dB
t̄
(i, j) = avgbk∈Bi∩Bj

(|max(T bk
i ) − max(T bk

j )| +
|min(T bk

i ) − min(T bk
j )|) where T bk

i(j) = {tpk

i(j)|pk ∈
Pi(j), brand(pk) = bk} is the set of reviewing timestamps
for bk ∈ Bi ∩Bj by vi(j).
Brand-based Review Text Similarity (BTS): sim-
ilar to the “product” version PTS, BTS measures the
maximum review text similarity towards Bi ∩Bj :

(3.14) φbts= max
bk∈Bi∩Bj

( max
p∈Pi,brand(p)=bk
p′∈Pj,brand(p′)=bk

(cosine(vpi , v
p′

j ))) · βij

Reviewing Activity Homophily (RAH): for a spam
campaign, the schedule or budget would affect the re-
viewing activity patterns of involved colluders. Specif-
ically, these colluders tend to be busy during the cam-
paign period while idle when no task is available. Based
on this intuition, RAH captures the commonality of
posting activities of a pair, vi and vj . We first split
the global timeline into small time slots {s1, s2, ..., sk}
with equal width τ . Each slot corresponds to a time
period of interest. φrah can then be defined as:

(3.15) φrah =
1

1 +
[

KL(qi‖qj)+KL(qj‖qi)

2

]λ

where KL(·‖·) is the KL divergence. qi(j) =
{ ns

i(j)
∑

s′∈Si∩Sj
ns′

i(j)

}

s∈Si∩Sj
is the distribution of vi(j) over

the number of reviews posted in each of their common
time slots ns

i(j). Si(j) is the set of time slots within which

vi(j) has posted at least one review.
Reviewing Lifetime Homophily (RLH): it has been
reported that spammers, unlike authentic reviewers,
typically do not use their accounts for too long [10].
The usage patterns of their accounts are expected to be
similar with each other since they may follow a unified

arrangement in a spam campaign, leading to similar
time spans of their reviewing lifetimes. RLH captures
the difference of the reviewing lifetimes of (vi, vj):

(3.16) φrlh =
1

1 + |LTi − LTj |λ

where LTi(j) = max(TP
i(j)) − min(TP

i(j)) computes the

lifetime of vi(j), and TP
i(j) = {tp

i(j)|p ∈ Pi(j)} is the set of

reviewing timestamps of vi(j) for the products in Pi(j).
Pairwise Feature Combination. Each pairwise fea-
ture has already been normalized within 0 and 1. We
integrate all dimensions via a convex combination, to
obtain the overall collusiveness measure for each re-
viewer pair (vi, vj): Φ(i, j) =

∑

k wk · φk(i, j) where
∑

k wk = 1, wk ≥ 0, k is the index for each pairwise
feature. The weighting parameter w = {wk} specifies
the importance of each feature; bigger weights should be
assigned to more effective ones. As our proposed frame-
work is unsupervised, uninformative equal emphasis will
be given to each feature dimension.

4 Empirical Analysis

Dataset. Building an annotated spam review dataset
is non-trivial. We manage to obtain the dataset used in
[18] where 1,937 colluders (+) and 3,118 non-colluders
(–) are identified in the product reviews of Amazon.cn.
The reviews for all the products reviewed by these
annotated reviewers are used in our experiments, which
in total involves 3,987 products, 140,258 reviewers1, and
265,793 reviews.
Evaluation Criteria. Two well-known ranking based
metrics are used for our experimental analysis [11].
1) Precision@k: defines the precision at cut-off k in the
ranking list which corresponds to the ratio of colluders
in the top k ranks.
2) Normalized Discounted Cumulative Gain (NDCG):
evaluates resulting rankings with respect to an ideal
ranking based on reviewers’ spamicities, which favors
rankings where colluders with highest spamicities are
ranked at the top. NDCG@k is defined to be:

(4.17) NDCG@k=
DCG@k

IDCG@k
;DCG@k=

k
∑

i=1

2ci − 1

log2(1+i)

where ci is the binary class value of the reviewer (1:col-
luder, 0:non-colluder) ranked at position i. IDCG@k is
the discounted cumulative gain (DCG) of the ideal rank-
ing at position k where all colluders are ranked higher
than all non-colluders.

4.1 Effects of Pairwise Features As the measures
of collusiveness between reviewers, the proposed mul-
tiple pairwise features are the core to differentiate col-
luders from non-colluders in FraudInformer. Effec-
tive pairwise features are expected to distinguish the

1Singletons, a special type of spammers writing only one review
in their lifetimes, are not considered in our experiments since
the proposed pairwise features require reviewers to have adequate
reviewing histories. Studies like [17] can handle this issue.
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Figure 1: Histograms of pairwise features over three types of pairs: colluder to colluder (C-C), non-colluder
to colluder (NC-C), non-colluder to non-colluder (NC-NC). The x-axis denotes the pairwise feature scores
(collusiveness) and the y-axis denotes the corresponding frequencies.

collusiveness of three types of reviewer pairs, i.e., col-
luder to colluder pair, non-colluder to colluder pair, and
non-colluder to non-colluder pair. Specifically, the col-
lusiveness of (colluder,colluder) pairs should be higher
than the other two. Figure 1 shows the distribution
of each pairwise feature score (collusiveness) over the
three types of reviewer pairs. Note that to be consistent
with the way of collusiveness propagation in FraudIn-
former, only the pairs of reviewers whose positions in
a product reviewer list are within an investigating range
(IR) are considered. Here the IR is empirically set to
be 25, close to the half of the average distance between
two colluders in the dataset which is 56.07. We also
compute the χ2 value [19] for each feature; the larger
the χ2 value is, the higher discriminative power the cor-
responding feature has. From Figure 1 we can see that
(colluder,colluder) pairs dominate the area of high col-
lusiveness in each histogram. Among these pairwise fea-
tures, BSD achieves the best performance not only in
terms of the clear separation observed in the histogram
but also the highest χ2 values. Another notable ob-
servation is that brand-based pairwise features gener-
ally outperform the product-based counterparts (except
PTD and BTD, however their difference is small), im-
plying that colluders nowadays are more likely to target
brands than specific products. By grouping different
products with the same brands together, the collusive
signals will be accumulated and become more prominent

among colluders.

4.2 Effects of Investigating Range The optimal
choice for investigating range is nontrivial; a small
value may lead to some distant accomplices being not
covered in the accusation (low recall) while a large
one may not only bring along noise by accounting
for some non-colluders (low precision), but may also
result in inefficient computation. Figure 2 shows the
effects of different investigating ranges (IRs) on the
overall ranking performance. Here we model IR as
a function of the length nk of a product reviewer
list ℓk (Section 2.1). We then consider four types of
functions - Constant (ζ(nk) = 5, 10, 15, 20), Random
(ζ(nk) = random(1, 20)), Root (ζ(nk) =

√
nk, 3

√
nk),

and Logarithmic (ζ(nk) = log2(nk + 1)). From the
experiments, we noted two observations.
The TYPE I noise. For constant IR functions,
as IR increases from 5 to 20, we find a monotonic
degradation on both NDCG and Precision (Figure 2).
Further experiment (Figure 3(a)) is conducted with
fine-grained IR∈ {1, 2, ..., 25} and the performance is
shown to clearly decline as IR increases in higher
ranks (k=100,500) and there is a small arch around
IR=2 when k becomes larger (k=1000,1500). To derive
further insights into why this happens, we compute the
average ratio of nearby colluders in the data which turns
out to decrease when IR rises (solid line in Figure 3(b))
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Figure 2: Ranking performance for different investigat-
ing range (IR) settings. Uniform kernel function is used
as the confidence function.
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Figure 3: The rise of TYPE I noise from the collusion
weight allocation in FraudInformer.

while the average ratio of nearby non-colluders increases
slightly (dashed line in Figure 3(b)). This shows that
as IR gets larger, in long enough product reviewer lists,
a colluder will have more non-colluders involved in the
accusation who aggregately share an increasing portion
of collusion weights in the collusiveness propagation,
leading to higher spamicities of these non-colluders
in the final ranking (Eq.(2.6)). We denote this kind
of noise rising from the collusion weight allocation in
FraudInformer as the TYPE I noise which may lead
to performance deterioration.
The TYPE II noise. We then consider the variable
IRs (Random, Root, and Logarithmic) whose perfor-
mance is much poorer than that of constant IRs. This
is anti-intuitive because the performance of variable IRs
is expected to remain moderate between those of larger
constant IRs (e.g., 25) and smaller ones (e.g., 5) rather
than worse than both cases. This may be partially due
to the effect of the TYPE I noise because the IRs of
longer product reviewer lists (ℓLong) are correspond-
ingly larger, which makes it underperform small con-
stant IRs. On the other hand, regarding the poorer
performance compared to larger constant IRs, we ar-

gue that it may be attributed to two facts that in the
dataset 1) most of the colluders write fake reviews for
unpopular products with short reviewer lists (ℓShort),
e.g., 51.5% colluders have reviewed 43.9% products with
|ℓShort| ≤ 12 and nearly 3 of them (25%) are colluders
on average, and 2) the positions of such colluders in
ℓShort are quite close to each other, e.g., the average
and median distances between two consecutive collud-
ers in ℓShort with |ℓShort| ≤ 12 are 1.23 and 1 respec-
tively. As such, when using the proportional variable
IRs, in unpopular products a colluder will have less
neighbors most of whom are also colluders with simi-
larly high collusiveness, and in popular products a non-
colluder will have more neighbors most of whom are also
non-colluders with similarly low collusiveness. By nor-
malizing the collusion weights to construct a stochastic
transition matrix (Eq.(2.7)), the collusiveness in both
cases will be smoothed out. Thus, non-colluders in ℓLong

will gain higher “authority” during the global ranking
due to the greater number of their non-colluder neigh-
bors covered by larger IRs. In contrast, when using
large constant IRs (e.g., 25), the colluders in ℓShort will
have a portion of non-colluder neighbors as well, mak-
ing the transition probability unevenly distributed over
colluder neighbors and non-colluder ones which is just
the proper reflection of the difference between the collu-
siveness value of C-C and C-NC pairs. We denote this
kind of noise rising from the construction of transition
matrix (Eq.(2.7)) as the TYPE II noise.

As a summary, a desirable investigating range
should meet the following conditions: 1) it should not
be set too large in popular products for restricting the
“authority” of non-colluders and 2) it should not be set
too small in unpopular products so as to maintain the
coverage of colluders and also to boost the “authority”
of colluders by providing the opportunity of intensify-
ing the differences between positives (C-C pairs) and
negatives (NC-C and NC-NC pairs) in the process of
unsupervised learning.

4.3 Effects of Confidence Weighting We experi-
ment with different confidence functions which encode
different patterns of reviewers’ confidence when provid-
ing evidence about each other. As shown in Figure 4,
the Epanechnikov kernel with IR=5 (Epan IR5) per-
forms best and in terms of symmetric confidence the
Epanechnikov kernel outperforms the uniform kernel in
all IR settings. This is reasonable since the Epanech-
nikov kernel assigns more belief to the evidence about
closer reviewers, which matches the concentration prop-
erty of spam reviews [3]. On the other hand, the asym-
metric function (the TopK kernel) is shown to outper-
form all symmetric counterparts. Recall that the TopK
kernel trusts the evidence about the ones with higher
collusiveness. To further analyze the nature of the TopK
kernel, an additional experiment is conducted to study
the impacts from different K = {1, 5, ..., 50} and IR
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Figure 4: Evaluation of different confidence functions.

settings (Figure 4(b)). Note that K ≤ 2×IR while
K = 2×IR is equivalent to the uniform kernel with
IR=K/2 (the red dashed lines highlight the largest K
corresponding to each IR setting). Several observations
are noted. First, as K increases the performance gets
better for all IR settings. This may be ascribed to the
TYPE II noise; when K is small, for a specific colluder,
the similarly high collusiveness with other nearby col-
luders will be smoothed out by the normalization, mak-
ing it no difference with the case of non-colluders. Sec-
ond, it shows that for a fixed K, the performance drops
as IR becomes larger. This differs from the TYPE I
noise as the number of neighbors does not change which
is K all the time. A potential explanation is that al-
though K is fixed, the top K selected neighbors for a
particular reviewer are changing as IR becomes larger,
and the chance of obtaining neighbors with similar col-
lusiveness scores increases as well, which would amplify
the effect of the TYPE II noise that the similarly high
collusiveness of C-C pairs of a colluder would be neutral-
ized after normalization. Finally, it shows that empiri-
cally the performance of the TopK kernel will converge
to that of the uniform kernel as K goes to 2×IR.

4.4 Comparison Analysis We compare our frame-
work with other competitors which exploit pointwise
features for colluder detection.
(1) GSRank [11]: by modeling the relationships
among spammers, spammer groups, and target prod-
ucts, GSRank, a state-of-the-art unsupervised algo-
rithm for detecting review spammer groups, uses 8 well-
designed group-based pointwise features to characterize
colluder behaviors. We implement GSRank and the 8
group-based features for the comparison.
(2) Learning to Rank: this is another way of inte-
grating the aforementioned pointwise group-based fea-
tures where a training ranking can be obtained by sort-
ing reviewers based on each feature in descending order
(the group-based features assign higher scores to collud-
ers than non-colluders). The resulting learned ranking
model is in effect an optimal combination of the rank-

ings produced by the 8 group-based feature functions.
In our experiments, two learning to rank algorithms -
SVMRank [6] and RankBoost [4] - are adopted and the
default parameter settings are used.

For FraudInformer, according to previous exper-
imental analysis, we choose the Epanechnikov kernel as
the confidence function and the IR is set to 5. The al-
gorithm converges after 150 iterations given that L∞

norm is used to measure the difference between the
spamicity vectors of consecutive iterations and the algo-
rithm terminates when the difference ≤ 10−6. We com-
pare with the learning to rank algorithms using 10-fold
cross validation and the performance is averaged over
all test folders (each test folder includes ≈ 500 exam-
ples). For GSRank, we use the entire dataset as one test
folder since training is not needed in both GSRank and
FraudInformer. All the improvements of our method
over the baselines are significant at the confident level
of 95% based on two-tailed t-test.

As shown in Table 1, our method in general out-
performs both leaning to rank algorithms. For k = 50
the performance improves at least by 11.6% in Preci-
sion@k and 11.9% in NDCG@k. For comparison with
GSRank2, our method performs at least as well as
GSRank. At higher rank positions (k=100,200,300)
both methods can achieve promising results. However,
when k exceeds 400, the performance of GSRank drops
significantly. We further inspect the colluders ranked
within [400, 1000] by FraudInformer yet missed by
the top 1000 ranks of GSRank, finding 379 colluders
in total of which 162 (42.7%) are ranked at the bot-
tom 1000 by GSRank. Among the Bottom1000 collud-
ers, 124 (124/162=76.5%) appear in ≤ 4 groups and we
also find that some of the group behaviors are not well-
captured by the proposed group based features (e.g.,
Group Size, Group Support Count, Group Deviation
in [11]). This is reasonable since GSRank relies on
the mutual enhancement between entities (i.e., groups,
group members, and products); group members with
low group feature scores will obtain low spamicities with
GSRank. As a result, the inferred spamicities of smarter
colluders who review many similar items with legitimate
reviewers may be even lower than those active reviewers
who happen to review many popular products. More-
over, among the 38 remaining GSRank Bottom1000 col-
luders, 24 of them are involved in big groups. This
may also be problematic since larger groups may con-
ceal some of the collusion signals exhibited by a portion
of group members. In contrast, our method operates
with a finer granularity which reveals connection be-
tween each pair of colluders directly. Although such
colluders may not seem suspicious at group level, their
collusiveness could be captured at pairwise level by the
proposed pairwise features.

2The result of Precision@k is similar.



SVMRank RankBoost FraudInformer
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k 50 0.844 0.818 0.942

100 0.804 0.780 0.866

150 0.764 0.738 0.785

200 0.717 0.701 0.708
250 0.672 0.667 0.688
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100 0.819 0.794 0.890

150 0.784 0.759 0.832

200 0.757 0.738 0.773

250 0.830 0.820 0.841

Table 1: Performance comparison with learning to rank
algorithms on both Precision and NDCG.
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5 The Adversarial Offense

In this section, we consider the adversarial challenge by
answering the question that how much damage could
an adversary cause when he tries to evade the detection
of FraudInformer. By following the same rules and
plans, colluders in a spam campaign are unlikely to
have completely different targets or opposite opinions.
However, they can manage their positions in the product
reviewer lists so as to escape the coverage (investigating
ranges) of other accomplices (e.g., if IR=10, colluders
can place their spam reviews at an interval of 11). In the
dataset we find that colluders are not always necessarily
centralized within a specific region, and some may be far
away from the majority. However, blindly improving
the recall (i.e. to cover more colluders) by enlarging
the IR may reduce the precision of FraudInformer
(Section 4.2). To balance this trade-off, we have the
following lemma.

Lemma 5.1. Assume that in a spam campaign where
each of N colluders is asked to write fake reviews for
m out of M products which have reviewer lists with
equal-length L. Each fake review generates one unit
of impression which represents the utility of the spam.
Then the average impression generated by this spam

campaign on each product is bounded by γR−1

γR−1
if an

exponential decay function 1
γR (γ > 1) is used to model

the impression where R is the investigating range.

Proof. To evade the capture of other accomplices with
investigating range R, the maximum impression will be
achieved if the colluders are positioned with an interval
of R, started from the top of each chronologically or-
dered reviewer list. Then the total impressions achieved
by this spam campaign is:

Itotal=M

⌊mN
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1
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(5.18)

Then we have Iave = Itotal/M = γR−1

γR−1
. �

We can see that the average impression decreases very
fast, reciprocally, as the IR increases, e.g., when γ =

1.1, we have Iave(IR=1)
Iave(IR=10) = 6.75, which means that a

moderate IR can significantly weaken and further limit
the effects of spam campaigns. On the other hand,
moderate IRs can effectively catch most of the colluders
(Section 4.2) since the manipulation of review positions
is not always an easy task in practice; for colluders
it is unclear how long would it take for legitimate
reviewers to post reviews right after their spam reviews
being posted. Thus, to guarantee the achievement of
predefined goals, colluders have to spam as quickly as
possible, resulting in concentration in collusion attacks.

6 Related Work

Among all anti-spam approaches for online reviews,
three detection tasks can be identified from the liter-
ature.
Spam Review Detection. In [5], duplicate and near
duplicate reviews are assumed to be spam and are used
to train a supervised model for detecting untruthful
product reviews. Li et al. [7] use reviewer related
information (e.g., user profiles, brand) to help detect
review spam by incorporating review- and reviewer-
level features into a semi-supervised model. In [12],
much attention is paid to review text. Linguistic and
psycholinguistic features are combined to train a highly
accurate classifier for spam review detection. However,
review text is vulnerable to manipulation and it has
also been shown that humans are poor at identifying
deceptive reviews by just reading the review text [12].
Review Spammer Detection. In [16], the causality
among reviews, reviewers, and stores has been used to
construct a heterogeneous graph for spammer detection.
A more principled framework proposed in [1] is based
on Markov random field (MRF) where a signed bipartite
review network is created to link reviewers and products
(nodes) with reviews (edges). In addition, some studies
are focused on spamming behavior analysis. Lim et
al. [8] propose multiple behavioral features to model the
potential spamming practices for reviewers. Mukherjee



et al. [10] integrate state-of-the-art behavioral features
into an unsupervised Bayesian framework where the
spamicity of a reviewer is modeled as a latent variable.
Although shown to be effective to detect spammers,
these approaches may be problematic when confronting
with colluders since collective behaviors of colluders may
not appear suspicious if the targets are attacked by a
large number of well-organized colluders who do not
appear as outliers any more.
Group Spammer Detection. Our work belongs to
this direction which has not received much attention so
far. In [11], several group based pointwise features are
proposed to capture collective behaviors of candidate
reviewer groups. A ranking algorithm is then used to
rank these candidates based on these features. Our
study has several distinctions. First, it does not rely
on the concept of “group” which may have granularity
problem; a tiny group may not be able to exhibit
sufficiently suspicious collective behaviors so as to be
captured by the group based features. Second, our
proposed pairwise features are capable to directly reveal
the intrinsic connections among colluders whereas the
group based features are restricted by the group itself in
that each measurement has to be aligned to the group-
level, so that the collusion evidence about portions of
group members may be concealed by the behaviors
of the whole group. Xu et al. [18] spot colluders by
building a supervised MRFmodel based on co-reviewing
behaviors of reviewers. In contrast, our method works
with no prior knowledge, which is more desirable as
obtaining the ground truth about review spam is usually
very hard and unreliable in practice.

7 Conclusions

In this paper, we conduct study on the detection of
colluders in online review spam campaigns via multi-
ple heterogeneous pairwise features. We find that pair-
wise features can directly and fine-grainedly model the
behavioral proximity of colluders, e.g., reviewing sim-
ilar products and expressing similar opinions within
short time periods. We also propose an intuitive frame-
work utilizing accompanied benefits from pairwise fea-
tures upon an autonomous process that makes collud-
ers themselves give each other away, which is also scal-
able and unsupervised. Empirical experiments validate
the effectiveness of our method and show that it signifi-
cantly outperforms baselines by revealing colluders who
have managed to evade the capture of the state-of-the-
art pointwise group spammer features.
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